]> git.saurik.com Git - apple/cf.git/blob - CFSortFunctions.c
CF-744.tar.gz
[apple/cf.git] / CFSortFunctions.c
1 /*
2 * Copyright (c) 2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24 /* CFSortFunctions.c
25 Copyright (c) 1999-2012, Apple Inc. All rights reserved.
26 Responsibility: Christopher Kane
27 */
28
29 #include <CoreFoundation/CFBase.h>
30 #include "CFInternal.h"
31 #if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_WINDOWS
32 #include <dispatch/dispatch.h>
33 #endif
34 #if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED
35 #include <dispatch/private.h>
36 #endif
37
38 enum {
39 kCFSortConcurrent = (1 << 0),
40 kCFSortStable = (1 << 4),
41 };
42
43 typedef CFIndex VALUE_TYPE;
44 typedef CFIndex INDEX_TYPE;
45 typedef CFComparisonResult CMP_RESULT_TYPE;
46 typedef CMP_RESULT_TYPE (^COMPARATOR_BLOCK)(VALUE_TYPE, VALUE_TYPE);
47
48 /*
49 Number of elements in a list and expected number of compares,
50 when the initial short-circuiting compare is not done.
51 1 0
52 2 1
53 3 2.667
54 4 4.667
55 5 7.167
56 6 9.833
57 7 12.733
58 8 15.733
59 9 19.167
60 10 22.667
61 11 26.2857
62 12 29.9524
63 */
64
65 static void __CFSimpleMerge(VALUE_TYPE listp[], INDEX_TYPE cnt1, INDEX_TYPE cnt2, VALUE_TYPE tmp[], COMPARATOR_BLOCK cmp) {
66 if (cnt1 <= 0 || cnt2 <= 0) return;
67 // if the last element of listp1 <= the first of listp2, lists are already ordered
68 if (16 < cnt1 + cnt2 && cmp(listp[cnt1 - 1], listp[cnt1]) <= 0) return;
69
70 INDEX_TYPE idx = 0, idx1 = 0, idx2 = cnt1;
71 for (;;) {
72 if (cnt1 <= idx1) {
73 while (idx--) {
74 listp[idx] = tmp[idx];
75 }
76 return;
77 }
78 if (cnt1 + cnt2 <= idx2) {
79 for (INDEX_TYPE t = cnt1 + cnt2 - 1; idx <= t; t--) {
80 listp[t] = listp[t - cnt2];
81 }
82 while (idx--) {
83 listp[idx] = tmp[idx];
84 }
85 return;
86 }
87 VALUE_TYPE v1 = listp[idx1], v2 = listp[idx2];
88 if (cmp(v1, v2) <= 0) {
89 tmp[idx] = v1;
90 idx1++;
91 } else {
92 tmp[idx] = v2;
93 idx2++;
94 }
95 idx++;
96 }
97 }
98
99 static void __CFSimpleMergeSort(VALUE_TYPE listp[], INDEX_TYPE cnt, VALUE_TYPE tmp[], COMPARATOR_BLOCK cmp) {
100 if (cnt < 2) {
101 /* do nothing */
102 } else if (2 == cnt) {
103 VALUE_TYPE v0 = listp[0], v1 = listp[1];
104 if (0 < cmp(v0, v1)) {
105 listp[0] = v1;
106 listp[1] = v0;
107 }
108 } else if (3 == cnt) {
109 VALUE_TYPE v0 = listp[0], v1 = listp[1], v2 = listp[2], vt;
110 if (0 < cmp(v0, v1)) {
111 vt = v0;
112 v0 = v1;
113 v1 = vt;
114 }
115 if (0 < cmp(v1, v2)) {
116 vt = v1;
117 v1 = v2;
118 v2 = vt;
119 if (0 < cmp(v0, v1)) {
120 vt = v0;
121 v0 = v1;
122 v1 = vt;
123 }
124 }
125 listp[0] = v0;
126 listp[1] = v1;
127 listp[2] = v2;
128 } else {
129 INDEX_TYPE half_cnt = cnt / 2;
130 __CFSimpleMergeSort(listp, half_cnt, tmp, cmp);
131 __CFSimpleMergeSort(listp + half_cnt, cnt - half_cnt, tmp, cmp);
132 __CFSimpleMerge(listp, half_cnt, cnt - half_cnt, tmp, cmp);
133 }
134 }
135
136 #if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_WINDOWS
137 // Excluded from linux for dispatch dependency
138
139 // if !right, put the cnt1 smallest values in tmp, else put the cnt2 largest values in tmp
140 static void __CFSortIndexesNMerge(VALUE_TYPE listp1[], INDEX_TYPE cnt1, VALUE_TYPE listp2[], INDEX_TYPE cnt2, VALUE_TYPE tmp[], size_t right, COMPARATOR_BLOCK cmp) {
141 // if the last element of listp1 <= the first of listp2, lists are already ordered
142 if (16 < cnt1 + cnt2 && cmp(listp1[cnt1 - 1], listp2[0]) <= 0) {
143 memmove(tmp, (right ? listp2 : listp1), (right ? cnt2 : cnt1) * sizeof(VALUE_TYPE));
144 return;
145 }
146
147 if (right) {
148 VALUE_TYPE *listp1_end = listp1;
149 VALUE_TYPE *listp2_end = listp2;
150 VALUE_TYPE *tmp_end = tmp;
151 listp1 += cnt1 - 1;
152 listp2 += cnt2 - 1;
153 tmp += cnt2;
154 while (tmp_end < tmp) {
155 tmp--;
156 if (listp2 < listp2_end) {
157 listp1--;
158 *tmp = *listp1;
159 } else if (listp1 < listp1_end) {
160 listp2--;
161 *tmp = *listp2;
162 } else {
163 VALUE_TYPE v1 = *listp1, v2 = *listp2;
164 CMP_RESULT_TYPE res = cmp(v1, v2);
165 if (res <= 0) {
166 *tmp = v2;
167 listp2--;
168 } else {
169 *tmp = v1;
170 listp1--;
171 }
172 }
173 }
174 } else {
175 VALUE_TYPE *listp1_end = listp1 + cnt1;
176 VALUE_TYPE *listp2_end = listp2 + cnt2;
177 VALUE_TYPE *tmp_end = tmp + cnt1;
178 while (tmp < tmp_end) {
179 if (listp2_end <= listp2) {
180 *tmp = *listp1;
181 listp1++;
182 } else if (listp1_end <= listp1) {
183 *tmp = *listp2;
184 listp2++;
185 } else {
186 VALUE_TYPE v1 = *listp1, v2 = *listp2;
187 CMP_RESULT_TYPE res = cmp(v1, v2);
188 if (res <= 0) {
189 *tmp = v1;
190 listp1++;
191 } else {
192 *tmp = v2;
193 listp2++;
194 }
195 }
196 tmp++;
197 }
198 }
199 }
200
201 /* Merging algorithm based on
202 "A New Parallel Sorting Algorithm based on Odd-Even Mergesort", Ezequiel Herruzo, et al
203 */
204 static void __CFSortIndexesN(VALUE_TYPE listp[], INDEX_TYPE count, int32_t ncores, CMP_RESULT_TYPE (^cmp)(INDEX_TYPE, INDEX_TYPE)) {
205 /* Divide the array up into up to ncores, multiple-of-16-sized, chunks */
206 INDEX_TYPE sz = ((((count + ncores - 1) / ncores) + 15) / 16) * 16;
207 INDEX_TYPE num_sect = (count + sz - 1) / sz;
208 INDEX_TYPE last_sect_len = count + sz - sz * num_sect;
209
210 STACK_BUFFER_DECL(VALUE_TYPE *, stack_tmps, num_sect);
211 for (INDEX_TYPE idx = 0; idx < num_sect; idx++) {
212 stack_tmps[idx] = (VALUE_TYPE *)malloc(sz * sizeof(VALUE_TYPE));
213 }
214 VALUE_TYPE **tmps = stack_tmps;
215
216 dispatch_queue_t q = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, DISPATCH_QUEUE_OVERCOMMIT);
217 dispatch_apply(num_sect, q, ^(size_t sect) {
218 INDEX_TYPE sect_len = (sect < num_sect - 1) ? sz : last_sect_len;
219 __CFSimpleMergeSort(listp + sect * sz, sect_len, tmps[sect], cmp); // naturally stable
220 });
221
222 INDEX_TYPE even_phase_cnt = ((num_sect / 2) * 2);
223 INDEX_TYPE odd_phase_cnt = (((num_sect - 1) / 2) * 2);
224 for (INDEX_TYPE idx = 0; idx < (num_sect + 1) / 2; idx++) {
225 dispatch_apply(even_phase_cnt, q, ^(size_t sect) { // merge even
226 size_t right = sect & (size_t)0x1;
227 VALUE_TYPE *left_base = listp + sect * sz - (right ? sz : 0);
228 VALUE_TYPE *right_base = listp + sect * sz + (right ? 0 : sz);
229 INDEX_TYPE sect2_len = (sect + 1 + (right ? 0 : 1) == num_sect) ? last_sect_len : sz;
230 __CFSortIndexesNMerge(left_base, sz, right_base, sect2_len, tmps[sect], right, cmp);
231 });
232 if (num_sect & 0x1) {
233 memmove(tmps[num_sect - 1], listp + (num_sect - 1) * sz, last_sect_len * sizeof(VALUE_TYPE));
234 }
235 dispatch_apply(odd_phase_cnt, q, ^(size_t sect) { // merge odd
236 size_t right = sect & (size_t)0x1;
237 VALUE_TYPE *left_base = tmps[sect + (right ? 0 : 1)];
238 VALUE_TYPE *right_base = tmps[sect + (right ? 1 : 2)];
239 INDEX_TYPE sect2_len = (sect + 1 + (right ? 1 : 2) == num_sect) ? last_sect_len : sz;
240 __CFSortIndexesNMerge(left_base, sz, right_base, sect2_len, listp + sect * sz + sz, right, cmp);
241 });
242 memmove(listp + 0 * sz, tmps[0], sz * sizeof(VALUE_TYPE));
243 if (!(num_sect & 0x1)) {
244 memmove(listp + (num_sect - 1) * sz, tmps[num_sect - 1], last_sect_len * sizeof(VALUE_TYPE));
245 }
246 }
247
248 for (INDEX_TYPE idx = 0; idx < num_sect; idx++) {
249 free(stack_tmps[idx]);
250 }
251 }
252 #endif
253
254 // fills an array of indexes (of length count) giving the indexes 0 - count-1, as sorted by the comparator block
255 void CFSortIndexes(CFIndex *indexBuffer, CFIndex count, CFOptionFlags opts, CFComparisonResult (^cmp)(CFIndex, CFIndex)) {
256 if (count < 1) return;
257 if (INTPTR_MAX / sizeof(CFIndex) < count) return;
258 int32_t ncores = 0;
259 if (opts & kCFSortConcurrent) {
260 ncores = __CFActiveProcessorCount();
261 if (count < 160 || ncores < 2) {
262 opts = (opts & ~kCFSortConcurrent);
263 } else if (count < 640 && 2 < ncores) {
264 ncores = 2;
265 } else if (count < 3200 && 4 < ncores) {
266 ncores = 4;
267 } else if (count < 16000 && 8 < ncores) {
268 ncores = 8;
269 }
270 if (16 < ncores) {
271 ncores = 16;
272 }
273 }
274 #if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_WINDOWS
275 if (count <= 65536) {
276 for (CFIndex idx = 0; idx < count; idx++) indexBuffer[idx] = idx;
277 } else {
278 /* Specifically hard-coded to 8; the count has to be very large before more chunks and/or cores is worthwhile. */
279 CFIndex sz = ((((size_t)count + 15) / 16) * 16) / 8;
280 dispatch_apply(8, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, DISPATCH_QUEUE_OVERCOMMIT), ^(size_t n) {
281 CFIndex idx = n * sz, lim = __CFMin(idx + sz, count);
282 for (; idx < lim; idx++) indexBuffer[idx] = idx;
283 });
284 }
285 #else
286 for (CFIndex idx = 0; idx < count; idx++) indexBuffer[idx] = idx;
287 #endif
288 #if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_WINDOWS
289 if (opts & kCFSortConcurrent) {
290 __CFSortIndexesN(indexBuffer, count, ncores, cmp); // naturally stable
291 return;
292 }
293 #endif
294 STACK_BUFFER_DECL(VALUE_TYPE, local, count <= 4096 ? count : 1);
295 VALUE_TYPE *tmp = (count <= 4096) ? local : (VALUE_TYPE *)malloc(count * sizeof(VALUE_TYPE));
296 __CFSimpleMergeSort(indexBuffer, count, tmp, cmp); // naturally stable
297 if (local != tmp) free(tmp);
298 }
299
300 /* Comparator is passed the address of the values. */
301 void CFQSortArray(void *list, CFIndex count, CFIndex elementSize, CFComparatorFunction comparator, void *context) {
302 if (count < 2 || elementSize < 1) return;
303 STACK_BUFFER_DECL(CFIndex, locali, count <= 4096 ? count : 1);
304 CFIndex *indexes = (count <= 4096) ? locali : (CFIndex *)malloc(count * sizeof(CFIndex));
305 CFSortIndexes(indexes, count, 0, ^(CFIndex a, CFIndex b) { return comparator((char *)list + a * elementSize, (char *)list + b * elementSize, context); });
306 STACK_BUFFER_DECL(uint8_t, locals, count <= (16 * 1024 / elementSize) ? count * elementSize : 1);
307 void *store = (count <= (16 * 1024 / elementSize)) ? locals : malloc(count * elementSize);
308 for (CFIndex idx = 0; idx < count; idx++) {
309 if (sizeof(uintptr_t) == elementSize) {
310 uintptr_t *a = (uintptr_t *)list + indexes[idx];
311 uintptr_t *b = (uintptr_t *)store + idx;
312 *b = *a;
313 } else {
314 memmove((char *)store + idx * elementSize, (char *)list + indexes[idx] * elementSize, elementSize);
315 }
316 }
317 // no swapping or modification of the original list has occurred until this point
318 objc_memmove_collectable(list, store, count * elementSize);
319 if (locals != store) free(store);
320 if (locali != indexes) free(indexes);
321 }
322
323 /* Comparator is passed the address of the values. */
324 void CFMergeSortArray(void *list, CFIndex count, CFIndex elementSize, CFComparatorFunction comparator, void *context) {
325 if (count < 2 || elementSize < 1) return;
326 STACK_BUFFER_DECL(CFIndex, locali, count <= 4096 ? count : 1);
327 CFIndex *indexes = (count <= 4096) ? locali : (CFIndex *)malloc(count * sizeof(CFIndex));
328 CFSortIndexes(indexes, count, kCFSortStable, ^(CFIndex a, CFIndex b) { return comparator((char *)list + a * elementSize, (char *)list + b * elementSize, context); });
329 STACK_BUFFER_DECL(uint8_t, locals, count <= (16 * 1024 / elementSize) ? count * elementSize : 1);
330 void *store = (count <= (16 * 1024 / elementSize)) ? locals : malloc(count * elementSize);
331 for (CFIndex idx = 0; idx < count; idx++) {
332 if (sizeof(uintptr_t) == elementSize) {
333 uintptr_t *a = (uintptr_t *)list + indexes[idx];
334 uintptr_t *b = (uintptr_t *)store + idx;
335 *b = *a;
336 } else {
337 memmove((char *)store + idx * elementSize, (char *)list + indexes[idx] * elementSize, elementSize);
338 }
339 }
340 // no swapping or modification of the original list has occurred until this point
341 objc_memmove_collectable(list, store, count * elementSize);
342 if (locals != store) free(store);
343 if (locali != indexes) free(indexes);
344 }
345
346