2 * Copyright (c) 2009 Apple Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
21 * @APPLE_LICENSE_HEADER_END@
24 Copyright (c) 1998-2009, Apple Inc. All rights reserved.
25 Responsibility: Christopher Kane
28 #include <CoreFoundation/CFBinaryHeap.h>
29 #include <CoreFoundation/CFPriv.h>
30 #include "CFInternal.h"
32 const CFBinaryHeapCallBacks kCFStringBinaryHeapCallBacks
= {0, __CFTypeCollectionRetain
, __CFTypeCollectionRelease
, CFCopyDescription
, (CFComparisonResult (*)(const void *, const void *, void *))CFStringCompare
};
34 struct __CFBinaryHeapBucket
{
38 CF_INLINE CFIndex
__CFBinaryHeapRoundUpCapacity(CFIndex capacity
) {
39 if (capacity
< 4) return 4;
40 return (1 << flsl(capacity
));
43 CF_INLINE CFIndex
__CFBinaryHeapNumBucketsForCapacity(CFIndex capacity
) {
47 struct __CFBinaryHeap
{
49 CFIndex _count
; /* number of objects */
50 CFIndex _capacity
; /* maximum number of objects */
51 CFBinaryHeapCallBacks _callbacks
;
52 CFBinaryHeapCompareContext _context
;
53 struct __CFBinaryHeapBucket
*_buckets
;
56 CF_INLINE CFIndex
__CFBinaryHeapCount(CFBinaryHeapRef heap
) {
60 CF_INLINE
void __CFBinaryHeapSetCount(CFBinaryHeapRef heap
, CFIndex v
) {
61 /* for a CFBinaryHeap, _bucketsUsed == _count */
64 CF_INLINE CFIndex
__CFBinaryHeapCapacity(CFBinaryHeapRef heap
) {
65 return heap
->_capacity
;
68 CF_INLINE
void __CFBinaryHeapSetCapacity(CFBinaryHeapRef heap
, CFIndex v
) {
69 /* for a CFBinaryHeap, _bucketsNum == _capacity */
72 CF_INLINE CFIndex
__CFBinaryHeapNumBucketsUsed(CFBinaryHeapRef heap
) {
76 CF_INLINE
void __CFBinaryHeapSetNumBucketsUsed(CFBinaryHeapRef heap
, CFIndex v
) {
80 CF_INLINE CFIndex
__CFBinaryHeapNumBuckets(CFBinaryHeapRef heap
) {
81 return heap
->_capacity
;
84 CF_INLINE
void __CFBinaryHeapSetNumBuckets(CFBinaryHeapRef heap
, CFIndex v
) {
89 kCFBinaryHeapMutable
= 0x1, /* changeable and variable capacity */
92 /* Bits 4-5 are used by GC */
94 CF_INLINE
bool isStrongMemory_Heap(CFTypeRef collection
) {
95 return __CFBitfieldGetValue(((const CFRuntimeBase
*)collection
)->_cfinfo
[CF_INFO_BITS
], 4, 4) == 0;
98 CF_INLINE
bool isWeakMemory_Heap(CFTypeRef collection
) {
99 return __CFBitfieldGetValue(((const CFRuntimeBase
*)collection
)->_cfinfo
[CF_INFO_BITS
], 4, 4) != 0;
102 CF_INLINE UInt32
__CFBinaryHeapMutableVariety(const void *cf
) {
103 return __CFBitfieldGetValue(((const CFRuntimeBase
*)cf
)->_cfinfo
[CF_INFO_BITS
], 3, 2);
106 CF_INLINE
void __CFBinaryHeapSetMutableVariety(void *cf
, UInt32 v
) {
107 __CFBitfieldSetValue(((CFRuntimeBase
*)cf
)->_cfinfo
[CF_INFO_BITS
], 3, 2, v
);
110 CF_INLINE UInt32
__CFBinaryHeapMutableVarietyFromFlags(UInt32 flags
) {
111 return __CFBitfieldGetValue(flags
, 1, 0);
114 static Boolean
__CFBinaryHeapEqual(CFTypeRef cf1
, CFTypeRef cf2
) {
115 CFBinaryHeapRef heap1
= (CFBinaryHeapRef
)cf1
;
116 CFBinaryHeapRef heap2
= (CFBinaryHeapRef
)cf2
;
117 CFComparisonResult (*compare
)(const void *, const void *, void *);
120 const void **list1
, **list2
, *buffer
[256];
121 cnt
= __CFBinaryHeapCount(heap1
);
122 if (cnt
!= __CFBinaryHeapCount(heap2
)) return false;
123 compare
= heap1
->_callbacks
.compare
;
124 if (compare
!= heap2
->_callbacks
.compare
) return false;
125 if (0 == cnt
) return true; /* after function comparison */
126 list1
= (cnt
<= 128) ? (const void **)buffer
: (const void **)CFAllocatorAllocate(kCFAllocatorSystemDefault
, 2 * cnt
* sizeof(void *), 0); // GC OK
127 if (__CFOASafe
&& list1
!= buffer
) __CFSetLastAllocationEventName(list1
, "CFBinaryHeap (temp)");
128 list2
= (cnt
<= 128) ? buffer
+ 128 : list1
+ cnt
;
129 CFBinaryHeapGetValues(heap1
, list1
);
130 CFBinaryHeapGetValues(heap2
, list2
);
131 for (idx
= 0; idx
< cnt
; idx
++) {
132 const void *val1
= list1
[idx
];
133 const void *val2
= list2
[idx
];
134 // CF: which context info should be passed in? both?
135 // CF: if the context infos are not equal, should the heaps not be equal?
137 if (NULL
== compare
) return false;
138 if (!compare(val1
, val2
, heap1
->_context
.info
)) return false;
141 if (list1
!= buffer
) CFAllocatorDeallocate(CFGetAllocator(heap1
), list1
); // GC OK
145 static CFHashCode
__CFBinaryHeapHash(CFTypeRef cf
) {
146 CFBinaryHeapRef heap
= (CFBinaryHeapRef
)cf
;
147 return __CFBinaryHeapCount(heap
);
150 static CFStringRef
__CFBinaryHeapCopyDescription(CFTypeRef cf
) {
151 CFBinaryHeapRef heap
= (CFBinaryHeapRef
)cf
;
152 CFMutableStringRef result
;
155 const void **list
, *buffer
[256];
156 cnt
= __CFBinaryHeapCount(heap
);
157 result
= CFStringCreateMutable(CFGetAllocator(heap
), 0);
158 CFStringAppendFormat(result
, NULL
, CFSTR("<CFBinaryHeap %p [%p]>{count = %u, capacity = %u, objects = (\n"), cf
, CFGetAllocator(heap
), cnt
, __CFBinaryHeapCapacity(heap
));
159 list
= (cnt
<= 128) ? (const void **)buffer
: (const void **)CFAllocatorAllocate(kCFAllocatorSystemDefault
, cnt
* sizeof(void *), 0); // GC OK
160 if (__CFOASafe
&& list
!= buffer
) __CFSetLastAllocationEventName(list
, "CFBinaryHeap (temp)");
161 CFBinaryHeapGetValues(heap
, list
);
162 for (idx
= 0; idx
< cnt
; idx
++) {
163 CFStringRef desc
= NULL
;
164 const void *item
= list
[idx
];
165 if (NULL
!= heap
->_callbacks
.copyDescription
) {
166 desc
= heap
->_callbacks
.copyDescription(item
);
169 CFStringAppendFormat(result
, NULL
, CFSTR("\t%u : %s\n"), idx
, desc
);
172 CFStringAppendFormat(result
, NULL
, CFSTR("\t%u : <%p>\n"), idx
, item
);
175 CFStringAppend(result
, CFSTR(")}"));
176 if (list
!= buffer
) CFAllocatorDeallocate(CFGetAllocator(heap
), list
); // GC OK
180 static void __CFBinaryHeapDeallocate(CFTypeRef cf
) {
181 CFBinaryHeapRef heap
= (CFBinaryHeapRef
)cf
;
182 CFAllocatorRef allocator
= CFGetAllocator(heap
);
183 if (CF_IS_COLLECTABLE_ALLOCATOR(allocator
)) {
184 if (heap
->_callbacks
.retain
== NULL
&& heap
->_callbacks
.release
== NULL
)
185 return; // GC: keep heap intact during finalization.
187 // CF: should make the heap mutable here first, a la CFArrayDeallocate
188 CFBinaryHeapRemoveAllValues(heap
);
189 // CF: does not release the context info
190 if (__CFBinaryHeapMutableVariety(heap
) == kCFBinaryHeapMutable
) {
191 _CFAllocatorDeallocateGC(allocator
, heap
->_buckets
);
195 static CFTypeID __kCFBinaryHeapTypeID
= _kCFRuntimeNotATypeID
;
197 static const CFRuntimeClass __CFBinaryHeapClass
= {
198 _kCFRuntimeScannedObject
,
202 __CFBinaryHeapDeallocate
,
206 __CFBinaryHeapCopyDescription
209 __private_extern__
void __CFBinaryHeapInitialize(void) {
210 __kCFBinaryHeapTypeID
= _CFRuntimeRegisterClass(&__CFBinaryHeapClass
);
213 CFTypeID
CFBinaryHeapGetTypeID(void) {
214 return __kCFBinaryHeapTypeID
;
217 static CFBinaryHeapRef
__CFBinaryHeapInit(CFAllocatorRef allocator
, UInt32 flags
, CFIndex capacity
, const void **values
, CFIndex numValues
, const CFBinaryHeapCallBacks
*callBacks
, const CFBinaryHeapCompareContext
*compareContext
) {
218 CFBinaryHeapRef memory
;
222 CFAssert2(0 <= capacity
, __kCFLogAssertion
, "%s(): capacity (%d) cannot be less than zero", __PRETTY_FUNCTION__
, capacity
);
223 CFAssert2(0 <= numValues
, __kCFLogAssertion
, "%s(): numValues (%d) cannot be less than zero", __PRETTY_FUNCTION__
, numValues
);
224 size
= sizeof(struct __CFBinaryHeap
) - sizeof(CFRuntimeBase
);
225 if (CF_IS_COLLECTABLE_ALLOCATOR(allocator
)) {
226 if (!callBacks
|| (callBacks
->retain
== NULL
&& callBacks
->release
== NULL
)) {
227 __CFBitfieldSetValue(flags
, 4, 4, 1); // setWeak
231 memory
= (CFBinaryHeapRef
)_CFRuntimeCreateInstance(allocator
, __kCFBinaryHeapTypeID
, size
, NULL
);
232 if (NULL
== memory
) {
235 __CFBinaryHeapSetCapacity(memory
, __CFBinaryHeapRoundUpCapacity(1));
236 __CFBinaryHeapSetNumBuckets(memory
, __CFBinaryHeapNumBucketsForCapacity(__CFBinaryHeapRoundUpCapacity(1)));
237 void *buckets
= _CFAllocatorAllocateGC(allocator
, __CFBinaryHeapNumBuckets(memory
) * sizeof(struct __CFBinaryHeapBucket
), isStrongMemory_Heap(memory
) ? __kCFAllocatorGCScannedMemory
: 0);
238 __CFAssignWithWriteBarrier((void **)&memory
->_buckets
, buckets
);
239 if (__CFOASafe
) __CFSetLastAllocationEventName(memory
->_buckets
, "CFBinaryHeap (store)");
240 if (NULL
== memory
->_buckets
) {
244 __CFBinaryHeapSetNumBucketsUsed(memory
, 0);
245 __CFBinaryHeapSetCount(memory
, 0);
246 if (NULL
!= callBacks
) {
247 memory
->_callbacks
.retain
= callBacks
->retain
;
248 memory
->_callbacks
.release
= callBacks
->release
;
249 memory
->_callbacks
.copyDescription
= callBacks
->copyDescription
;
250 memory
->_callbacks
.compare
= callBacks
->compare
;
252 memory
->_callbacks
.retain
= 0;
253 memory
->_callbacks
.release
= 0;
254 memory
->_callbacks
.copyDescription
= 0;
255 memory
->_callbacks
.compare
= 0;
257 if (compareContext
) memcpy(&memory
->_context
, compareContext
, sizeof(CFBinaryHeapCompareContext
));
258 // CF: retain info for proper operation
259 __CFBinaryHeapSetMutableVariety(memory
, kCFBinaryHeapMutable
);
260 for (idx
= 0; idx
< numValues
; idx
++) {
261 CFBinaryHeapAddValue(memory
, values
[idx
]);
263 __CFBinaryHeapSetMutableVariety(memory
, __CFBinaryHeapMutableVarietyFromFlags(flags
));
267 CFBinaryHeapRef
CFBinaryHeapCreate(CFAllocatorRef allocator
, CFIndex capacity
, const CFBinaryHeapCallBacks
*callBacks
, const CFBinaryHeapCompareContext
*compareContext
) {
268 return __CFBinaryHeapInit(allocator
, kCFBinaryHeapMutable
, capacity
, NULL
, 0, callBacks
, compareContext
);
271 CFBinaryHeapRef
CFBinaryHeapCreateCopy(CFAllocatorRef allocator
, CFIndex capacity
, CFBinaryHeapRef heap
) {
272 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
273 return __CFBinaryHeapInit(allocator
, kCFBinaryHeapMutable
, capacity
, (const void **)heap
->_buckets
, __CFBinaryHeapCount(heap
), &(heap
->_callbacks
), &(heap
->_context
));
276 CFIndex
CFBinaryHeapGetCount(CFBinaryHeapRef heap
) {
277 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
278 return __CFBinaryHeapCount(heap
);
281 CFIndex
CFBinaryHeapGetCountOfValue(CFBinaryHeapRef heap
, const void *value
) {
282 CFComparisonResult (*compare
)(const void *, const void *, void *);
284 CFIndex cnt
= 0, length
;
285 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
286 compare
= heap
->_callbacks
.compare
;
287 length
= __CFBinaryHeapCount(heap
);
288 for (idx
= 0; idx
< length
; idx
++) {
289 const void *item
= heap
->_buckets
[idx
]._item
;
290 if (value
== item
|| (compare
&& kCFCompareEqualTo
== compare(value
, item
, heap
->_context
.info
))) {
297 Boolean
CFBinaryHeapContainsValue(CFBinaryHeapRef heap
, const void *value
) {
298 CFComparisonResult (*compare
)(const void *, const void *, void *);
301 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
302 compare
= heap
->_callbacks
.compare
;
303 length
= __CFBinaryHeapCount(heap
);
304 for (idx
= 0; idx
< length
; idx
++) {
305 const void *item
= heap
->_buckets
[idx
]._item
;
306 if (value
== item
|| (compare
&& kCFCompareEqualTo
== compare(value
, item
, heap
->_context
.info
))) {
313 const void *CFBinaryHeapGetMinimum(CFBinaryHeapRef heap
) {
314 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
315 CFAssert1(0 < __CFBinaryHeapCount(heap
), __kCFLogAssertion
, "%s(): binary heap is empty", __PRETTY_FUNCTION__
);
316 return (0 < __CFBinaryHeapCount(heap
)) ? heap
->_buckets
[0]._item
: NULL
;
319 Boolean
CFBinaryHeapGetMinimumIfPresent(CFBinaryHeapRef heap
, const void **value
) {
320 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
321 if (0 == __CFBinaryHeapCount(heap
)) return false;
322 if (NULL
!= value
) __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[0]._item
, value
);
326 void CFBinaryHeapGetValues(CFBinaryHeapRef heap
, const void **values
) {
327 CFBinaryHeapRef heapCopy
;
330 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
331 CFAssert1(NULL
!= values
, __kCFLogAssertion
, "%s(): pointer to values may not be NULL", __PRETTY_FUNCTION__
);
332 cnt
= __CFBinaryHeapCount(heap
);
333 if (0 == cnt
) return;
334 heapCopy
= CFBinaryHeapCreateCopy(CFGetAllocator(heap
), cnt
, heap
);
336 while (0 < __CFBinaryHeapCount(heapCopy
)) {
337 const void *value
= CFBinaryHeapGetMinimum(heapCopy
);
338 CFBinaryHeapRemoveMinimumValue(heapCopy
);
339 values
[idx
++] = value
;
344 void CFBinaryHeapApplyFunction(CFBinaryHeapRef heap
, CFBinaryHeapApplierFunction applier
, void *context
) {
345 CFBinaryHeapRef heapCopy
;
347 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
348 CFAssert1(NULL
!= applier
, __kCFLogAssertion
, "%s(): pointer to applier function may not be NULL", __PRETTY_FUNCTION__
);
349 cnt
= __CFBinaryHeapCount(heap
);
350 if (0 == cnt
) return;
351 heapCopy
= CFBinaryHeapCreateCopy(CFGetAllocator(heap
), cnt
, heap
);
352 while (0 < __CFBinaryHeapCount(heapCopy
)) {
353 const void *value
= CFBinaryHeapGetMinimum(heapCopy
);
354 CFBinaryHeapRemoveMinimumValue(heapCopy
);
355 applier(value
, context
);
360 static void __CFBinaryHeapGrow(CFBinaryHeapRef heap
, CFIndex numNewValues
) {
361 CFIndex oldCount
= __CFBinaryHeapCount(heap
);
362 CFIndex capacity
= __CFBinaryHeapRoundUpCapacity(oldCount
+ numNewValues
);
363 CFAllocatorRef allocator
= CFGetAllocator(heap
);
364 __CFBinaryHeapSetCapacity(heap
, capacity
);
365 __CFBinaryHeapSetNumBuckets(heap
, __CFBinaryHeapNumBucketsForCapacity(capacity
));
366 void *buckets
= _CFAllocatorReallocateGC(allocator
, heap
->_buckets
, __CFBinaryHeapNumBuckets(heap
) * sizeof(struct __CFBinaryHeapBucket
), isStrongMemory_Heap(heap
) ? __kCFAllocatorGCScannedMemory
: 0);
367 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
, buckets
);
368 if (__CFOASafe
) __CFSetLastAllocationEventName(heap
->_buckets
, "CFBinaryHeap (store)");
369 if (NULL
== heap
->_buckets
) HALT
;
372 void CFBinaryHeapAddValue(CFBinaryHeapRef heap
, const void *value
) {
375 CFAllocatorRef allocator
= CFGetAllocator(heap
);
376 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
377 switch (__CFBinaryHeapMutableVariety(heap
)) {
378 case kCFBinaryHeapMutable
:
379 if (__CFBinaryHeapNumBucketsUsed(heap
) == __CFBinaryHeapCapacity(heap
))
380 __CFBinaryHeapGrow(heap
, 1);
383 cnt
= __CFBinaryHeapCount(heap
);
385 __CFBinaryHeapSetNumBucketsUsed(heap
, cnt
+ 1);
386 __CFBinaryHeapSetCount(heap
, cnt
+ 1);
387 CFComparisonResult (*compare
)(const void *, const void *, void *) = heap
->_callbacks
.compare
;
388 pidx
= (idx
- 1) >> 1;
390 void *item
= heap
->_buckets
[pidx
]._item
;
391 if ((!compare
&& item
<= value
) || (compare
&& kCFCompareGreaterThan
!= compare(item
, value
, heap
->_context
.info
))) break;
392 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, item
);
394 pidx
= (idx
- 1) >> 1;
396 if (heap
->_callbacks
.retain
) {
397 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, (void *)heap
->_callbacks
.retain(allocator
, (void *)value
));
399 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, (void *)value
);
403 void CFBinaryHeapRemoveMinimumValue(CFBinaryHeapRef heap
) {
407 CFAllocatorRef allocator
;
408 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
409 cnt
= __CFBinaryHeapCount(heap
);
410 if (0 == cnt
) return;
412 __CFBinaryHeapSetNumBucketsUsed(heap
, cnt
- 1);
413 __CFBinaryHeapSetCount(heap
, cnt
- 1);
414 CFComparisonResult (*compare
)(const void *, const void *, void *) = heap
->_callbacks
.compare
;
415 allocator
= CFGetAllocator(heap
);
416 if (heap
->_callbacks
.release
)
417 heap
->_callbacks
.release(allocator
, heap
->_buckets
[idx
]._item
);
418 val
= heap
->_buckets
[cnt
- 1]._item
;
419 cidx
= (idx
<< 1) + 1;
420 while (cidx
< __CFBinaryHeapCount(heap
)) {
421 void *item
= heap
->_buckets
[cidx
]._item
;
422 if (cidx
+ 1 < __CFBinaryHeapCount(heap
)) {
423 void *item2
= heap
->_buckets
[cidx
+ 1]._item
;
424 if ((!compare
&& item
> item2
) || (compare
&& kCFCompareGreaterThan
== compare(item
, item2
, heap
->_context
.info
))) {
429 if ((!compare
&& item
> val
) || (compare
&& kCFCompareGreaterThan
== compare(item
, val
, heap
->_context
.info
))) break;
430 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, item
);
432 cidx
= (idx
<< 1) + 1;
434 __CFAssignWithWriteBarrier((void **)&heap
->_buckets
[idx
]._item
, val
);
437 void CFBinaryHeapRemoveAllValues(CFBinaryHeapRef heap
) {
440 __CFGenericValidateType(heap
, __kCFBinaryHeapTypeID
);
441 cnt
= __CFBinaryHeapCount(heap
);
442 if (heap
->_callbacks
.release
)
443 for (idx
= 0; idx
< cnt
; idx
++)
444 heap
->_callbacks
.release(CFGetAllocator(heap
), heap
->_buckets
[idx
]._item
);
445 __CFBinaryHeapSetNumBucketsUsed(heap
, 0);
446 __CFBinaryHeapSetCount(heap
, 0);