-/* $NetBSD: rb.c,v 1.4 2009/05/19 22:48:19 yamt Exp $ */
-
-/*-
- * Copyright (c) 2001 The NetBSD Foundation, Inc.
- * All rights reserved.
- *
- * Portions Copyright (c) 2009 Apple Inc. All rights reserved.
- *
- * This code is derived from software contributed to The NetBSD Foundation
- * by Matt Thomas <matt@3am-software.com>.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
- * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
-
-#if !defined(_KERNEL) && !defined(_STANDALONE)
-#include <sys/types.h>
-#include <stddef.h>
-#include <assert.h>
-#include <stdbool.h>
-#ifdef RBDEBUG
-#define KASSERT(s) assert(s)
-#else
-#define KASSERT(s) do { } while (/*CONSTCOND*/ 0)
-#endif
-#else
-#include <lib/libkern/libkern.h>
-#endif
-
-#ifdef _LIBC
-__weak_alias(rb_tree_init, _rb_tree_init)
-__weak_alias(rb_tree_find_node, _rb_tree_find_node)
-__weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
-__weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
-__weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
-__weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
-__weak_alias(rb_tree_iterate, _rb_tree_iterate)
-#ifdef RBDEBUG
-__weak_alias(rb_tree_check, _rb_tree_check)
-__weak_alias(rb_tree_depths, _rb_tree_depths)
-#endif
-
-#define rb_tree_init _rb_tree_init
-#define rb_tree_find_node _rb_tree_find_node
-#define rb_tree_find_node_geq _rb_tree_find_node_geq
-#define rb_tree_find_node_leq _rb_tree_find_node_leq
-#define rb_tree_insert_node _rb_tree_insert_node
-#define rb_tree_remove_node _rb_tree_remove_node
-#define rb_tree_iterate _rb_tree_iterate
-#ifdef RBDEBUG
-#define rb_tree_check _rb_tree_check
-#define rb_tree_depths _rb_tree_depths
-#endif
-#endif
-
-#if defined(RBTEST) || defined(__APPLE__)
-#include "rb.h"
-#else
-#include <sys/rb.h>
-#endif
-
-#ifdef __APPLE__
-#define __predict_true(exp) __builtin_expect((exp), 1)
-#define __predict_false(exp) __builtin_expect((exp), 0)
-#endif
-
-static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
-static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
- unsigned int);
-#ifdef RBDEBUG
-static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
- const struct rb_node *, const unsigned int);
-static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
- const struct rb_node *, bool);
-#else
-#define rb_tree_check_node(a, b, c, d) true
-#endif
-
-#define RB_SENTINEL_NODE NULL
-
-void
-rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
-{
- rbt->rbt_ops = ops;
- *((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
- RB_TAILQ_INIT(&rbt->rbt_nodes);
-#ifndef RBSMALL
- rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */
- rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */
-#endif
- rbt->rbt_count = 0;
-#ifdef RBSTATS
- rbt->rbt_insertions = 0;
- rbt->rbt_removals = 0;
- rbt->rbt_insertion_rebalance_calls = 0;
- rbt->rbt_insertion_rebalance_passes = 0;
- rbt->rbt_removal_rebalance_calls = 0;
- rbt->rbt_removal_rebalance_passes = 0;
-#endif
-}
-
-struct rb_node *
-rb_tree_find_node(struct rb_tree *rbt, const void *key)
-{
- rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
- struct rb_node *parent = rbt->rbt_root;
-
- while (!RB_SENTINEL_P(parent)) {
- const signed int diff = (*compare_key)(parent, key);
- if (diff == 0)
- return parent;
- parent = parent->rb_nodes[diff > 0];
- }
-
- return NULL;
-}
-
-struct rb_node *
-rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
-{
- rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
- struct rb_node *parent = rbt->rbt_root;
- struct rb_node *last = NULL;
-
- while (!RB_SENTINEL_P(parent)) {
- const signed int diff = (*compare_key)(parent, key);
- if (diff == 0)
- return parent;
- if (diff < 0)
- last = parent;
- parent = parent->rb_nodes[diff > 0];
- }
-
- return last;
-}
-
-struct rb_node *
-rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
-{
- rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
- struct rb_node *parent = rbt->rbt_root;
- struct rb_node *last = NULL;
-
- while (!RB_SENTINEL_P(parent)) {
- const signed int diff = (*compare_key)(parent, key);
- if (diff == 0)
- return parent;
- if (diff > 0)
- last = parent;
- parent = parent->rb_nodes[diff > 0];
- }
-
- return last;
-}
-\f
-bool
-rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
-{
- rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
- struct rb_node *parent, *tmp;
- unsigned int position;
- bool rebalance;
-
- RBSTAT_INC(rbt->rbt_insertions);
-
- tmp = rbt->rbt_root;
- /*
- * This is a hack. Because rbt->rbt_root is just a struct rb_node *,
- * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
- * avoid a lot of tests for root and know that even at root,
- * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
- * update rbt->rbt_root.
- */
- parent = (struct rb_node *)(void *)&rbt->rbt_root;
- position = RB_DIR_LEFT;
-
- /*
- * Find out where to place this new leaf.
- */
- while (!RB_SENTINEL_P(tmp)) {
- const signed int diff = (*compare_nodes)(tmp, self);
- if (__predict_false(diff == 0)) {
- /*
- * Node already exists; don't insert.
- */
- return false;
- }
- parent = tmp;
- position = (diff > 0);
- tmp = parent->rb_nodes[position];
- }
-
-#ifdef RBDEBUG
- {
- struct rb_node *prev = NULL, *next = NULL;
-
- if (position == RB_DIR_RIGHT)
- prev = parent;
- else if (tmp != rbt->rbt_root)
- next = parent;
-
- /*
- * Verify our sequential position
- */
- KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
- KASSERT(next == NULL || !RB_SENTINEL_P(next));
- if (prev != NULL && next == NULL)
- next = TAILQ_NEXT(prev, rb_link);
- if (prev == NULL && next != NULL)
- prev = TAILQ_PREV(next, rb_node_qh, rb_link);
- KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
- KASSERT(next == NULL || !RB_SENTINEL_P(next));
- KASSERT(prev == NULL || (*compare_nodes)(prev, self) > 0);
- KASSERT(next == NULL || (*compare_nodes)(self, next) > 0);
- }
-#endif
-
- /*
- * Initialize the node and insert as a leaf into the tree.
- */
- RB_SET_FATHER(self, parent);
- RB_SET_POSITION(self, position);
- if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
- RB_MARK_BLACK(self); /* root is always black */
-#ifndef RBSMALL
- rbt->rbt_minmax[RB_DIR_LEFT] = self;
- rbt->rbt_minmax[RB_DIR_RIGHT] = self;
-#endif
- rebalance = false;
- } else {
- KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
-#ifndef RBSMALL
- /*
- * Keep track of the minimum and maximum nodes. If our
- * parent is a minmax node and we on their min/max side,
- * we must be the new min/max node.
- */
- if (parent == rbt->rbt_minmax[position])
- rbt->rbt_minmax[position] = self;
-#endif /* !RBSMALL */
- /*
- * All new nodes are colored red. We only need to rebalance
- * if our parent is also red.
- */
- RB_MARK_RED(self);
- rebalance = RB_RED_P(parent);
- }
- KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
- self->rb_left = parent->rb_nodes[position];
- self->rb_right = parent->rb_nodes[position];
- parent->rb_nodes[position] = self;
- KASSERT(RB_CHILDLESS_P(self));
-
- /*
- * Insert the new node into a sorted list for easy sequential access
- */
- rbt->rbt_count++;
-#ifdef RBDEBUG
- if (RB_ROOT_P(rbt, self)) {
- RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
- } else if (position == RB_DIR_LEFT) {
- KASSERT((*compare_nodes)(self, RB_FATHER(self)) > 0);
- RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
- } else {
- KASSERT((*compare_nodes)(RB_FATHER(self), self) > 0);
- RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
- self, rb_link);
- }
-#endif
- KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
-
- /*
- * Rebalance tree after insertion
- */
- if (rebalance) {
- rb_tree_insert_rebalance(rbt, self);
- KASSERT(rb_tree_check_node(rbt, self, NULL, true));
- }
-
- return true;
-}
-\f
-/*
- * Swap the location and colors of 'self' and its child @ which. The child
- * can not be a sentinel node. This is our rotation function. However,
- * since it preserves coloring, it great simplifies both insertion and
- * removal since rotation almost always involves the exchanging of colors
- * as a separate step.
- */
-/*ARGSUSED*/
-static void
-rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
- const unsigned int which)
-{
- const unsigned int other = which ^ RB_DIR_OTHER;
- struct rb_node * const grandpa = RB_FATHER(old_father);
- struct rb_node * const old_child = old_father->rb_nodes[which];
- struct rb_node * const new_father = old_child;
- struct rb_node * const new_child = old_father;
-
- KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
-
- KASSERT(!RB_SENTINEL_P(old_child));
- KASSERT(RB_FATHER(old_child) == old_father);
-
- KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
- KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
- KASSERT(RB_ROOT_P(rbt, old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
-
- /*
- * Exchange descendant linkages.
- */
- grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
- new_child->rb_nodes[which] = old_child->rb_nodes[other];
- new_father->rb_nodes[other] = new_child;
-
- /*
- * Update ancestor linkages
- */
- RB_SET_FATHER(new_father, grandpa);
- RB_SET_FATHER(new_child, new_father);
-
- /*
- * Exchange properties between new_father and new_child. The only
- * change is that new_child's position is now on the other side.
- */
-#if 0
- {
- struct rb_node tmp;
- tmp.rb_info = 0;
- RB_COPY_PROPERTIES(&tmp, old_child);
- RB_COPY_PROPERTIES(new_father, old_father);
- RB_COPY_PROPERTIES(new_child, &tmp);
- }
-#else
- RB_SWAP_PROPERTIES(new_father, new_child);
-#endif
- RB_SET_POSITION(new_child, other);
-
- /*
- * Make sure to reparent the new child to ourself.
- */
- if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
- RB_SET_FATHER(new_child->rb_nodes[which], new_child);
- RB_SET_POSITION(new_child->rb_nodes[which], which);
- }
-
- KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
- KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
- KASSERT(RB_ROOT_P(rbt, new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
-}
-\f
-static void
-rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
-{
- struct rb_node * father = RB_FATHER(self);
- struct rb_node * grandpa;
- struct rb_node * uncle;
- unsigned int which;
- unsigned int other;
-
- KASSERT(!RB_ROOT_P(rbt, self));
- KASSERT(RB_RED_P(self));
- KASSERT(RB_RED_P(father));
- RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
-
- for (;;) {
- KASSERT(!RB_SENTINEL_P(self));
-
- KASSERT(RB_RED_P(self));
- KASSERT(RB_RED_P(father));
- /*
- * We are red and our parent is red, therefore we must have a
- * grandfather and he must be black.
- */
- grandpa = RB_FATHER(father);
- KASSERT(RB_BLACK_P(grandpa));
- KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
- which = (father == grandpa->rb_right);
- other = which ^ RB_DIR_OTHER;
- uncle = grandpa->rb_nodes[other];
-
- if (RB_BLACK_P(uncle))
- break;
-
- RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
- /*
- * Case 1: our uncle is red
- * Simply invert the colors of our parent and
- * uncle and make our grandparent red. And
- * then solve the problem up at his level.
- */
- RB_MARK_BLACK(uncle);
- RB_MARK_BLACK(father);
- if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
- /*
- * If our grandpa is root, don't bother
- * setting him to red, just return.
- */
- KASSERT(RB_BLACK_P(grandpa));
- return;
- }
- RB_MARK_RED(grandpa);
- self = grandpa;
- father = RB_FATHER(self);
- KASSERT(RB_RED_P(self));
- if (RB_BLACK_P(father)) {
- /*
- * If our greatgrandpa is black, we're done.
- */
- KASSERT(RB_BLACK_P(rbt->rbt_root));
- return;
- }
- }
-
- KASSERT(!RB_ROOT_P(rbt, self));
- KASSERT(RB_RED_P(self));
- KASSERT(RB_RED_P(father));
- KASSERT(RB_BLACK_P(uncle));
- KASSERT(RB_BLACK_P(grandpa));
- /*
- * Case 2&3: our uncle is black.
- */
- if (self == father->rb_nodes[other]) {
- /*
- * Case 2: we are on the same side as our uncle
- * Swap ourselves with our parent so this case
- * becomes case 3. Basically our parent becomes our
- * child.
- */
- rb_tree_reparent_nodes(rbt, father, other);
- KASSERT(RB_FATHER(father) == self);
- KASSERT(self->rb_nodes[which] == father);
- KASSERT(RB_FATHER(self) == grandpa);
-#ifdef RBDEBUG
- // only read when RBDEBUG is enabled with KASSERT
- self = father;
- father = RB_FATHER(self);
-#endif
- }
- KASSERT(RB_RED_P(self) && RB_RED_P(father));
- KASSERT(grandpa->rb_nodes[which] == father);
- /*
- * Case 3: we are opposite a child of a black uncle.
- * Swap our parent and grandparent. Since our grandfather
- * is black, our father will become black and our new sibling
- * (former grandparent) will become red.
- */
- rb_tree_reparent_nodes(rbt, grandpa, which);
- KASSERT(RB_FATHER(self) == father);
- KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
- KASSERT(RB_RED_P(self));
- KASSERT(RB_BLACK_P(father));
- KASSERT(RB_RED_P(grandpa));
-
- /*
- * Final step: Set the root to black.
- */
- RB_MARK_BLACK(rbt->rbt_root);
-}
-\f
-static void
-rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
-{
- const unsigned int which = RB_POSITION(self);
- struct rb_node *father = RB_FATHER(self);
- const bool was_root = RB_ROOT_P(rbt, self);
-
- KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
- KASSERT(!rebalance || RB_BLACK_P(self));
- KASSERT(RB_CHILDLESS_P(self));
- KASSERT(rb_tree_check_node(rbt, self, NULL, false));
-
- /*
- * Since we are childless, we know that self->rb_left is pointing
- * to the sentinel node.
- */
- father->rb_nodes[which] = self->rb_left;
-
- /*
- * Remove ourselves from the node list, decrement the count,
- * and update min/max.
- */
- RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
- rbt->rbt_count--;
-#ifndef RBSMALL
- if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
- rbt->rbt_minmax[RB_POSITION(self)] = father;
- /*
- * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
- * updated automatically, but we also need to update
- * rbt->rbt_minmax[RB_DIR_RIGHT];
- */
- if (__predict_false(was_root)) {
- rbt->rbt_minmax[RB_DIR_RIGHT] = father;
- }
- }
- RB_SET_FATHER(self, NULL);
-#endif
-
- /*
- * Rebalance if requested.
- */
- if (rebalance)
- rb_tree_removal_rebalance(rbt, father, which);
- KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
-}
-\f
-/*
- * When deleting an interior node
- */
-static void
-rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
- struct rb_node *standin)
-{
- const unsigned int standin_which = RB_POSITION(standin);
- unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
- struct rb_node *standin_son;
- struct rb_node *standin_father = RB_FATHER(standin);
- bool rebalance = RB_BLACK_P(standin);
-
- if (standin_father == self) {
- /*
- * As a child of self, any childen would be opposite of
- * our parent.
- */
- KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
- standin_son = standin->rb_nodes[standin_which];
- } else {
- /*
- * Since we aren't a child of self, any childen would be
- * on the same side as our parent.
- */
- KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
- standin_son = standin->rb_nodes[standin_other];
- }
-
- /*
- * the node we are removing must have two children.
- */
- KASSERT(RB_TWOCHILDREN_P(self));
- /*
- * If standin has a child, it must be red.
- */
- KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
-
- /*
- * Verify things are sane.
- */
- KASSERT(rb_tree_check_node(rbt, self, NULL, false));
- KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
-
- if (__predict_false(RB_RED_P(standin_son))) {
- /*
- * We know we have a red child so if we flip it to black
- * we don't have to rebalance.
- */
- KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
- RB_MARK_BLACK(standin_son);
- rebalance = false;
-
- if (standin_father == self) {
- KASSERT(RB_POSITION(standin_son) == standin_which);
- } else {
- KASSERT(RB_POSITION(standin_son) == standin_other);
- /*
- * Change the son's parentage to point to his grandpa.
- */
- RB_SET_FATHER(standin_son, standin_father);
- RB_SET_POSITION(standin_son, standin_which);
- }
- }
-
- if (standin_father == self) {
- /*
- * If we are about to delete the standin's father, then when
- * we call rebalance, we need to use ourselves as our father.
- * Otherwise remember our original father. Also, sincef we are
- * our standin's father we only need to reparent the standin's
- * brother.
- *
- * | R --> S |
- * | Q S --> Q T |
- * | t --> |
- */
- KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
- KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
- KASSERT(self->rb_nodes[standin_which] == standin);
- /*
- * Have our son/standin adopt his brother as his new son.
- */
- standin_father = standin;
- } else {
- /*
- * | R --> S . |
- * | / \ | T --> / \ | / |
- * | ..... | S --> ..... | T |
- *
- * Sever standin's connection to his father.
- */
- standin_father->rb_nodes[standin_which] = standin_son;
- /*
- * Adopt the far son.
- */
- standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
- RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
- KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
- /*
- * Use standin_other because we need to preserve standin_which
- * for the removal_rebalance.
- */
- standin_other = standin_which;
- }
-
- /*
- * Move the only remaining son to our standin. If our standin is our
- * son, this will be the only son needed to be moved.
- */
- KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
- standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
- RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
-
- /*
- * Now copy the result of self to standin and then replace
- * self with standin in the tree.
- */
- RB_COPY_PROPERTIES(standin, self);
- RB_SET_FATHER(standin, RB_FATHER(self));
- RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
-
- /*
- * Remove ourselves from the node list, decrement the count,
- * and update min/max.
- */
- RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
- rbt->rbt_count--;
-#ifndef RBSMALL
- if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
- rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
- RB_SET_FATHER(self, NULL);
-#endif
-
- KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
- KASSERT(RB_FATHER_SENTINEL_P(standin)
- || rb_tree_check_node(rbt, standin_father, NULL, false));
- KASSERT(RB_LEFT_SENTINEL_P(standin)
- || rb_tree_check_node(rbt, standin->rb_left, NULL, false));
- KASSERT(RB_RIGHT_SENTINEL_P(standin)
- || rb_tree_check_node(rbt, standin->rb_right, NULL, false));
-
- if (!rebalance)
- return;
-
- rb_tree_removal_rebalance(rbt, standin_father, standin_which);
- KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
-}
-
-/*
- * We could do this by doing
- * rb_tree_node_swap(rbt, self, which);
- * rb_tree_prune_node(rbt, self, false);
- *
- * But it's more efficient to just evalate and recolor the child.
- */
-static void
-rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
- unsigned int which)
-{
- struct rb_node *father = RB_FATHER(self);
- struct rb_node *son = self->rb_nodes[which];
- const bool was_root = RB_ROOT_P(rbt, self);
-
- KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
- KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
- KASSERT(!RB_TWOCHILDREN_P(son));
- KASSERT(RB_CHILDLESS_P(son));
- KASSERT(rb_tree_check_node(rbt, self, NULL, false));
- KASSERT(rb_tree_check_node(rbt, son, NULL, false));
-
- /*
- * Remove ourselves from the tree and give our former child our
- * properties (position, color, root).
- */
- RB_COPY_PROPERTIES(son, self);
- father->rb_nodes[RB_POSITION(son)] = son;
- RB_SET_FATHER(son, father);
-
- /*
- * Remove ourselves from the node list, decrement the count,
- * and update minmax.
- */
- RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
- rbt->rbt_count--;
-#ifndef RBSMALL
- if (__predict_false(was_root)) {
- KASSERT(rbt->rbt_minmax[which] == son);
- rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
- } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
- rbt->rbt_minmax[RB_POSITION(self)] = son;
- }
- RB_SET_FATHER(self, NULL);
-#endif
-
- KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
- KASSERT(rb_tree_check_node(rbt, son, NULL, true));
-}
-/*
- *
- */
-void
-rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
-{
- struct rb_node *standin;
- unsigned int which;
-
- KASSERT(!RB_SENTINEL_P(self));
- RBSTAT_INC(rbt->rbt_removals);
-
- /*
- * In the following diagrams, we (the node to be removed) are S. Red
- * nodes are lowercase. T could be either red or black.
- *
- * Remember the major axiom of the red-black tree: the number of
- * black nodes from the root to each leaf is constant across all
- * leaves, only the number of red nodes varies.
- *
- * Thus removing a red leaf doesn't require any other changes to a
- * red-black tree. So if we must remove a node, attempt to rearrange
- * the tree so we can remove a red node.
- *
- * The simpliest case is a childless red node or a childless root node:
- *
- * | T --> T | or | R --> * |
- * | s --> * |
- */
- if (RB_CHILDLESS_P(self)) {
- const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
- rb_tree_prune_node(rbt, self, rebalance);
- return;
- }
- KASSERT(!RB_CHILDLESS_P(self));
- if (!RB_TWOCHILDREN_P(self)) {
- /*
- * The next simpliest case is the node we are deleting is
- * black and has one red child.
- *
- * | T --> T --> T |
- * | S --> R --> R |
- * | r --> s --> * |
- */
- which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
- KASSERT(RB_BLACK_P(self));
- KASSERT(RB_RED_P(self->rb_nodes[which]));
- KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
- rb_tree_prune_blackred_branch(rbt, self, which);
- return;
- }
- KASSERT(RB_TWOCHILDREN_P(self));
-
- /*
- * We invert these because we prefer to remove from the inside of
- * the tree.
- */
- which = RB_POSITION(self) ^ RB_DIR_OTHER;
-
- /*
- * Let's find the node closes to us opposite of our parent
- * Now swap it with ourself, "prune" it, and rebalance, if needed.
- */
- standin = rb_tree_iterate(rbt, self, which);
- rb_tree_swap_prune_and_rebalance(rbt, self, standin);
-}
-
-static void
-rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
- unsigned int which)
-{
- KASSERT(!RB_SENTINEL_P(parent));
- KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
- KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
- RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
-
- while (RB_BLACK_P(parent->rb_nodes[which])) {
- unsigned int other = which ^ RB_DIR_OTHER;
- struct rb_node *brother = parent->rb_nodes[other];
-
- RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
-
- KASSERT(!RB_SENTINEL_P(brother));
- /*
- * For cases 1, 2a, and 2b, our brother's children must
- * be black and our father must be black
- */
- if (RB_BLACK_P(parent)
- && RB_BLACK_P(brother->rb_left)
- && RB_BLACK_P(brother->rb_right)) {
- if (RB_RED_P(brother)) {
- /*
- * Case 1: Our brother is red, swap its
- * position (and colors) with our parent.
- * This should now be case 2b (unless C or E
- * has a red child which is case 3; thus no
- * explicit branch to case 2b).
- *
- * B -> D
- * A d -> b E
- * C E -> A C
- */
- KASSERT(RB_BLACK_P(parent));
- rb_tree_reparent_nodes(rbt, parent, other);
- brother = parent->rb_nodes[other];
- KASSERT(!RB_SENTINEL_P(brother));
- KASSERT(RB_RED_P(parent));
- KASSERT(RB_BLACK_P(brother));
- KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
- KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
- } else {
- /*
- * Both our parent and brother are black.
- * Change our brother to red, advance up rank
- * and go through the loop again.
- *
- * B -> *B
- * *A D -> A d
- * C E -> C E
- */
- RB_MARK_RED(brother);
- KASSERT(RB_BLACK_P(brother->rb_left));
- KASSERT(RB_BLACK_P(brother->rb_right));
- if (RB_ROOT_P(rbt, parent))
- return; /* root == parent == black */
- KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
- KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
- if (parent != NULL) {
- which = RB_POSITION(parent);
- parent = RB_FATHER(parent);
- }
- continue;
- }
- }
- /*
- * Avoid an else here so that case 2a above can hit either
- * case 2b, 3, or 4.
- */
- if (RB_RED_P(parent)
- && (RB_SENTINEL_P(brother)
- || (RB_BLACK_P(brother)
- && RB_BLACK_P(brother->rb_left)
- && RB_BLACK_P(brother->rb_right)))) {
- KASSERT(RB_RED_P(parent));
- KASSERT(RB_BLACK_P(brother));
- KASSERT(RB_BLACK_P(brother->rb_left));
- KASSERT(RB_BLACK_P(brother->rb_right));
- /*
- * We are black, our father is red, our brother and
- * both nephews are black. Simply invert/exchange the
- * colors of our father and brother (to black and red
- * respectively).
- *
- * | f --> F |
- * | * B --> * b |
- * | N N --> N N |
- */
- RB_MARK_BLACK(parent);
- if (!RB_SENTINEL_P(brother)) {
- RB_MARK_RED(brother);
- }
- KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
- break; /* We're done! */
- } else {
- /*
- * Our brother must be black and have at least one
- * red child (it may have two).
- */
- KASSERT(RB_BLACK_P(brother));
- KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
- RB_RED_P(brother->rb_nodes[other]));
- if (RB_BLACK_P(brother->rb_nodes[other])) {
- /*
- * Case 3: our brother is black, our near
- * nephew is red, and our far nephew is black.
- * Swap our brother with our near nephew.
- * This result in a tree that matches case 4.
- * (Our father could be red or black).
- *
- * | F --> F |
- * | x B --> x B |
- * | n --> n |
- */
- KASSERT(RB_RED_P(brother->rb_nodes[which]));
- rb_tree_reparent_nodes(rbt, brother, which);
- KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
- brother = parent->rb_nodes[other];
- KASSERT(RB_RED_P(brother->rb_nodes[other]));
- }
- /*
- * Case 4: our brother is black and our far nephew
- * is red. Swap our father and brother locations and
- * change our far nephew to black. (these can be
- * done in either order so we change the color first).
- * The result is a valid red-black tree and is a
- * terminal case. (again we don't care about the
- * father's color)
- *
- * If the father is red, we will get a red-black-black
- * tree:
- * | f -> f --> b |
- * | B -> B --> F N |
- * | n -> N --> |
- *
- * If the father is black, we will get an all black
- * tree:
- * | F -> F --> B |
- * | B -> B --> F N |
- * | n -> N --> |
- *
- * If we had two red nephews, then after the swap,
- * our former father would have a red grandson.
- */
- KASSERT(RB_BLACK_P(brother));
- KASSERT(RB_RED_P(brother->rb_nodes[other]));
- RB_MARK_BLACK(brother->rb_nodes[other]);
- rb_tree_reparent_nodes(rbt, parent, other);
- break; /* We're done! */
- }
- }
- KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
-}
-
-struct rb_node *
-rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
- const unsigned int direction)
-{
- const unsigned int other = direction ^ RB_DIR_OTHER;
- KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
-
- if (self == NULL) {
-#ifndef RBSMALL
- if (RB_SENTINEL_P(rbt->rbt_root))
- return NULL;
- return rbt->rbt_minmax[direction];
-#else
- self = rbt->rbt_root;
- if (RB_SENTINEL_P(self))
- return NULL;
- while (!RB_SENTINEL_P(self->rb_nodes[other]))
- self = self->rb_nodes[other];
- return self;
-#endif /* !RBSMALL */
- }
- KASSERT(!RB_SENTINEL_P(self));
- /*
- * We can't go any further in this direction. We proceed up in the
- * opposite direction until our parent is in direction we want to go.
- */
- if (RB_SENTINEL_P(self->rb_nodes[direction])) {
- while (!RB_ROOT_P(rbt, self)) {
- if (other == RB_POSITION(self))
- return RB_FATHER(self);
- self = RB_FATHER(self);
- }
- return NULL;
- }
-
- /*
- * Advance down one in current direction and go down as far as possible
- * in the opposite direction.
- */
- self = self->rb_nodes[direction];
- KASSERT(!RB_SENTINEL_P(self));
- while (!RB_SENTINEL_P(self->rb_nodes[other]))
- self = self->rb_nodes[other];
- return self;
-}
-
-#ifdef RBDEBUG
-static const struct rb_node *
-rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
- const unsigned int direction)
-{
- const unsigned int other = direction ^ RB_DIR_OTHER;
- KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
-
- if (self == NULL) {
-#ifndef RBSMALL
- if (RB_SENTINEL_P(rbt->rbt_root))
- return NULL;
- return rbt->rbt_minmax[direction];
-#else
- self = rbt->rbt_root;
- if (RB_SENTINEL_P(self))
- return NULL;
- while (!RB_SENTINEL_P(self->rb_nodes[other]))
- self = self->rb_nodes[other];
- return self;
-#endif /* !RBSMALL */
- }
- KASSERT(!RB_SENTINEL_P(self));
- /*
- * We can't go any further in this direction. We proceed up in the
- * opposite direction until our parent is in direction we want to go.
- */
- if (RB_SENTINEL_P(self->rb_nodes[direction])) {
- while (!RB_ROOT_P(rbt, self)) {
- if (other == RB_POSITION(self))
- return RB_FATHER(self);
- self = RB_FATHER(self);
- }
- return NULL;
- }
-
- /*
- * Advance down one in current direction and go down as far as possible
- * in the opposite direction.
- */
- self = self->rb_nodes[direction];
- KASSERT(!RB_SENTINEL_P(self));
- while (!RB_SENTINEL_P(self->rb_nodes[other]))
- self = self->rb_nodes[other];
- return self;
-}
-
-static unsigned int
-rb_tree_count_black(const struct rb_node *self)
-{
- unsigned int left, right;
-
- if (RB_SENTINEL_P(self))
- return 0;
-
- left = rb_tree_count_black(self->rb_left);
- right = rb_tree_count_black(self->rb_right);
-
- KASSERT(left == right);
-
- return left + RB_BLACK_P(self);
-}
-
-static bool
-rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
- const struct rb_node *prev, bool red_check)
-{
- rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
-
- KASSERT(!RB_SENTINEL_P(self));
- KASSERT(prev == NULL || (*compare_nodes)(prev, self) > 0);
-
- /*
- * Verify our relationship to our parent.
- */
- if (RB_ROOT_P(rbt, self)) {
- KASSERT(self == rbt->rbt_root);
- KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
- KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
- KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
- } else {
- KASSERT(self != rbt->rbt_root);
- KASSERT(!RB_FATHER_SENTINEL_P(self));
- if (RB_POSITION(self) == RB_DIR_LEFT) {
- KASSERT((*compare_nodes)(self, RB_FATHER(self)) > 0);
- KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
- } else {
- KASSERT((*compare_nodes)(self, RB_FATHER(self)) < 0);
- KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
- }
- }
-
- /*
- * Verify our position in the linked list against the tree itself.
- */
- {
- const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
- const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
- KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
- KASSERT(next0 == TAILQ_NEXT(self, rb_link));
-#ifndef RBSMALL
- KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
- KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
-#endif
- }
-
- /*
- * The root must be black.
- * There can never be two adjacent red nodes.
- */
- if (red_check) {
- KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
- (void) rb_tree_count_black(self);
- if (RB_RED_P(self)) {
- const struct rb_node *brother;
- KASSERT(!RB_ROOT_P(rbt, self));
- brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
- KASSERT(RB_BLACK_P(RB_FATHER(self)));
- /*
- * I'm red and have no children, then I must either
- * have no brother or my brother also be red and
- * also have no children. (black count == 0)
- */
- KASSERT(!RB_CHILDLESS_P(self)
- || RB_SENTINEL_P(brother)
- || RB_RED_P(brother)
- || RB_CHILDLESS_P(brother));
- /*
- * If I'm not childless, I must have two children
- * and they must be both be black.
- */
- KASSERT(RB_CHILDLESS_P(self)
- || (RB_TWOCHILDREN_P(self)
- && RB_BLACK_P(self->rb_left)
- && RB_BLACK_P(self->rb_right)));
- /*
- * If I'm not childless, thus I have black children,
- * then my brother must either be black or have two
- * black children.
- */
- KASSERT(RB_CHILDLESS_P(self)
- || RB_BLACK_P(brother)
- || (RB_TWOCHILDREN_P(brother)
- && RB_BLACK_P(brother->rb_left)
- && RB_BLACK_P(brother->rb_right)));
- } else {
- /*
- * If I'm black and have one child, that child must
- * be red and childless.
- */
- KASSERT(RB_CHILDLESS_P(self)
- || RB_TWOCHILDREN_P(self)
- || (!RB_LEFT_SENTINEL_P(self)
- && RB_RIGHT_SENTINEL_P(self)
- && RB_RED_P(self->rb_left)
- && RB_CHILDLESS_P(self->rb_left))
- || (!RB_RIGHT_SENTINEL_P(self)
- && RB_LEFT_SENTINEL_P(self)
- && RB_RED_P(self->rb_right)
- && RB_CHILDLESS_P(self->rb_right)));
-
- /*
- * If I'm a childless black node and my parent is
- * black, my 2nd closet relative away from my parent
- * is either red or has a red parent or red children.
- */
- if (!RB_ROOT_P(rbt, self)
- && RB_CHILDLESS_P(self)
- && RB_BLACK_P(RB_FATHER(self))) {
- const unsigned int which = RB_POSITION(self);
- const unsigned int other = which ^ RB_DIR_OTHER;
- const struct rb_node *relative0, *relative;
-
- relative0 = rb_tree_iterate_const(rbt,
- self, other);
- KASSERT(relative0 != NULL);
- relative = rb_tree_iterate_const(rbt,
- relative0, other);
- KASSERT(relative != NULL);
- KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
-#if 0
- KASSERT(RB_RED_P(relative)
- || RB_RED_P(relative->rb_left)
- || RB_RED_P(relative->rb_right)
- || RB_RED_P(RB_FATHER(relative)));
-#endif
- }
- }
- /*
- * A grandparent's children must be real nodes and not
- * sentinels. First check out grandparent.
- */
- KASSERT(RB_ROOT_P(rbt, self)
- || RB_ROOT_P(rbt, RB_FATHER(self))
- || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
- /*
- * If we are have grandchildren on our left, then
- * we must have a child on our right.
- */
- KASSERT(RB_LEFT_SENTINEL_P(self)
- || RB_CHILDLESS_P(self->rb_left)
- || !RB_RIGHT_SENTINEL_P(self));
- /*
- * If we are have grandchildren on our right, then
- * we must have a child on our left.
- */
- KASSERT(RB_RIGHT_SENTINEL_P(self)
- || RB_CHILDLESS_P(self->rb_right)
- || !RB_LEFT_SENTINEL_P(self));
-
- /*
- * If we have a child on the left and it doesn't have two
- * children make sure we don't have great-great-grandchildren on
- * the right.
- */
- KASSERT(RB_TWOCHILDREN_P(self->rb_left)
- || RB_CHILDLESS_P(self->rb_right)
- || RB_CHILDLESS_P(self->rb_right->rb_left)
- || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
- || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
- || RB_CHILDLESS_P(self->rb_right->rb_right)
- || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
- || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
-
- /*
- * If we have a child on the right and it doesn't have two
- * children make sure we don't have great-great-grandchildren on
- * the left.
- */
- KASSERT(RB_TWOCHILDREN_P(self->rb_right)
- || RB_CHILDLESS_P(self->rb_left)
- || RB_CHILDLESS_P(self->rb_left->rb_left)
- || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
- || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
- || RB_CHILDLESS_P(self->rb_left->rb_right)
- || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
- || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
-
- /*
- * If we are fully interior node, then our predecessors and
- * successors must have no children in our direction.
- */
- if (RB_TWOCHILDREN_P(self)) {
- const struct rb_node *prev0;
- const struct rb_node *next0;
-
- prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
- KASSERT(prev0 != NULL);
- KASSERT(RB_RIGHT_SENTINEL_P(prev0));
-
- next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
- KASSERT(next0 != NULL);
- KASSERT(RB_LEFT_SENTINEL_P(next0));
- }
- }
-
- return true;
-}
-
-void
-rb_tree_check(const struct rb_tree *rbt, bool red_check)
-{
- const struct rb_node *self;
- const struct rb_node *prev;
-#ifdef RBSTATS
- unsigned int count = 0;
-#endif
-
- KASSERT(rbt->rbt_root != NULL);
- KASSERT(RB_LEFT_P(rbt->rbt_root));
-
-#if defined(RBSTATS) && !defined(RBSMALL)
- KASSERT(rbt->rbt_count > 1
- || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
-#endif
-
- prev = NULL;
- TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
- rb_tree_check_node(rbt, self, prev, false);
-#ifdef RBSTATS
- count++;
-#endif
- }
-#ifdef RBSTATS
- KASSERT(rbt->rbt_count == count);
-#endif
- if (red_check) {
- KASSERT(RB_BLACK_P(rbt->rbt_root));
- KASSERT(RB_SENTINEL_P(rbt->rbt_root)
- || rb_tree_count_black(rbt->rbt_root));
-
- /*
- * The root must be black.
- * There can never be two adjacent red nodes.
- */
- TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
- rb_tree_check_node(rbt, self, NULL, true);
- }
- }
-}
-#endif /* RBDEBUG */
-
-#ifdef RBSTATS
-static void
-rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
- size_t *depths, size_t depth)
-{
- if (RB_SENTINEL_P(self))
- return;
-
- if (RB_TWOCHILDREN_P(self)) {
- rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
- rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
- return;
- }
- depths[depth]++;
- if (!RB_LEFT_SENTINEL_P(self)) {
- rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
- }
- if (!RB_RIGHT_SENTINEL_P(self)) {
- rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
- }
-}
-
-void
-rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
-{
- rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
-}
-#endif /* RBSTATS */