dyld-750.5.tar.gz
[apple/dyld.git] / dyld3 / shared-cache / OptimizerBranches.cpp
1 /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2 *
3 * Copyright (c) 2015 Apple Inc. All rights reserved.
4 *
5 * @APPLE_LICENSE_HEADER_START@
6 *
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
12 * file.
13 *
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
21 *
22 * @APPLE_LICENSE_HEADER_END@
23 */
24
25
26 #include <sys/types.h>
27 #include <sys/stat.h>
28 #include <sys/mman.h>
29 #include <limits.h>
30 #include <stdarg.h>
31 #include <stdio.h>
32 #include <unistd.h>
33 #include <CommonCrypto/CommonDigest.h>
34
35 #include <string>
36 #include <unordered_map>
37 #include <unordered_set>
38
39 #include "StringUtils.h"
40 #include "Trie.hpp"
41 #include "MachOFileAbstraction.hpp"
42 #include "MachOAnalyzer.h"
43 #include "Diagnostics.h"
44 #include "DyldSharedCache.h"
45 #include "SharedCacheBuilder.h"
46
47 static const bool verbose = false;
48
49
50
51
52 template <typename P>
53 class StubOptimizer {
54 public:
55 StubOptimizer(const DyldSharedCache* cache, macho_header<P>* mh, Diagnostics& diags);
56 void buildStubMap(const std::unordered_set<std::string>& neverStubEliminate);
57 void optimizeStubs();
58 void optimizeCallSites(std::unordered_map<uint64_t, uint64_t>& targetAddrToOptStubAddr);
59 const char* installName() { return _installName; }
60 const uint8_t* exportsTrie() {
61 if ( _dyldInfo != nullptr )
62 return &_linkeditBias[_dyldInfo->export_off()];
63 else
64 return &_linkeditBias[_exportTrie->dataoff()];
65 }
66 uint32_t exportsTrieSize() {
67 if ( _dyldInfo != nullptr )
68 return _dyldInfo->export_size();
69 else
70 return _exportTrie->datasize();
71 }
72
73 uint32_t _stubCount = 0;
74 uint32_t _stubOptimizedCount = 0;
75 uint32_t _stubsLeftInterposable = 0;
76 uint32_t _branchToStubCount = 0;
77 uint32_t _branchOptimizedToDirectCount = 0;
78 uint32_t _branchToOptimizedStubCount = 0;
79 uint32_t _branchToReUsedOptimizedStubCount = 0;
80
81 private:
82 Diagnostics _diagnostics;
83
84 typedef std::function<bool(uint8_t callSiteKind, uint64_t callSiteAddr, uint64_t stubAddr, uint32_t& instruction)> CallSiteHandler;
85 typedef typename P::uint_t pint_t;
86 typedef typename P::E E;
87
88 void forEachCallSiteToAStub(CallSiteHandler);
89 void optimizeArm64CallSites(std::unordered_map<uint64_t, uint64_t>& targetAddrToOptStubAddr);
90 void optimizeArm64Stubs();
91 #if SUPPORT_ARCH_arm64e
92 void optimizeArm64eStubs();
93 #endif
94 #if SUPPORT_ARCH_arm64_32
95 void optimizeArm64_32Stubs();
96 #endif
97 void optimizeArmCallSites(std::unordered_map<uint64_t, uint64_t>& targetAddrToOptStubAddr);
98 void optimizeArmStubs();
99 uint64_t lazyPointerAddrFromArm64Stub(const uint8_t* stubInstructions, uint64_t stubVMAddr);
100 #if SUPPORT_ARCH_arm64e
101 uint64_t lazyPointerAddrFromArm64eStub(const uint8_t* stubInstructions, uint64_t stubVMAddr);
102 #endif
103 #if SUPPORT_ARCH_arm64_32
104 uint64_t lazyPointerAddrFromArm64_32Stub(const uint8_t* stubInstructions, uint64_t stubVMAddr);
105 #endif
106 uint32_t lazyPointerAddrFromArmStub(const uint8_t* stubInstructions, uint32_t stubVMAddr);
107 int32_t getDisplacementFromThumbBranch(uint32_t instruction, uint32_t instrAddr);
108 uint32_t setDisplacementInThumbBranch(uint32_t instruction, uint32_t instrAddr,
109 int32_t displacement, bool targetIsThumb);
110
111
112 struct AddressAndName { pint_t targetVMAddr; const char* targetName; };
113 typedef std::unordered_map<pint_t, AddressAndName> StubVMAddrToTarget;
114
115 static const int64_t b128MegLimit = 0x07FFFFFF;
116 static const int64_t b16MegLimit = 0x00FFFFFF;
117
118
119
120 macho_header<P>* _mh;
121 int64_t _cacheSlide = 0;
122 uint64_t _cacheUnslideAddr = 0;
123 uint32_t _linkeditSize = 0;
124 uint64_t _linkeditAddr = 0;
125 const uint8_t* _linkeditBias = nullptr;
126 const char* _installName = nullptr;
127 const macho_symtab_command<P>* _symTabCmd = nullptr;
128 const macho_dysymtab_command<P>* _dynSymTabCmd = nullptr;
129 const macho_dyld_info_command<P>* _dyldInfo = nullptr;
130 const macho_linkedit_data_command<P>* _exportTrie = nullptr;
131 macho_linkedit_data_command<P>* _splitSegInfoCmd = nullptr;
132 const macho_section<P>* _textSection = nullptr;
133 const macho_section<P>* _stubSection = nullptr;
134 uint32_t _textSectionIndex = 0;
135 uint32_t _stubSectionIndex = 0;
136 pint_t _textSegStartAddr = 0;
137 std::vector<macho_segment_command<P>*> _segCmds;
138 std::unordered_map<pint_t, pint_t> _stubAddrToLPAddr;
139 std::unordered_map<pint_t, pint_t> _lpAddrToTargetAddr;
140 std::unordered_map<pint_t, const char*> _targetAddrToName;
141 std::unordered_set<uint64_t> _stubsToOptimize;
142 };
143
144
145 template <typename P>
146 StubOptimizer<P>::StubOptimizer(const DyldSharedCache* cache, macho_header<P>* mh, Diagnostics& diags)
147 : _mh(mh), _diagnostics(diags)
148 {
149 _cacheSlide = (long)cache - cache->unslidLoadAddress();
150 _cacheUnslideAddr = cache->unslidLoadAddress();
151 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((uint8_t*)mh + sizeof(macho_header<P>));
152 const uint32_t cmd_count = mh->ncmds();
153 macho_segment_command<P>* segCmd;
154 uint32_t sectionIndex = 0;
155 const macho_load_command<P>* cmd = cmds;
156 for (uint32_t i = 0; i < cmd_count; ++i) {
157 switch (cmd->cmd()) {
158 case LC_ID_DYLIB:
159 _installName = ((macho_dylib_command<P>*)cmd)->name();
160 break;
161 case LC_SYMTAB:
162 _symTabCmd = (macho_symtab_command<P>*)cmd;
163 break;
164 case LC_DYSYMTAB:
165 _dynSymTabCmd = (macho_dysymtab_command<P>*)cmd;
166 break;
167 case LC_SEGMENT_SPLIT_INFO:
168 _splitSegInfoCmd = (macho_linkedit_data_command<P>*)cmd;
169 break;
170 case LC_DYLD_INFO:
171 case LC_DYLD_INFO_ONLY:
172 _dyldInfo = (macho_dyld_info_command<P>*)cmd;
173 break;
174 case LC_DYLD_EXPORTS_TRIE:
175 _exportTrie = (macho_linkedit_data_command<P>*)cmd;
176 break;
177 case macho_segment_command<P>::CMD:
178 segCmd =( macho_segment_command<P>*)cmd;
179 _segCmds.push_back(segCmd);
180 if ( strcmp(segCmd->segname(), "__LINKEDIT") == 0 ) {
181 _linkeditBias = (uint8_t*)(segCmd->vmaddr() + _cacheSlide - segCmd->fileoff());
182 _linkeditSize = (uint32_t)segCmd->vmsize();
183 _linkeditAddr = segCmd->vmaddr();
184 }
185 else if ( strcmp(segCmd->segname(), "__TEXT") == 0 ) {
186 _textSegStartAddr = (pint_t)segCmd->vmaddr();
187 const macho_section<P>* const sectionsStart = (macho_section<P>*)((char*)segCmd + sizeof(macho_segment_command<P>));
188 const macho_section<P>* const sectionsEnd = &sectionsStart[segCmd->nsects()];
189 for (const macho_section<P>* sect = sectionsStart; sect < sectionsEnd; ++sect) {
190 ++sectionIndex;
191 if ( strcmp(sect->sectname(), "__text") == 0 ) {
192 _textSection = sect;
193 _textSectionIndex = sectionIndex;
194 }
195 else if ( ((sect->flags() & SECTION_TYPE) == S_SYMBOL_STUBS) && (sect->size() != 0) ) {
196 _stubSection = sect;
197 _stubSectionIndex = sectionIndex;
198 }
199 }
200 }
201 break;
202 }
203 cmd = (const macho_load_command<P>*)(((uint8_t*)cmd)+cmd->cmdsize());
204 }
205 }
206
207
208
209 template <typename P>
210 uint32_t StubOptimizer<P>::lazyPointerAddrFromArmStub(const uint8_t* stubInstructions, uint32_t stubVMAddr)
211 {
212 uint32_t stubInstr1 = E::get32(*(uint32_t*)stubInstructions);
213 uint32_t stubInstr2 = E::get32(*(uint32_t*)(stubInstructions+4));
214 uint32_t stubInstr3 = E::get32(*(uint32_t*)(stubInstructions+8));
215 int32_t stubData = E::get32(*(uint32_t*)(stubInstructions+12));
216 if ( stubInstr1 != 0xe59fc004 ) {
217 _diagnostics.warning("first instruction of stub (0x%08X) is not 'ldr ip, pc + 12' for stub at addr 0x%0llX in %s",
218 stubInstr1, (uint64_t)stubVMAddr, _installName);
219 return 0;
220 }
221 if ( stubInstr2 != 0xe08fc00c ) {
222 _diagnostics.warning("second instruction of stub (0x%08X) is not 'add ip, pc, ip' for stub at addr 0x%0llX in %s",
223 stubInstr1, (uint64_t)stubVMAddr, _installName);
224 return 0;
225 }
226 if ( stubInstr3 != 0xe59cf000 ) {
227 _diagnostics.warning("third instruction of stub (0x%08X) is not 'ldr pc, [ip]' for stub at addr 0x%0llX in %s",
228 stubInstr1, (uint64_t)stubVMAddr, _installName);
229 return 0;
230 }
231 return stubVMAddr + 12 + stubData;
232 }
233
234
235 template <typename P>
236 uint64_t StubOptimizer<P>::lazyPointerAddrFromArm64Stub(const uint8_t* stubInstructions, uint64_t stubVMAddr)
237 {
238 uint32_t stubInstr1 = E::get32(*(uint32_t*)stubInstructions);
239 if ( (stubInstr1 & 0x9F00001F) != 0x90000010 ) {
240 _diagnostics.warning("first instruction of stub (0x%08X) is not ADRP for stub at addr 0x%0llX in %s",
241 stubInstr1, (uint64_t)stubVMAddr, _installName);
242 return 0;
243 }
244 int32_t adrpValue = ((stubInstr1 & 0x00FFFFE0) >> 3) | ((stubInstr1 & 0x60000000) >> 29);
245 if ( stubInstr1 & 0x00800000 )
246 adrpValue |= 0xFFF00000;
247 uint32_t stubInstr2 = E::get32(*(uint32_t*)(stubInstructions + 4));
248 if ( (stubInstr2 & 0xFFC003FF) != 0xF9400210 ) {
249 _diagnostics.warning("second instruction of stub (0x%08X) is not LDR for stub at addr 0x%0llX in %s",
250 stubInstr2, (uint64_t)stubVMAddr, _installName);
251 return 0;
252 }
253 uint32_t ldrValue = ((stubInstr2 >> 10) & 0x00000FFF);
254 return (stubVMAddr & (-4096)) + adrpValue*4096 + ldrValue*8;
255 }
256
257 #if SUPPORT_ARCH_arm64_32
258 template <typename P>
259 uint64_t StubOptimizer<P>::lazyPointerAddrFromArm64_32Stub(const uint8_t* stubInstructions, uint64_t stubVMAddr)
260 {
261 uint32_t stubInstr1 = E::get32(*(uint32_t*)stubInstructions);
262 if ( (stubInstr1 & 0x9F00001F) != 0x90000010 ) {
263 _diagnostics.warning("first instruction of stub (0x%08X) is not ADRP for stub at addr 0x%0llX in %s",
264 stubInstr1, (uint64_t)stubVMAddr, _installName);
265 return 0;
266 }
267 int32_t adrpValue = ((stubInstr1 & 0x00FFFFE0) >> 3) | ((stubInstr1 & 0x60000000) >> 29);
268 if ( stubInstr1 & 0x00800000 )
269 adrpValue |= 0xFFF00000;
270 uint32_t stubInstr2 = E::get32(*(uint32_t*)(stubInstructions + 4));
271 if ( (stubInstr2 & 0xFFC003FF) != 0xB9400210 ) {
272 _diagnostics.warning("second instruction of stub (0x%08X) is not LDR for stub at addr 0x%0llX in %s",
273 stubInstr2, (uint64_t)stubVMAddr, _installName);
274 return 0;
275 }
276 uint32_t ldrValue = ((stubInstr2 >> 10) & 0x00000FFF);
277 return (stubVMAddr & (-4096)) + adrpValue*4096 + ldrValue*4; // LDR Wn has a scale factor of 4
278
279 }
280 #endif
281
282
283 #if SUPPORT_ARCH_arm64e
284 template <typename P>
285 uint64_t StubOptimizer<P>::lazyPointerAddrFromArm64eStub(const uint8_t* stubInstructions, uint64_t stubVMAddr)
286 {
287 uint32_t stubInstr1 = E::get32(*(uint32_t*)stubInstructions);
288 // ADRP X17, dyld_mageLoaderCache@page
289 if ( (stubInstr1 & 0x9F00001F) != 0x90000011 ) {
290 _diagnostics.warning("first instruction of stub (0x%08X) is not ADRP for stub at addr 0x%0llX in %s",
291 stubInstr1, (uint64_t)stubVMAddr, _installName);
292 return 0;
293 }
294 int32_t adrpValue = ((stubInstr1 & 0x00FFFFE0) >> 3) | ((stubInstr1 & 0x60000000) >> 29);
295 if ( stubInstr1 & 0x00800000 )
296 adrpValue |= 0xFFF00000;
297
298 // ADD X17, X17, dyld_mageLoaderCache@pageoff
299 uint32_t stubInstr2 = E::get32(*(uint32_t*)(stubInstructions + 4));
300 if ( (stubInstr2 & 0xFFC003FF) != 0x91000231 ) {
301 _diagnostics.warning("second instruction of stub (0x%08X) is not ADD for stub at addr 0x%0llX in %s",
302 stubInstr2, (uint64_t)stubVMAddr, _installName);
303 return 0;
304 }
305 uint32_t addValue = ((stubInstr2 & 0x003FFC00) >> 10);
306
307 // LDR X16, [X17]
308 uint32_t stubInstr3 = E::get32(*(uint32_t*)(stubInstructions + 8));
309 if ( stubInstr3 != 0xF9400230 ) {
310 _diagnostics.warning("second instruction of stub (0x%08X) is not LDR for stub at addr 0x%0llX in %s",
311 stubInstr2, (uint64_t)stubVMAddr, _installName);
312 return 0;
313 }
314 return (stubVMAddr & (-4096)) + adrpValue*4096 + addValue;
315 }
316 #endif
317
318
319 template <typename P>
320 void StubOptimizer<P>::buildStubMap(const std::unordered_set<std::string>& neverStubEliminate)
321 {
322 // find all stubs and lazy pointers
323 const macho_nlist<P>* symbolTable = (const macho_nlist<P>*)(&_linkeditBias[_symTabCmd->symoff()]);
324 const char* symbolStrings = (char*)(&_linkeditBias[_symTabCmd->stroff()]);
325 const uint32_t* const indirectTable = (uint32_t*)(&_linkeditBias[_dynSymTabCmd->indirectsymoff()]);
326 const macho_load_command<P>* const cmds = (macho_load_command<P>*)((uint8_t*)_mh + sizeof(macho_header<P>));
327 const uint32_t cmd_count = _mh->ncmds();
328 const macho_load_command<P>* cmd = cmds;
329 for (uint32_t i = 0; i < cmd_count; ++i) {
330 if ( cmd->cmd() == macho_segment_command<P>::CMD ) {
331 macho_segment_command<P>* seg = (macho_segment_command<P>*)cmd;
332 macho_section<P>* const sectionsStart = (macho_section<P>*)((char*)seg + sizeof(macho_segment_command<P>));
333 macho_section<P>* const sectionsEnd = &sectionsStart[seg->nsects()];
334 for(macho_section<P>* sect = sectionsStart; sect < sectionsEnd; ++sect) {
335 if ( sect->size() == 0 )
336 continue;
337 unsigned sectionType = (sect->flags() & SECTION_TYPE);
338 const uint32_t indirectTableOffset = sect->reserved1();
339 if ( sectionType == S_SYMBOL_STUBS ) {
340 const uint32_t stubSize = sect->reserved2();
341 _stubCount = (uint32_t)(sect->size() / stubSize);
342 pint_t stubVMAddr = (pint_t)sect->addr();
343 for (uint32_t j=0; j < _stubCount; ++j, stubVMAddr += stubSize) {
344 uint32_t symbolIndex = E::get32(indirectTable[indirectTableOffset + j]);
345 switch ( symbolIndex ) {
346 case INDIRECT_SYMBOL_ABS:
347 case INDIRECT_SYMBOL_LOCAL:
348 case INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL:
349 break;
350 default:
351 if ( symbolIndex >= _symTabCmd->nsyms() ) {
352 _diagnostics.warning("symbol index out of range (%d of %d) for stub at addr 0x%0llX in %s",
353 symbolIndex, _symTabCmd->nsyms(), (uint64_t)stubVMAddr, _installName);
354 continue;
355 }
356 const macho_nlist<P>* sym = &symbolTable[symbolIndex];
357 uint32_t stringOffset = sym->n_strx();
358 if ( stringOffset > _symTabCmd->strsize() ) {
359 _diagnostics.warning("symbol string offset out of range (%u of %u) for stub at addr 0x%0llX in %s",
360 stringOffset, sym->n_strx(), (uint64_t)stubVMAddr, _installName);
361 continue;
362 }
363 const char* symName = &symbolStrings[stringOffset];
364 if ( neverStubEliminate.count(symName) ) {
365 //fprintf(stderr, "stubVMAddr=0x%llX, not bypassing stub to %s in %s because target is interposable\n", (uint64_t)stubVMAddr, symName, _installName);
366 _stubsLeftInterposable++;
367 continue;
368 }
369 const uint8_t* stubInstrs = (uint8_t*)(long)stubVMAddr + _cacheSlide;
370 pint_t targetLPAddr = 0;
371 switch ( _mh->cputype() ) {
372 case CPU_TYPE_ARM64:
373 case CPU_TYPE_ARM64_32:
374 #if SUPPORT_ARCH_arm64e
375 if (_mh->cpusubtype() == CPU_SUBTYPE_ARM64E)
376 targetLPAddr = (pint_t)lazyPointerAddrFromArm64eStub(stubInstrs, stubVMAddr);
377 else
378 #endif
379 #if SUPPORT_ARCH_arm64_32
380 if (_mh->cputype() == CPU_TYPE_ARM64_32)
381 targetLPAddr = (pint_t)lazyPointerAddrFromArm64_32Stub(stubInstrs, stubVMAddr);
382 else
383 #endif
384 targetLPAddr = (pint_t)lazyPointerAddrFromArm64Stub(stubInstrs, stubVMAddr);
385 break;
386 case CPU_TYPE_ARM:
387 targetLPAddr = (pint_t)lazyPointerAddrFromArmStub(stubInstrs, (uint32_t)stubVMAddr);
388 break;
389 }
390 if ( targetLPAddr != 0 )
391 _stubAddrToLPAddr[stubVMAddr] = targetLPAddr;
392 break;
393 }
394 }
395 }
396 else if ( (sectionType == S_LAZY_SYMBOL_POINTERS) || (sectionType == S_NON_LAZY_SYMBOL_POINTERS) ) {
397 pint_t lpVMAddr;
398 pint_t* lpContent = (pint_t*)(sect->addr() + _cacheSlide);
399 uint32_t elementCount = (uint32_t)(sect->size() / sizeof(pint_t));
400 uint64_t textSegStartAddr = _segCmds[0]->vmaddr();
401 uint64_t textSegEndAddr = _segCmds[0]->vmaddr() + _segCmds[0]->vmsize();
402 pint_t lpValue;
403 for (uint32_t j=0; j < elementCount; ++j) {
404 uint32_t symbolIndex = E::get32(indirectTable[indirectTableOffset + j]);
405 switch ( symbolIndex ) {
406 case INDIRECT_SYMBOL_ABS:
407 case INDIRECT_SYMBOL_LOCAL:
408 case INDIRECT_SYMBOL_LOCAL|INDIRECT_SYMBOL_ABS:
409 break;
410 default:
411 lpValue = (pint_t)P::getP(lpContent[j]);
412 lpVMAddr = (pint_t)sect->addr() + j * sizeof(pint_t);
413 if ( symbolIndex >= _symTabCmd->nsyms() ) {
414 _diagnostics.warning("symbol index out of range (%d of %d) for lazy pointer at addr 0x%0llX in %s",
415 symbolIndex, _symTabCmd->nsyms(), (uint64_t)lpVMAddr, _installName);
416 continue;
417 }
418 const macho_nlist<P>* sym = &symbolTable[symbolIndex];
419 uint32_t stringOffset = sym->n_strx();
420 if ( stringOffset > _symTabCmd->strsize() ) {
421 _diagnostics.warning("symbol string offset out of range (%u of %u) for lazy pointer at addr 0x%0llX in %s",
422 stringOffset, sym->n_strx(), (uint64_t)lpVMAddr, _installName);
423 continue;
424 }
425 const char* symName = &symbolStrings[stringOffset];
426 if ( (lpValue > textSegStartAddr) && (lpValue< textSegEndAddr) ) {
427 //fprintf(stderr, "skipping lazy pointer at 0x%0lX to %s in %s because target is within dylib\n", (long)lpVMAddr, symName, _installName);
428 }
429 else if ( (sizeof(pint_t) == 8) && ((lpValue % 4) != 0) ) {
430 _diagnostics.warning("lazy pointer at 0x%0llX does not point to 4-byte aligned address(0x%0llX) in %s",
431 (uint64_t)lpVMAddr, (uint64_t)lpValue, _installName);
432 }
433 else {
434 _lpAddrToTargetAddr[lpVMAddr] = lpValue;
435 _targetAddrToName[lpValue] = symName;
436 }
437 break;
438 }
439 }
440 }
441 }
442 }
443 cmd = (const macho_load_command<P>*)(((uint8_t*)cmd)+cmd->cmdsize());
444 }
445 }
446
447
448 template <typename P>
449 void StubOptimizer<P>::forEachCallSiteToAStub(CallSiteHandler handler)
450 {
451 if (_diagnostics.hasError())
452 return;
453 const uint8_t* infoStart = &_linkeditBias[_splitSegInfoCmd->dataoff()];
454 const uint8_t* infoEnd = &infoStart[_splitSegInfoCmd->datasize()];
455 if ( *infoStart++ != DYLD_CACHE_ADJ_V2_FORMAT ) {
456 _diagnostics.error("malformed split seg info in %s", _installName);
457 return;
458 }
459
460 uint8_t* textSectionContent = (uint8_t*)(_textSection->addr() + _cacheSlide);
461
462 // Whole :== <count> FromToSection+
463 // FromToSection :== <from-sect-index> <to-sect-index> <count> ToOffset+
464 // ToOffset :== <to-sect-offset-delta> <count> FromOffset+
465 // FromOffset :== <kind> <count> <from-sect-offset-delta>
466 const uint8_t* p = infoStart;
467 uint64_t sectionCount = read_uleb128(p, infoEnd);
468 for (uint64_t i=0; i < sectionCount; ++i) {
469 uint64_t fromSectionIndex = read_uleb128(p, infoEnd);
470 uint64_t toSectionIndex = read_uleb128(p, infoEnd);
471 uint64_t toOffsetCount = read_uleb128(p, infoEnd);
472 uint64_t toSectionOffset = 0;
473 for (uint64_t j=0; j < toOffsetCount; ++j) {
474 uint64_t toSectionDelta = read_uleb128(p, infoEnd);
475 uint64_t fromOffsetCount = read_uleb128(p, infoEnd);
476 toSectionOffset += toSectionDelta;
477 for (uint64_t k=0; k < fromOffsetCount; ++k) {
478 uint64_t kind = read_uleb128(p, infoEnd);
479 if ( kind > 13 ) {
480 _diagnostics.error("bad kind (%llu) value in %s\n", kind, _installName);
481 }
482 uint64_t fromSectDeltaCount = read_uleb128(p, infoEnd);
483 uint64_t fromSectionOffset = 0;
484 for (uint64_t l=0; l < fromSectDeltaCount; ++l) {
485 uint64_t delta = read_uleb128(p, infoEnd);
486 fromSectionOffset += delta;
487 if ( (fromSectionIndex == _textSectionIndex) && (toSectionIndex == _stubSectionIndex) ) {
488 uint32_t* instrPtr = (uint32_t*)(textSectionContent + fromSectionOffset);
489 uint64_t instrAddr = _textSection->addr() + fromSectionOffset;
490 uint64_t stubAddr = _stubSection->addr() + toSectionOffset;
491 uint32_t instruction = E::get32(*instrPtr);
492 _branchToStubCount++;
493 if ( handler(kind, instrAddr, stubAddr, instruction) ) {
494 E::set32(*instrPtr, instruction);
495 }
496 }
497 }
498 }
499 }
500 }
501 }
502
503
504 /// Extract displacement from a thumb b/bl/blx instruction.
505 template <typename P>
506 int32_t StubOptimizer<P>::getDisplacementFromThumbBranch(uint32_t instruction, uint32_t instrAddr)
507 {
508 bool is_blx = ((instruction & 0xD000F800) == 0xC000F000);
509 uint32_t s = (instruction >> 10) & 0x1;
510 uint32_t j1 = (instruction >> 29) & 0x1;
511 uint32_t j2 = (instruction >> 27) & 0x1;
512 uint32_t imm10 = instruction & 0x3FF;
513 uint32_t imm11 = (instruction >> 16) & 0x7FF;
514 uint32_t i1 = (j1 == s);
515 uint32_t i2 = (j2 == s);
516 uint32_t dis = (s << 24) | (i1 << 23) | (i2 << 22) | (imm10 << 12) | (imm11 << 1);
517 int32_t sdis = dis;
518 int32_t result = s ? (sdis | 0xFE000000) : sdis;
519 if ( is_blx && (instrAddr & 0x2) ) {
520 // The thumb blx instruction always has low bit of imm11 as zero. The way
521 // a 2-byte aligned blx can branch to a 4-byte aligned ARM target is that
522 // the blx instruction always 4-byte aligns the pc before adding the
523 // displacement from the blx. We must emulate that when decoding this.
524 result -= 2;
525 }
526 return result;
527 }
528
529 /// Update a thumb b/bl/blx instruction, switching bl <-> blx as needed.
530 template <typename P>
531 uint32_t StubOptimizer<P>::setDisplacementInThumbBranch(uint32_t instruction, uint32_t instrAddr,
532 int32_t displacement, bool targetIsThumb) {
533 if ( (displacement > 16777214) || (displacement < (-16777216)) ) {
534 _diagnostics.error("thumb branch out of range at 0x%0X in %s", instrAddr, _installName);
535 return 0;
536 }
537 bool is_bl = ((instruction & 0xD000F800) == 0xD000F000);
538 bool is_blx = ((instruction & 0xD000F800) == 0xC000F000);
539 bool is_b = ((instruction & 0xD000F800) == 0x9000F000);
540 uint32_t newInstruction = (instruction & 0xD000F800);
541 if (is_bl || is_blx) {
542 if (targetIsThumb) {
543 newInstruction = 0xD000F000; // Use bl
544 }
545 else {
546 newInstruction = 0xC000F000; // Use blx
547 // See note in getDisplacementFromThumbBranch() about blx.
548 if (instrAddr & 0x2)
549 displacement += 2;
550 }
551 }
552 else if (is_b) {
553 if ( !targetIsThumb ) {
554 _diagnostics.error("no pc-rel thumb branch instruction that switches to arm mode at 0x%0X in %s", instrAddr, _installName);
555 return 0;
556 }
557 }
558 else {
559 _diagnostics.error("not b/bl/blx at 0x%0X in %s", instrAddr, _installName);
560 return 0;
561 }
562 uint32_t s = (uint32_t)(displacement >> 24) & 0x1;
563 uint32_t i1 = (uint32_t)(displacement >> 23) & 0x1;
564 uint32_t i2 = (uint32_t)(displacement >> 22) & 0x1;
565 uint32_t imm10 = (uint32_t)(displacement >> 12) & 0x3FF;
566 uint32_t imm11 = (uint32_t)(displacement >> 1) & 0x7FF;
567 uint32_t j1 = (i1 == s);
568 uint32_t j2 = (i2 == s);
569 uint32_t nextDisp = (j1 << 13) | (j2 << 11) | imm11;
570 uint32_t firstDisp = (s << 10) | imm10;
571 newInstruction |= (nextDisp << 16) | firstDisp;
572 return newInstruction;
573 }
574
575
576 template <typename P>
577 void StubOptimizer<P>::optimizeArmCallSites(std::unordered_map<uint64_t, uint64_t>& targetAddrToOptStubAddr)
578 {
579 forEachCallSiteToAStub([&](uint8_t kind, uint64_t callSiteAddr, uint64_t stubAddr, uint32_t& instruction) -> bool {
580 if ( kind == DYLD_CACHE_ADJ_V2_THUMB_BR22 ) {
581 bool is_bl = ((instruction & 0xD000F800) == 0xD000F000);
582 bool is_blx = ((instruction & 0xD000F800) == 0xC000F000);
583 bool is_b = ((instruction & 0xD000F800) == 0x9000F000);
584 if ( !is_bl && !is_blx && !is_b ){
585 _diagnostics.warning("non-branch instruction at 0x%0llX in %s", callSiteAddr, _installName);
586 return false;
587 }
588 int32_t brDelta = getDisplacementFromThumbBranch(instruction, (uint32_t)callSiteAddr);
589 pint_t targetAddr = (pint_t)callSiteAddr + 4 + brDelta;
590 if ( targetAddr != stubAddr ) {
591 _diagnostics.warning("stub target mismatch at callsite 0x%0llX in %s", callSiteAddr, _installName);
592 return false;
593 }
594 // ignore branch if not to a known stub
595 const auto& pos = _stubAddrToLPAddr.find(targetAddr);
596 if ( pos == _stubAddrToLPAddr.end() )
597 return false;
598
599 // ignore branch if lazy pointer is not known (resolver or interposable)
600 uint64_t lpAddr = pos->second;
601 const auto& pos2 = _lpAddrToTargetAddr.find((pint_t)lpAddr);
602 if ( pos2 == _lpAddrToTargetAddr.end() )
603 return false;
604
605 uint64_t finalTargetAddr = pos2->second;
606 int64_t deltaToFinalTarget = finalTargetAddr - (callSiteAddr + 4);
607 // if final target within range, change to branch there directly
608 if ( (deltaToFinalTarget > -b16MegLimit) && (deltaToFinalTarget < b16MegLimit) ) {
609 bool targetIsThumb = (finalTargetAddr & 1);
610 instruction = setDisplacementInThumbBranch(instruction, (uint32_t)callSiteAddr, (int32_t)deltaToFinalTarget, targetIsThumb);
611 if (_diagnostics.hasError())
612 return false;
613 _branchOptimizedToDirectCount++;
614 return true;
615 }
616
617 // try to re-use an existing optimized stub
618 const auto& pos3 = targetAddrToOptStubAddr.find(finalTargetAddr);
619 if ( pos3 != targetAddrToOptStubAddr.end() ) {
620 uint64_t existingStub = pos3->second;
621 if ( existingStub != stubAddr ) {
622 int64_t deltaToOptStub = existingStub - (callSiteAddr + 4);
623 if ( (deltaToOptStub > -b16MegLimit) && (deltaToOptStub < b16MegLimit) ) {
624 bool targetIsThumb = (existingStub & 1);
625 instruction = setDisplacementInThumbBranch(instruction, (uint32_t)callSiteAddr, (int32_t)deltaToOptStub, targetIsThumb);
626 if (_diagnostics.hasError())
627 return false;
628 _branchToReUsedOptimizedStubCount++;
629 return true;
630 }
631 }
632 }
633
634 // leave as BL to stub, but optimize the stub
635 _stubsToOptimize.insert(stubAddr);
636 targetAddrToOptStubAddr[finalTargetAddr] = stubAddr;
637 _branchToOptimizedStubCount++;
638 return false;
639 }
640 else if ( kind == DYLD_CACHE_ADJ_V2_ARM_BR24 ) {
641 // too few of these to be worth trying to optimize
642 }
643
644 return false;
645 });
646 if (_diagnostics.hasError())
647 return;
648 }
649
650
651 template <typename P>
652 void StubOptimizer<P>::optimizeArmStubs()
653 {
654 for (const auto& stubEntry : _stubAddrToLPAddr) {
655 pint_t stubVMAddr = stubEntry.first;
656 pint_t lpVMAddr = stubEntry.second;
657 const auto& pos = _lpAddrToTargetAddr.find(lpVMAddr);
658 if ( pos == _lpAddrToTargetAddr.end() )
659 return;
660 pint_t targetVMAddr = pos->second;
661
662 int32_t delta = (int32_t)(targetVMAddr - (stubVMAddr + 12));
663 uint32_t* stubInstructions = (uint32_t*)((uint8_t*)(long)stubVMAddr + _cacheSlide);
664 assert(stubInstructions[0] == 0xe59fc004);
665 stubInstructions[0] = 0xe59fc000; // ldr ip, L0
666 stubInstructions[1] = 0xe08ff00c; // add pc, pc, ip
667 stubInstructions[2] = delta; // L0: .long xxxx
668 stubInstructions[3] = 0xe7ffdefe; // trap
669 _stubOptimizedCount++;
670 }
671 }
672
673
674
675 template <typename P>
676 void StubOptimizer<P>::optimizeArm64Stubs()
677 {
678 for (const uint64_t stubVMAddr : _stubsToOptimize ) {
679 pint_t lpVMAddr = _stubAddrToLPAddr[(pint_t)stubVMAddr];
680 const auto& pos = _lpAddrToTargetAddr.find(lpVMAddr);
681 if ( pos == _lpAddrToTargetAddr.end() )
682 return;
683 pint_t targetVMAddr = pos->second;
684
685 int64_t adrpDelta = (targetVMAddr & -4096) - (stubVMAddr & -4096);
686 // Note: ADRP/ADD can only span +/-4GB
687 uint32_t* stubInstructions = (uint32_t*)((uint8_t*)(long)stubVMAddr + _cacheSlide);
688 bool rightInstr1 = ((stubInstructions[0] & 0x9F00001F) == 0x90000010); // ADRP X16, lp@page
689 bool rightInstr2 = ((stubInstructions[1] & 0xFFC003FF) == 0xF9400210); // LDR X16, [X16, lp@pageoff]
690 bool rightInstr3 = (stubInstructions[2] == 0xD61F0200); // BR X16
691
692 if ( rightInstr1 && rightInstr2 && rightInstr3 ) {
693 uint32_t immhi = (adrpDelta >> 9) & (0x00FFFFE0);
694 uint32_t immlo = (adrpDelta << 17) & (0x60000000);
695 uint32_t newADRP = (0x90000010) | immlo | immhi;
696 uint32_t off12 = (targetVMAddr & 0xFFF);
697 uint32_t newADD = (0x91000210) | (off12 << 10);
698
699 stubInstructions[0] = newADRP; // ADRP X16, target@page
700 stubInstructions[1] = newADD; // ADD X16, X16, target@pageoff
701 stubInstructions[2] = 0xD61F0200; // BR X16
702 _stubOptimizedCount++;
703 }
704 }
705 }
706
707 #if SUPPORT_ARCH_arm64e
708 template <typename P>
709 void StubOptimizer<P>::optimizeArm64eStubs()
710 {
711 for (const uint64_t stubVMAddr : _stubsToOptimize ) {
712 pint_t lpVMAddr = _stubAddrToLPAddr[(pint_t)stubVMAddr];
713 const auto& pos = _lpAddrToTargetAddr.find(lpVMAddr);
714 if ( pos == _lpAddrToTargetAddr.end() )
715 return;
716 pint_t targetVMAddr = pos->second;
717
718 int64_t adrpDelta = (targetVMAddr & -4096) - (stubVMAddr & -4096);
719 // Note: ADRP/ADD can only span +/-4GB
720 uint32_t* stubInstructions = (uint32_t*)((uint8_t*)(long)stubVMAddr + _cacheSlide);
721 bool rightInstr1 = ((stubInstructions[0] & 0x9F00001F) == 0x90000011); // ADRP X17, lp@page
722 bool rightInstr2 = ((stubInstructions[1] & 0xFFC003FF) == 0x91000231); // ADD X17, [X17, lp@pageoff]
723 bool rightInstr3 = (stubInstructions[2] == 0xF9400230); // LDR X16, [X17]
724 bool rightInstr4 = (stubInstructions[3] == 0xD71F0A11); // BRAA X16, X17
725
726 if ( rightInstr1 && rightInstr2 && rightInstr3 && rightInstr4) {
727 uint32_t immhi = (adrpDelta >> 9) & (0x00FFFFE0);
728 uint32_t immlo = (adrpDelta << 17) & (0x60000000);
729 uint32_t newADRP = (0x90000010) | immlo | immhi;
730 uint32_t off12 = (targetVMAddr & 0xFFF);
731 uint32_t newADD = (0x91000210) | (off12 << 10);
732
733 stubInstructions[0] = newADRP; // ADRP X16, target@page
734 stubInstructions[1] = newADD; // ADD X16, X16, target@pageoff
735 stubInstructions[2] = 0xD61F0200; // BR X16
736 stubInstructions[3] = 0xD4200020; // TRAP
737 _stubOptimizedCount++;
738 }
739 }
740 }
741 #endif
742
743 #if SUPPORT_ARCH_arm64_32
744 template <typename P>
745 void StubOptimizer<P>::optimizeArm64_32Stubs()
746 {
747 for (const uint64_t stubVMAddr : _stubsToOptimize ) {
748 pint_t lpVMAddr = _stubAddrToLPAddr[(pint_t)stubVMAddr];
749 const auto& pos = _lpAddrToTargetAddr.find(lpVMAddr);
750 if ( pos == _lpAddrToTargetAddr.end() )
751 return;
752 pint_t targetVMAddr = pos->second;
753
754 int64_t adrpDelta = (targetVMAddr & -4096) - (stubVMAddr & -4096);
755 uint32_t* stubInstructions = (uint32_t*)((uint8_t*)(long)stubVMAddr + _cacheSlide);
756 bool rightInstr1 = ((stubInstructions[0] & 0x9F00001F) == 0x90000010); // ADRP X16, lp@page
757 bool rightInstr2 = ((stubInstructions[1] & 0xFFC003FF) == 0xB9400210); // LDR W16, [X16, lp@pageoff]
758 bool rightInstr3 = (stubInstructions[2] == 0xD61F0200); // BR X16
759
760 if ( rightInstr1 && rightInstr2 && rightInstr3 ) {
761 uint32_t immhi = (adrpDelta >> 9) & (0x00FFFFE0);
762 uint32_t immlo = (adrpDelta << 17) & (0x60000000);
763 uint32_t newADRP = (0x90000010) | immlo | immhi;
764 uint32_t off12 = (targetVMAddr & 0xFFF);
765 uint32_t newADD = (0x91000210) | (off12 << 10);
766
767 stubInstructions[0] = newADRP; // ADRP X16, target@page
768 stubInstructions[1] = newADD; // ADD X16, X16, target@pageoff
769 stubInstructions[2] = 0xD61F0200; // BR X16
770 _stubOptimizedCount++;
771 }
772 }
773 }
774 #endif
775
776
777 template <typename P>
778 void StubOptimizer<P>::optimizeArm64CallSites(std::unordered_map<uint64_t, uint64_t>& targetAddrToOptStubAddr)
779 {
780 forEachCallSiteToAStub([&](uint8_t kind, uint64_t callSiteAddr, uint64_t stubAddr, uint32_t& instruction) -> bool {
781 if ( kind != DYLD_CACHE_ADJ_V2_ARM64_BR26 )
782 return false;
783 // skip all but BL or B
784 if ( (instruction & 0x7C000000) != 0x14000000 )
785 return false;
786 // compute target of branch instruction
787 int32_t brDelta = (instruction & 0x03FFFFFF) << 2;
788 if ( brDelta & 0x08000000 )
789 brDelta |= 0xF0000000;
790 uint64_t targetAddr = callSiteAddr + (int64_t)brDelta;
791 if ( targetAddr != stubAddr ) {
792 _diagnostics.warning("stub target mismatch");
793 return false;
794 }
795 // ignore branch if not to a known stub
796 const auto& pos = _stubAddrToLPAddr.find((pint_t)targetAddr);
797 if ( pos == _stubAddrToLPAddr.end() )
798 return false;
799
800 // ignore branch if lazy pointer is not known (resolver or interposable)
801 uint64_t lpAddr = pos->second;
802 const auto& pos2 = _lpAddrToTargetAddr.find((pint_t)lpAddr);
803 if ( pos2 == _lpAddrToTargetAddr.end() )
804 return false;
805
806 uint64_t finalTargetAddr = pos2->second;
807 int64_t deltaToFinalTarget = finalTargetAddr - callSiteAddr;
808 // if final target within range, change to branch there directly
809 if ( (deltaToFinalTarget > -b128MegLimit) && (deltaToFinalTarget < b128MegLimit) ) {
810 instruction= (instruction & 0xFC000000) | ((deltaToFinalTarget >> 2) & 0x03FFFFFF);
811 _branchOptimizedToDirectCount++;
812 return true;
813 }
814
815 // try to re-use an existing optimized stub
816 const auto& pos3 = targetAddrToOptStubAddr.find((pint_t)finalTargetAddr);
817 if ( pos3 != targetAddrToOptStubAddr.end() ) {
818 uint64_t existingStub = pos3->second;
819 if ( existingStub != stubAddr ) {
820 int64_t deltaToOptStub = existingStub - callSiteAddr;
821 if ( (deltaToOptStub > -b128MegLimit) && (deltaToOptStub < b128MegLimit) ) {
822 instruction = (instruction & 0xFC000000) | ((deltaToOptStub >> 2) & 0x03FFFFFF);
823 _branchToReUsedOptimizedStubCount++;
824 return true;
825 }
826 }
827 }
828
829 // leave as BL to stub, but optimize the stub
830 _stubsToOptimize.insert(stubAddr);
831 targetAddrToOptStubAddr[(pint_t)finalTargetAddr] = (pint_t)stubAddr;
832 _branchToOptimizedStubCount++;
833 return false;
834 });
835 if (_diagnostics.hasError())
836 return;
837 }
838
839
840 template <typename P>
841 void StubOptimizer<P>::optimizeCallSites(std::unordered_map<uint64_t, uint64_t>& targetAddrToOptStubAddr)
842 {
843 if ( _textSection == NULL )
844 return;
845 if ( _stubSection == NULL )
846 return;
847
848
849 switch ( _mh->cputype() ) {
850 case CPU_TYPE_ARM64:
851 optimizeArm64CallSites(targetAddrToOptStubAddr);
852 #if SUPPORT_ARCH_arm64e
853 if (_mh->cpusubtype() == CPU_SUBTYPE_ARM64E)
854 optimizeArm64eStubs();
855 else
856 #endif
857 optimizeArm64Stubs();
858 break;
859 #if SUPPORT_ARCH_arm64_32
860 case CPU_TYPE_ARM64_32:
861 optimizeArm64CallSites(targetAddrToOptStubAddr);
862 optimizeArm64_32Stubs();
863 break;
864 #endif
865 case CPU_TYPE_ARM:
866 optimizeArmCallSites(targetAddrToOptStubAddr);
867 optimizeArmStubs();
868 break;
869 }
870 if ( verbose ) {
871 _diagnostics.verbose("dylib has %6u BLs to %4u stubs. Changed %5u, %5u, %5u BLs to use direct branch, optimized stub, neighbor's optimized stub. "
872 "%5u stubs left interposable, %4u stubs optimized. path=%s\n",
873 _branchToStubCount, _stubCount, _branchOptimizedToDirectCount, _branchToOptimizedStubCount, _branchToReUsedOptimizedStubCount,
874 _stubsLeftInterposable, _stubOptimizedCount, _installName);
875 }
876
877 }
878
879 template <typename P>
880 void bypassStubs(DyldSharedCache* cache, const std::string& archName, std::unordered_map<uint64_t, uint64_t>& targetAddrToOptStubAddr,
881 const char* const neverStubEliminateDylibs[], const char* const neverStubEliminateSymbols[],
882 Diagnostics& diags)
883 {
884 diags.verbose("Stub elimination optimization:\n");
885
886 // construct a StubOptimizer for each image
887 __block std::vector<StubOptimizer<P>*> optimizers;
888 cache->forEachImage(^(const mach_header* mh, const char* installName) {
889 optimizers.push_back(new StubOptimizer<P>(cache, (macho_header<P>*)mh, diags));
890 });
891
892 // build set of functions to never stub-eliminate because tools may need to override them
893 std::unordered_set<std::string> neverStubEliminate;
894 for (const char* const* p=neverStubEliminateSymbols; *p != nullptr; ++p) {
895 neverStubEliminate.insert(*p);
896 }
897 for (const char* const* d=neverStubEliminateDylibs; *d != nullptr; ++d) {
898 for (StubOptimizer<P>* op : optimizers) {
899 if ( strcmp(op->installName(), *d) == 0 ) {
900 // add all exports
901 const uint8_t* exportsStart = op->exportsTrie();
902 const uint8_t* exportsEnd = exportsStart + op->exportsTrieSize();
903 std::vector<ExportInfoTrie::Entry> exports;
904 if ( !ExportInfoTrie::parseTrie(exportsStart, exportsEnd, exports) ) {
905 diags.error("malformed exports trie in %s", *d);
906 return;
907 }
908 for(const ExportInfoTrie::Entry& entry : exports) {
909 neverStubEliminate.insert(entry.name);
910 }
911 }
912 }
913 }
914
915 // build maps of stubs-to-lp and lp-to-target
916 for (StubOptimizer<P>* op : optimizers)
917 op->buildStubMap(neverStubEliminate);
918
919 // optimize call sites to by-pass stubs or jump through island
920 for (StubOptimizer<P>* op : optimizers)
921 op->optimizeCallSites(targetAddrToOptStubAddr);
922
923 // write total optimization info
924 uint32_t callSiteCount = 0;
925 uint32_t callSiteDirectOptCount = 0;
926 for (StubOptimizer<P>* op : optimizers) {
927 callSiteCount += op->_branchToStubCount;
928 callSiteDirectOptCount += op->_branchOptimizedToDirectCount;
929 }
930 diags.verbose(" cache contains %u call sites of which %u were direct bound\n", callSiteCount, callSiteDirectOptCount);
931
932 // clean up
933 for (StubOptimizer<P>* op : optimizers)
934 delete op;
935 }
936
937 void SharedCacheBuilder::optimizeAwayStubs()
938 {
939 std::unordered_map<uint64_t, uint64_t> targetAddrToOptStubAddr;
940
941 DyldSharedCache* dyldCache = (DyldSharedCache*)_readExecuteRegion.buffer;
942 std::string archName = dyldCache->archName();
943 #if SUPPORT_ARCH_arm64_32
944 if ( startsWith(archName, "arm64_32") )
945 bypassStubs<Pointer32<LittleEndian> >(dyldCache, archName, targetAddrToOptStubAddr, _s_neverStubEliminateDylibs, _s_neverStubEliminateSymbols, _diagnostics);
946 else
947 #endif
948 if ( startsWith(archName, "arm64") )
949 bypassStubs<Pointer64<LittleEndian> >(dyldCache, archName, targetAddrToOptStubAddr, _s_neverStubEliminateDylibs, _s_neverStubEliminateSymbols, _diagnostics);
950 else if ( archName == "armv7k" )
951 bypassStubs<Pointer32<LittleEndian>>(dyldCache, archName, targetAddrToOptStubAddr, _s_neverStubEliminateDylibs, _s_neverStubEliminateSymbols, _diagnostics);
952 // no stub optimization done for other arches
953 }