2 * Copyright (c) 2015 Apple Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
21 * @APPLE_LICENSE_HEADER_END@
25 Copyright (c) 1998-2014, Apple Inc. All rights reserved.
26 Responsibility: Christopher Kane
29 #include <CoreFoundation/CFBinaryHeap.h>
30 #include <CoreFoundation/CFPriv.h>
31 #include "CFInternal.h"
33 const CFBinaryHeapCallBacks kCFStringBinaryHeapCallBacks
= {0, __CFTypeCollectionRetain
, __CFTypeCollectionRelease
, CFCopyDescription
, (CFComparisonResult (*)(const void *, const void *, void *))CFStringCompare
};
35 struct __CFBinaryHeapBucket
{
39 CF_INLINE CFIndex
__CFBinaryHeapRoundUpCapacity(CFIndex capacity
) {
40 if (capacity
< 4) return 4;
41 return (1 << flsl(capacity
));
44 CF_INLINE CFIndex
__CFBinaryHeapNumBucketsForCapacity(CFIndex capacity
) {
48 struct __CFBinaryHeap
{
50 CFIndex _count
; /* number of objects */
51 CFIndex _capacity
; /* maximum number of objects */
52 CFBinaryHeapCallBacks _callbacks
;
53 CFBinaryHeapCompareContext _context
;
54 struct __CFBinaryHeapBucket
*_buckets
;
57 CF_INLINE CFIndex
__CFBinaryHeapCount(CFBinaryHeapRef heap
) {
61 CF_INLINE
void __CFBinaryHeapSetCount(CFBinaryHeapRef heap
, CFIndex v
) {
62 /* for a CFBinaryHeap, _bucketsUsed == _count */
65 CF_INLINE CFIndex
__CFBinaryHeapCapacity(CFBinaryHeapRef heap
) {
66 return heap
->_capacity
;
69 CF_INLINE
void __CFBinaryHeapSetCapacity(CFBinaryHeapRef heap
, CFIndex v
) {
70 /* for a CFBinaryHeap, _bucketsNum == _capacity */
73 CF_INLINE CFIndex
__CFBinaryHeapNumBucketsUsed(CFBinaryHeapRef heap
) {
77 CF_INLINE
void __CFBinaryHeapSetNumBucketsUsed(CFBinaryHeapRef heap
, CFIndex v
) {
81 CF_INLINE CFIndex
__CFBinaryHeapNumBuckets(CFBinaryHeapRef heap
) {
82 return heap
->_capacity
;
85 CF_INLINE
void __CFBinaryHeapSetNumBuckets(CFBinaryHeapRef heap
, CFIndex v
) {
90 kCFBinaryHeapMutable
= 0x1, /* changeable and variable capacity */
93 /* Bits 4-5 are used by GC */
95 CF_INLINE
bool isStrongMemory_Heap(CFTypeRef collection
) {
96 return __CFBitfieldGetValue(((const CFRuntimeBase
*)collection
)->_cfinfo
[CF_INFO_BITS
], 4, 4) == 0;
99 CF_INLINE UInt32
__CFBinaryHeapMutableVariety(const void *cf
) {
100 return __CFBitfieldGetValue(((const CFRuntimeBase
*)cf
)->_cfinfo
[CF_INFO_BITS
], 3, 2);
103 CF_INLINE
void __CFBinaryHeapSetMutableVariety(void *cf
, UInt32 v
) {
104 __CFBitfieldSetValue(((CFRuntimeBase
*)cf
)->_cfinfo
[CF_INFO_BITS
], 3, 2, v
);
107 CF_INLINE UInt32
__CFBinaryHeapMutableVarietyFromFlags(UInt32 flags
) {
108 return __CFBitfieldGetValue(flags
, 1, 0);
111 static Boolean
__CFBinaryHeapEqual(CFTypeRef cf1
, CFTypeRef cf2
) {
112 CFBinaryHeapRef heap1
= (CFBinaryHeapRef
)cf1
;
113 CFBinaryHeapRef heap2
= (CFBinaryHeapRef
)cf2
;
114 CFComparisonResult (*compare
)(const void *, const void *, void *);
117 const void **list1
, **list2
, *buffer
[256];
118 cnt
= __CFBinaryHeapCount(heap1
);
119 if (cnt
!= __CFBinaryHeapCount(heap2
)) return false;
120 compare
= heap1
->_callbacks
.compare
;
121 if (compare
!= heap2
->_callbacks
.compare
) return false;
122 if (0 == cnt
) return true; /* after function comparison */
123 list1
= (cnt
<= 128) ? (const void **)buffer
: (const void **)CFAllocatorAllocate(kCFAllocatorSystemDefault
, 2 * cnt
* sizeof(void *), 0); // GC OK
124 if (__CFOASafe
&& list1
!= buffer
) __CFSetLastAllocationEventName(list1
, "CFBinaryHeap (temp)");
125 list2
= (cnt
<= 128) ? buffer
+ 128 : list1
+ cnt
;
126 CFBinaryHeapGetValues(heap1
, list1
);
127 CFBinaryHeapGetValues(heap2
, list2
);
128 for (idx
= 0; idx
< cnt
; idx
++) {
129 const void *val1
= list1
[idx
];
130 const void *val2
= list2
[idx
];
131 // CF: which context info should be passed in? both?
132 // CF: if the context infos are not equal, should the heaps not be equal?
134 if (NULL
== compare
) return false;
135 if (!compare(val1
, val2
, heap1
->_context
.info
)) return false;
138 if (list1
!= buffer
) CFAllocatorDeallocate(CFGetAllocator(heap1
), list1
); // GC OK
142 static CFHashCode
__CFBinaryHeapHash(CFTypeRef cf
) {
143 CFBinaryHeapRef heap
= (CFBinaryHeapRef
)cf
;
144 return __CFBinaryHeapCount(heap
);
147 static CFStringRef
__CFBinaryHeapCopyDescription(CFTypeRef cf
) {
148 CFBinaryHeapRef heap
= (CFBinaryHeapRef
)cf
;
149 CFMutableStringRef result
;
152 const void **list
, *buffer
[256];
153 cnt
= __CFBinaryHeapCount(heap
);
154 result
= CFStringCreateMutable(CFGetAllocator(heap
), 0);
155 CFStringAppendFormat(result
, NULL
, CFSTR("<CFBinaryHeap %p [%p]>{count = %lu, capacity = %lu, objects = (\n"), cf
, CFGetAllocator(heap
), (unsigned long)cnt
, (unsigned long)__CFBinaryHeapCapacity(heap
));
156 list
= (cnt
<= 128) ? (const void **)buffer
: (const void **)CFAllocatorAllocate(kCFAllocatorSystemDefault
, cnt
* sizeof(void *), 0); // GC OK
157 if (__CFOASafe
&& list
!= buffer
) __CFSetLastAllocationEventName(list
, "CFBinaryHeap (temp)");
158 CFBinaryHeapGetValues(heap
, list
);
159 for (idx
= 0; idx
< cnt
; idx
++) {
160 CFStringRef desc
= NULL
;
161 const void *item
= list
[idx
];
162 if (NULL
!= heap
->_callbacks
.copyDescription
) {
163 desc
= heap
->_callbacks
.copyDescription(item
);
166 CFStringAppendFormat(result
, NULL
, CFSTR("\t%lu : %@\n"), (unsigned long)idx
, desc
);
169 CFStringAppendFormat(result
, NULL
, CFSTR("\t%lu : <%p>\n"), (unsigned long)idx
, item
);
172 CFStringAppend(result
, CFSTR(")}"));
173 if (list
!= buffer
) CFAllocatorDeallocate(CFGetAllocator(heap
), list
); // GC OK
177 static void __CFBinaryHeapDeallocate(CFTypeRef cf
) {
178 CFBinaryHeapRef heap
= (CFBinaryHeapRef
)cf
;
179 CFAllocatorRef allocator
= CFGetAllocator(heap
);
180 if (CF_IS_COLLECTABLE_ALLOCATOR(allocator
)) {
181 if (heap
->_callbacks
.retain
== NULL
&& heap
->_callbacks
.release
== NULL
)
182 return; // GC: keep heap intact during finalization.
184 // CF: should make the heap mutable here first, a la CFArrayDeallocate
185 CFBinaryHeapRemoveAllValues(heap
);
186 // CF: does not release the context info
187 if (__CFBinaryHeapMutableVariety(heap
) == kCFBinaryHeapMutable
) {
188 _CFAllocatorDeallocateGC(allocator
, heap
->_buckets
);
192 static CFTypeID __kCFBinaryHeapTypeID
= _kCFRuntimeNotATypeID
;
194 static const CFRuntimeClass __CFBinaryHeapClass
= {
195 _kCFRuntimeScannedObject
,
199 __CFBinaryHeapDeallocate
,
203 __CFBinaryHeapCopyDescription
206 CFTypeID
CFBinaryHeapGetTypeID(void) {
207 static dispatch_once_t initOnce
;
208 dispatch_once(&initOnce
, ^{ __kCFBinaryHeapTypeID
= _CFRuntimeRegisterClass(&__CFBinaryHeapClass
); });
209 return __kCFBinaryHeapTypeID
;
212 static CFBinaryHeapRef
__CFBinaryHeapInit(CFAllocatorRef allocator
, UInt32 flags
, CFIndex capacity
, const void **values
, CFIndex numValues
, const CFBinaryHeapCallBacks
*callBacks
, const CFBinaryHeapCompareContext
*compareContext
) {
213 CFBinaryHeapRef memory
;
217 CFAssert2(0 <= capacity
, __kCFLogAssertion
, "%s(): capacity (%d) cannot be less than zero", __PRETTY_FUNCTION__
, capacity
);
218 CFAssert2(0 <= numValues
, __kCFLogAssertion
, "%s(): numValues (%d) cannot be less than zero", __PRETTY_FUNCTION__
, numValues
);
219 size
= sizeof(struct __CFBinaryHeap
) - sizeof(CFRuntimeBase
);
220 if (CF_IS_COLLECTABLE_ALLOCATOR(allocator
)) {
221 if (!callBacks
|| (callBacks
->retain
== NULL
&& callBacks
->release
== NULL
)) {
222 __CFBitfieldSetValue(flags
, 4, 4, 1); // setWeak
226 memory
= (CFBinaryHeapRef
)_CFRuntimeCreateInstance(allocator
, CFBinaryHeapGetTypeID(), size
, NULL
);
227 if (NULL
== memory
) {
230 __CFBinaryHeapSetCapacity(memory
, __CFBinaryHeapRoundUpCapacity(1));
231 __CFBinaryHeapSetNumBuckets(memory
, __CFBinaryHeapNumBucketsForCapacity(__CFBinaryHeapRoundUpCapacity(1)));
232 void *buckets
= _CFAllocatorAllocateGC(allocator
, __CFBinaryHeapNumBuckets(memory
) * sizeof(struct __CFBinaryHeapBucket
), isStrongMemory_Heap(memory
) ? __kCFAllocatorGCScannedMemory
: 0);
233 __CFAssignWithWriteBarrier((void **)&memory
->_buckets
, buckets
);
234 if (__CFOASafe
) __CFSetLastAllocationEventName(memory
->_buckets
, "CFBinaryHeap (store)");
235 if (NULL
== memory
->_buckets
) {
239 __CFBinaryHeapSetNumBucketsUsed(memory
, 0);
240 __CFBinaryHeapSetCount(memory
, 0);
241 if (NULL
!= callBacks
) {
242 memory
->_callbacks
.retain
= callBacks
->retain
;
243 memory
->_callbacks
.release
= callBacks
->release
;
244 memory
->_callbacks
.copyDescription
= callBacks
->copyDescription
;
245 memory
->_callbacks
.compare
= callBacks
->compare
;
247 memory
->_callbacks
.retain
= 0;
248 memory
->_callbacks
.release
= 0;
249 memory
->_callbacks
.copyDescription
= 0;
250 memory
->_callbacks
.compare
= 0;
252 if (compareContext
) memcpy(&memory
->_context
, compareContext
, sizeof(CFBinaryHeapCompareContext
));
253 // CF: retain info for proper operation
254 __CFBinaryHeapSetMutableVariety(memory
, kCFBinaryHeapMutable
);
255 for (idx
= 0; idx
< numValues
; idx
++) {
256 CFBinaryHeapAddValue(memory
, values
[idx
]);
258 __CFBinaryHeapSetMutableVariety(memory
, __CFBinaryHeapMutableVarietyFromFlags(flags
));
262 CFBinaryHeapRef
CFBinaryHeapCreate(CFAllocatorRef allocator
, CFIndex capacity
, const CFBinaryHeapCallBacks
*callBacks
, const CFBinaryHeapCompareContext
*compareContext
) {
263 return __CFBinaryHeapInit(allocator
, kCFBinaryHeapMutable
, capacity
, NULL
, 0, callBacks
, compareContext
);
266 CFBinaryHeapRef
CFBinaryHeapCreateCopy(CFAllocatorRef allocator
, CFIndex capacity
, CFBinaryHeapRef heap
) {
267 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
268 return __CFBinaryHeapInit(allocator
, kCFBinaryHeapMutable
, capacity
, (const void **)heap
->_buckets
, __CFBinaryHeapCount(heap
), &(heap
->_callbacks
), &(heap
->_context
));
271 CFIndex
CFBinaryHeapGetCount(CFBinaryHeapRef heap
) {
272 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
273 return __CFBinaryHeapCount(heap
);
276 CFIndex
CFBinaryHeapGetCountOfValue(CFBinaryHeapRef heap
, const void *value
) {
277 CFComparisonResult (*compare
)(const void *, const void *, void *);
279 CFIndex cnt
= 0, length
;
280 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
281 compare
= heap
->_callbacks
.compare
;
282 length
= __CFBinaryHeapCount(heap
);
283 for (idx
= 0; idx
< length
; idx
++) {
284 const void *item
= heap
->_buckets
[idx
]._item
;
285 if (value
== item
|| (compare
&& kCFCompareEqualTo
== compare(value
, item
, heap
->_context
.info
))) {
292 Boolean
CFBinaryHeapContainsValue(CFBinaryHeapRef heap
, const void *value
) {
293 CFComparisonResult (*compare
)(const void *, const void *, void *);
296 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
297 compare
= heap
->_callbacks
.compare
;
298 length
= __CFBinaryHeapCount(heap
);
299 for (idx
= 0; idx
< length
; idx
++) {
300 const void *item
= heap
->_buckets
[idx
]._item
;
301 if (value
== item
|| (compare
&& kCFCompareEqualTo
== compare(value
, item
, heap
->_context
.info
))) {
308 const void *CFBinaryHeapGetMinimum(CFBinaryHeapRef heap
) {
309 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
310 CFAssert1(0 < __CFBinaryHeapCount(heap
), __kCFLogAssertion
, "%s(): binary heap is empty", __PRETTY_FUNCTION__
);
311 return (0 < __CFBinaryHeapCount(heap
)) ? heap
->_buckets
[0]._item
: NULL
;
314 Boolean
CFBinaryHeapGetMinimumIfPresent(CFBinaryHeapRef heap
, const void **value
) {
315 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
316 if (0 == __CFBinaryHeapCount(heap
)) return false;
317 if (NULL
!= value
) __CFAssignWithWriteBarrier((void **)value
, heap
->_buckets
[0]._item
);
321 void CFBinaryHeapGetValues(CFBinaryHeapRef heap
, const void **values
) {
322 CFBinaryHeapRef heapCopy
;
325 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
326 CFAssert1(NULL
!= values
, __kCFLogAssertion
, "%s(): pointer to values may not be NULL", __PRETTY_FUNCTION__
);
327 cnt
= __CFBinaryHeapCount(heap
);
328 if (0 == cnt
) return;
329 heapCopy
= CFBinaryHeapCreateCopy(CFGetAllocator(heap
), cnt
, heap
);
331 while (0 < __CFBinaryHeapCount(heapCopy
)) {
332 const void *value
= CFBinaryHeapGetMinimum(heapCopy
);
333 CFBinaryHeapRemoveMinimumValue(heapCopy
);
334 values
[idx
++] = value
;
339 void CFBinaryHeapApplyFunction(CFBinaryHeapRef heap
, CFBinaryHeapApplierFunction applier
, void *context
) {
340 CFBinaryHeapRef heapCopy
;
342 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
343 CFAssert1(NULL
!= applier
, __kCFLogAssertion
, "%s(): pointer to applier function may not be NULL", __PRETTY_FUNCTION__
);
344 cnt
= __CFBinaryHeapCount(heap
);
345 if (0 == cnt
) return;
346 heapCopy
= CFBinaryHeapCreateCopy(CFGetAllocator(heap
), cnt
, heap
);
347 while (0 < __CFBinaryHeapCount(heapCopy
)) {
348 const void *value
= CFBinaryHeapGetMinimum(heapCopy
);
349 CFBinaryHeapRemoveMinimumValue(heapCopy
);
350 applier(value
, context
);
355 static void __CFBinaryHeapGrow(CFBinaryHeapRef heap
, CFIndex numNewValues
) {
356 CFIndex oldCount
= __CFBinaryHeapCount(heap
);
357 CFIndex capacity
= __CFBinaryHeapRoundUpCapacity(oldCount
+ numNewValues
);
358 CFAllocatorRef allocator
= CFGetAllocator(heap
);
359 __CFBinaryHeapSetCapacity(heap
, capacity
);
360 __CFBinaryHeapSetNumBuckets(heap
, __CFBinaryHeapNumBucketsForCapacity(capacity
));
361 void *buckets
= _CFAllocatorReallocateGC(allocator
, heap
->_buckets
, __CFBinaryHeapNumBuckets(heap
) * sizeof(struct __CFBinaryHeapBucket
), isStrongMemory_Heap(heap
) ? __kCFAllocatorGCScannedMemory
: 0);
362 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
, buckets
);
363 if (__CFOASafe
) __CFSetLastAllocationEventName(heap
->_buckets
, "CFBinaryHeap (store)");
364 if (NULL
== heap
->_buckets
) HALT
;
367 void CFBinaryHeapAddValue(CFBinaryHeapRef heap
, const void *value
) {
370 CFAllocatorRef allocator
= CFGetAllocator(heap
);
371 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
372 switch (__CFBinaryHeapMutableVariety(heap
)) {
373 case kCFBinaryHeapMutable
:
374 if (__CFBinaryHeapNumBucketsUsed(heap
) == __CFBinaryHeapCapacity(heap
))
375 __CFBinaryHeapGrow(heap
, 1);
378 cnt
= __CFBinaryHeapCount(heap
);
380 __CFBinaryHeapSetNumBucketsUsed(heap
, cnt
+ 1);
381 __CFBinaryHeapSetCount(heap
, cnt
+ 1);
382 CFComparisonResult (*compare
)(const void *, const void *, void *) = heap
->_callbacks
.compare
;
383 pidx
= (idx
- 1) >> 1;
385 void *item
= heap
->_buckets
[pidx
]._item
;
386 if ((!compare
&& item
<= value
) || (compare
&& kCFCompareGreaterThan
!= compare(item
, value
, heap
->_context
.info
))) break;
387 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, item
);
389 pidx
= (idx
- 1) >> 1;
391 if (heap
->_callbacks
.retain
) {
392 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, (void *)heap
->_callbacks
.retain(allocator
, (void *)value
));
394 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, (void *)value
);
398 void CFBinaryHeapRemoveMinimumValue(CFBinaryHeapRef heap
) {
402 CFAllocatorRef allocator
;
403 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
404 cnt
= __CFBinaryHeapCount(heap
);
405 if (0 == cnt
) return;
407 __CFBinaryHeapSetNumBucketsUsed(heap
, cnt
- 1);
408 __CFBinaryHeapSetCount(heap
, cnt
- 1);
409 CFComparisonResult (*compare
)(const void *, const void *, void *) = heap
->_callbacks
.compare
;
410 allocator
= CFGetAllocator(heap
);
411 if (heap
->_callbacks
.release
)
412 heap
->_callbacks
.release(allocator
, heap
->_buckets
[idx
]._item
);
413 val
= heap
->_buckets
[cnt
- 1]._item
;
414 cidx
= (idx
<< 1) + 1;
415 while (cidx
< __CFBinaryHeapCount(heap
)) {
416 void *item
= heap
->_buckets
[cidx
]._item
;
417 if (cidx
+ 1 < __CFBinaryHeapCount(heap
)) {
418 void *item2
= heap
->_buckets
[cidx
+ 1]._item
;
419 if ((!compare
&& item
> item2
) || (compare
&& kCFCompareGreaterThan
== compare(item
, item2
, heap
->_context
.info
))) {
424 if ((!compare
&& item
> val
) || (compare
&& kCFCompareGreaterThan
== compare(item
, val
, heap
->_context
.info
))) break;
425 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, item
);
427 cidx
= (idx
<< 1) + 1;
429 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, val
);
432 void CFBinaryHeapRemoveAllValues(CFBinaryHeapRef heap
) {
435 __CFGenericValidateType(heap
, CFBinaryHeapGetTypeID());
436 cnt
= __CFBinaryHeapCount(heap
);
437 if (heap
->_callbacks
.release
)
438 for (idx
= 0; idx
< cnt
; idx
++)
439 heap
->_callbacks
.release(CFGetAllocator(heap
), heap
->_buckets
[idx
]._item
);
440 __CFBinaryHeapSetNumBucketsUsed(heap
, 0);
441 __CFBinaryHeapSetCount(heap
, 0);