]> git.saurik.com Git - apple/cf.git/blob - CFSortFunctions.c
CF-550.19.tar.gz
[apple/cf.git] / CFSortFunctions.c
1 /*
2 * Copyright (c) 2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24 /* CFSortFunctions.c
25 Copyright (c) 1999-2009, Apple Inc. All rights reserved.
26 Responsibility: Christopher Kane
27 */
28
29 #include <CoreFoundation/CFBase.h>
30 #include "CFInternal.h"
31 #if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED
32 #include <dispatch/dispatch.h>
33 #include <sys/sysctl.h>
34 #endif
35
36
37 enum {
38 kCFSortConcurrent = (1 << 0),
39 kCFSortStable = (1 << 4),
40 };
41
42 typedef CFIndex VALUE_TYPE;
43 typedef CFIndex INDEX_TYPE;
44 typedef CFComparisonResult CMP_RESULT_TYPE;
45 typedef CMP_RESULT_TYPE (^COMPARATOR_BLOCK)(VALUE_TYPE, VALUE_TYPE);
46
47 /*
48 Number of elements in a list and expected number of compares,
49 when the initial short-circuiting compare is not done.
50 1 0
51 2 1
52 3 2.667
53 4 4.667
54 5 7.167
55 6 9.833
56 7 12.733
57 8 15.733
58 9 19.167
59 10 22.667
60 11 26.2857
61 12 29.9524
62 */
63
64 static void __CFSimpleMerge(VALUE_TYPE listp[], INDEX_TYPE cnt1, INDEX_TYPE cnt2, VALUE_TYPE tmp[], COMPARATOR_BLOCK cmp) {
65 if (cnt1 <= 0 || cnt2 <= 0) return;
66 // if the last element of listp1 <= the first of listp2, lists are already ordered
67 if (16 < cnt1 + cnt2 && cmp(listp[cnt1 - 1], listp[cnt1]) <= 0) return;
68
69 INDEX_TYPE idx = 0, idx1 = 0, idx2 = cnt1;
70 for (;;) {
71 if (cnt1 <= idx1) {
72 while (idx--) {
73 listp[idx] = tmp[idx];
74 }
75 return;
76 }
77 if (cnt1 + cnt2 <= idx2) {
78 for (INDEX_TYPE t = cnt1 + cnt2 - 1; idx <= t; t--) {
79 listp[t] = listp[t - cnt2];
80 }
81 while (idx--) {
82 listp[idx] = tmp[idx];
83 }
84 return;
85 }
86 VALUE_TYPE v1 = listp[idx1], v2 = listp[idx2];
87 if (cmp(v1, v2) <= 0) {
88 tmp[idx] = v1;
89 idx1++;
90 } else {
91 tmp[idx] = v2;
92 idx2++;
93 }
94 idx++;
95 }
96 }
97
98 static void __CFSimpleMergeSort(VALUE_TYPE listp[], INDEX_TYPE cnt, VALUE_TYPE tmp[], COMPARATOR_BLOCK cmp) {
99 if (cnt < 2) {
100 /* do nothing */
101 } else if (2 == cnt) {
102 VALUE_TYPE v0 = listp[0], v1 = listp[1];
103 if (0 < cmp(v0, v1)) {
104 listp[0] = v1;
105 listp[1] = v0;
106 }
107 } else if (3 == cnt) {
108 VALUE_TYPE v0 = listp[0], v1 = listp[1], v2 = listp[2], vt;
109 if (0 < cmp(v0, v1)) {
110 vt = v0;
111 v0 = v1;
112 v1 = vt;
113 }
114 if (0 < cmp(v1, v2)) {
115 vt = v1;
116 v1 = v2;
117 v2 = vt;
118 if (0 < cmp(v0, v1)) {
119 vt = v0;
120 v0 = v1;
121 v1 = vt;
122 }
123 }
124 listp[0] = v0;
125 listp[1] = v1;
126 listp[2] = v2;
127 } else {
128 INDEX_TYPE half_cnt = cnt / 2;
129 __CFSimpleMergeSort(listp, half_cnt, tmp, cmp);
130 __CFSimpleMergeSort(listp + half_cnt, cnt - half_cnt, tmp, cmp);
131 __CFSimpleMerge(listp, half_cnt, cnt - half_cnt, tmp, cmp);
132 }
133 }
134
135 #if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED
136 // if !right, put the cnt1 smallest values in tmp, else put the cnt2 largest values in tmp
137 static void __CFSortIndexesNMerge(VALUE_TYPE listp1[], INDEX_TYPE cnt1, VALUE_TYPE listp2[], INDEX_TYPE cnt2, VALUE_TYPE tmp[], size_t right, COMPARATOR_BLOCK cmp) {
138 // if the last element of listp1 <= the first of listp2, lists are already ordered
139 if (16 < cnt1 + cnt2 && cmp(listp1[cnt1 - 1], listp2[0]) <= 0) {
140 memmove(tmp, (right ? listp2 : listp1), (right ? cnt2 : cnt1) * sizeof(VALUE_TYPE));
141 return;
142 }
143
144 if (right) {
145 VALUE_TYPE *listp1_end = listp1;
146 VALUE_TYPE *listp2_end = listp2;
147 VALUE_TYPE *tmp_end = tmp;
148 listp1 += cnt1 - 1;
149 listp2 += cnt2 - 1;
150 tmp += cnt2;
151 while (tmp_end < tmp) {
152 tmp--;
153 if (listp2 < listp2_end) {
154 listp1--;
155 *tmp = *listp1;
156 } else if (listp1 < listp1_end) {
157 listp2--;
158 *tmp = *listp2;
159 } else {
160 VALUE_TYPE v1 = *listp1, v2 = *listp2;
161 CMP_RESULT_TYPE res = cmp(v1, v2);
162 if (res <= 0) {
163 *tmp = v2;
164 listp2--;
165 } else {
166 *tmp = v1;
167 listp1--;
168 }
169 }
170 }
171 } else {
172 VALUE_TYPE *listp1_end = listp1 + cnt1;
173 VALUE_TYPE *listp2_end = listp2 + cnt2;
174 VALUE_TYPE *tmp_end = tmp + cnt1;
175 while (tmp < tmp_end) {
176 if (listp2_end <= listp2) {
177 *tmp = *listp1;
178 listp1++;
179 } else if (listp1_end <= listp1) {
180 *tmp = *listp2;
181 listp2++;
182 } else {
183 VALUE_TYPE v1 = *listp1, v2 = *listp2;
184 CMP_RESULT_TYPE res = cmp(v1, v2);
185 if (res <= 0) {
186 *tmp = v1;
187 listp1++;
188 } else {
189 *tmp = v2;
190 listp2++;
191 }
192 }
193 tmp++;
194 }
195 }
196 }
197
198 /* Merging algorithm based on
199 "A New Parallel Sorting Algorithm based on Odd-Even Mergesort", Ezequiel Herruzo, et al
200 */
201 static void __CFSortIndexesN(VALUE_TYPE listp[], INDEX_TYPE count, int32_t ncores, CMP_RESULT_TYPE (^cmp)(INDEX_TYPE, INDEX_TYPE)) {
202 /* Divide the array up into up to ncores, multiple-of-16-sized, chunks */
203 INDEX_TYPE sz = ((((count + ncores - 1) / ncores) + 15) / 16) * 16;
204 INDEX_TYPE num_sect = (count + sz - 1) / sz;
205 INDEX_TYPE last_sect_len = count + sz - sz * num_sect;
206
207 STACK_BUFFER_DECL(VALUE_TYPE *, stack_tmps, num_sect);
208 for (INDEX_TYPE idx = 0; idx < num_sect; idx++) {
209 stack_tmps[idx] = malloc(sz * sizeof(VALUE_TYPE));
210 }
211 VALUE_TYPE **tmps = stack_tmps;
212
213 dispatch_queue_t q = dispatch_get_concurrent_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT);
214 dispatch_apply(num_sect, q, ^(size_t sect) {
215 INDEX_TYPE sect_len = (sect < num_sect - 1) ? sz : last_sect_len;
216 __CFSimpleMergeSort(listp + sect * sz, sect_len, tmps[sect], cmp); // naturally stable
217 });
218
219 INDEX_TYPE even_phase_cnt = ((num_sect / 2) * 2);
220 INDEX_TYPE odd_phase_cnt = (((num_sect - 1) / 2) * 2);
221 for (INDEX_TYPE idx = 0; idx < (num_sect + 1) / 2; idx++) {
222 dispatch_apply(even_phase_cnt, q, ^(size_t sect) { // merge even
223 size_t right = sect & (size_t)0x1;
224 VALUE_TYPE *left_base = listp + sect * sz - (right ? sz : 0);
225 VALUE_TYPE *right_base = listp + sect * sz + (right ? 0 : sz);
226 INDEX_TYPE sect2_len = (sect + 1 + (right ? 0 : 1) == num_sect) ? last_sect_len : sz;
227 __CFSortIndexesNMerge(left_base, sz, right_base, sect2_len, tmps[sect], right, cmp);
228 });
229 if (num_sect & 0x1) {
230 memmove(tmps[num_sect - 1], listp + (num_sect - 1) * sz, last_sect_len * sizeof(VALUE_TYPE));
231 }
232 dispatch_apply(odd_phase_cnt, q, ^(size_t sect) { // merge odd
233 size_t right = sect & (size_t)0x1;
234 VALUE_TYPE *left_base = tmps[sect + (right ? 0 : 1)];
235 VALUE_TYPE *right_base = tmps[sect + (right ? 1 : 2)];
236 INDEX_TYPE sect2_len = (sect + 1 + (right ? 1 : 2) == num_sect) ? last_sect_len : sz;
237 __CFSortIndexesNMerge(left_base, sz, right_base, sect2_len, listp + sect * sz + sz, right, cmp);
238 });
239 memmove(listp + 0 * sz, tmps[0], sz * sizeof(VALUE_TYPE));
240 if (!(num_sect & 0x1)) {
241 memmove(listp + (num_sect - 1) * sz, tmps[num_sect - 1], last_sect_len * sizeof(VALUE_TYPE));
242 }
243 }
244
245 for (INDEX_TYPE idx = 0; idx < num_sect; idx++) {
246 free(stack_tmps[idx]);
247 }
248 }
249 #endif
250
251 // returns an array of indexes (of length count) giving the indexes 0 - count-1, as sorted by the comparator block
252 CFIndex *CFSortIndexes(CFIndex count, CFOptionFlags opts, CFComparisonResult (^cmp)(CFIndex, CFIndex)) {
253 if (count < 1) return NULL;
254 if (INTPTR_MAX / sizeof(CFIndex) < count) return NULL;
255 #if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED
256 int32_t ncores = 0;
257 if (opts & kCFSortConcurrent) {
258 int32_t mib[2] = {CTL_HW, HW_AVAILCPU};
259 size_t len = sizeof(ncores);
260 sysctl(mib, 2, &ncores, &len, NULL, 0);
261 if (count < 160 || ncores < 2) {
262 opts = (opts & ~kCFSortConcurrent);
263 } else if (count < 640 && 2 < ncores) {
264 ncores = 2;
265 } else if (count < 3200 && 4 < ncores) {
266 ncores = 4;
267 } else if (count < 16000 && 8 < ncores) {
268 ncores = 8;
269 }
270 if (16 < ncores) {
271 ncores = 16;
272 }
273 }
274 CFIndex *idxs = malloc_zone_memalign(malloc_default_zone(), 64, count * sizeof(CFIndex));
275 if (!idxs) return NULL;
276 if (count <= 65536) {
277 for (CFIndex idx = 0; idx < count; idx++) idxs[idx] = idx;
278 } else {
279 /* Specifically hard-coded to 8; the count has to be very large before more chunks and/or cores is worthwhile. */
280 CFIndex sz = ((((size_t)count + 15) / 16) * 16) / 8;
281 dispatch_apply(8, dispatch_get_concurrent_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT), ^(size_t n) {
282 CFIndex idx = n * sz, lim = __CFMin(idx + sz, count);
283 for (; idx < lim; idx++) idxs[idx] = idx;
284 });
285 }
286 if (opts & kCFSortConcurrent) {
287 __CFSortIndexesN(idxs, count, ncores, cmp); // naturally stable
288 return idxs;
289 }
290 #else
291 CFIndex *idxs = (CFIndex *)malloc(count * sizeof(CFIndex));
292 if (!idxs) return NULL;
293 for (CFIndex idx = 0; idx < count; idx++) idxs[idx] = idx;
294 #endif
295 STACK_BUFFER_DECL(VALUE_TYPE, local, count <= 16384 ? count : 1);
296 VALUE_TYPE *tmp = (count <= 16384) ? local : (VALUE_TYPE *)malloc(count * sizeof(VALUE_TYPE));
297 __CFSimpleMergeSort(idxs, count, tmp, cmp); // naturally stable
298 if (local != tmp) free(tmp);
299 return idxs;
300 }
301
302 /* Comparator is passed the address of the values. */
303 void CFQSortArray(void *list, CFIndex count, CFIndex elementSize, CFComparatorFunction comparator, void *context) {
304 if (count < 1 || elementSize < 1) return;
305 CFIndex *indexes = CFSortIndexes(count, 0, ^(CFIndex a, CFIndex b) { return comparator((char *)list + a * elementSize, (char *)list + b * elementSize, context); }); // naturally stable
306 void *store = malloc(count * elementSize);
307 for (CFIndex idx = 0; idx < count; idx++) {
308 if (sizeof(uintptr_t) == elementSize) {
309 uintptr_t *a = (uintptr_t *)list + indexes[idx];
310 uintptr_t *b = (uintptr_t *)store + idx;
311 *b = *a;
312 } else {
313 memmove((char *)store + idx * elementSize, (char *)list + indexes[idx] * elementSize, elementSize);
314 }
315 }
316 // no swapping or modification of the original list has occurred until this point
317 objc_memmove_collectable(list, store, count * elementSize);
318 free(store);
319 free(indexes);
320 }
321
322 /* Comparator is passed the address of the values. */
323 void CFMergeSortArray(void *list, CFIndex count, CFIndex elementSize, CFComparatorFunction comparator, void *context) {
324 if (count < 1 || elementSize < 1) return;
325 CFIndex *indexes = CFSortIndexes(count, kCFSortStable, ^(CFIndex a, CFIndex b) { return comparator((char *)list + a * elementSize, (char *)list + b * elementSize, context); }); // naturally stable
326 void *store = malloc(count * elementSize);
327 for (CFIndex idx = 0; idx < count; idx++) {
328 if (sizeof(uintptr_t) == elementSize) {
329 uintptr_t *a = (uintptr_t *)list + indexes[idx];
330 uintptr_t *b = (uintptr_t *)store + idx;
331 *b = *a;
332 } else {
333 memmove((char *)store + idx * elementSize, (char *)list + indexes[idx] * elementSize, elementSize);
334 }
335 }
336 // no swapping or modification of the original list has occurred until this point
337 objc_memmove_collectable(list, store, count * elementSize);
338 free(store);
339 free(indexes);
340 }
341
342