+/*\r
+ ---------------------------------------------------------------------------\r
+ Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.\r
+\r
+ LICENSE TERMS\r
+\r
+ The free distribution and use of this software in both source and binary\r
+ form is allowed (with or without changes) provided that:\r
+\r
+ 1. distributions of this source code include the above copyright\r
+ notice, this list of conditions and the following disclaimer;\r
+\r
+ 2. distributions in binary form include the above copyright\r
+ notice, this list of conditions and the following disclaimer\r
+ in the documentation and/or other associated materials;\r
+\r
+ 3. the copyright holder's name is not used to endorse products\r
+ built using this software without specific written permission.\r
+\r
+ ALTERNATIVELY, provided that this notice is retained in full, this product\r
+ may be distributed under the terms of the GNU General Public License (GPL),\r
+ in which case the provisions of the GPL apply INSTEAD OF those given above.\r
+\r
+ DISCLAIMER\r
+\r
+ This software is provided 'as is' with no explicit or implied warranties\r
+ in respect of its properties, including, but not limited to, correctness\r
+ and/or fitness for purpose.\r
+ ---------------------------------------------------------------------------\r
+ Issue 28/01/2004\r
+\r
+*/\r
+\r
+#if defined(__cplusplus)\r
+extern "C"\r
+{\r
+#endif\r
+\r
+#define DO_TABLES\r
+\r
+#include "aesopt.h"\r
+\r
+#if defined(FIXED_TABLES)\r
+\r
+#define sb_data(w) {\\r
+ w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\\r
+ w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\\r
+ w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\\r
+ w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\\r
+ w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\\r
+ w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\\r
+ w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\\r
+ w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\\r
+ w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\\r
+ w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\\r
+ w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\\r
+ w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\\r
+ w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\\r
+ w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\\r
+ w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\\r
+ w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\\r
+ w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\\r
+ w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\\r
+ w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\\r
+ w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\\r
+ w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\\r
+ w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\\r
+ w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\\r
+ w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\\r
+ w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\\r
+ w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\\r
+ w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\\r
+ w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\\r
+ w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\\r
+ w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\\r
+ w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\\r
+ w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }\r
+\r
+#define isb_data(w) {\\r
+ w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\\r
+ w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\\r
+ w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\\r
+ w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\\r
+ w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\\r
+ w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\\r
+ w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\\r
+ w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\\r
+ w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\\r
+ w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\\r
+ w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\\r
+ w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\\r
+ w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\\r
+ w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\\r
+ w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\\r
+ w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\\r
+ w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\\r
+ w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\\r
+ w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\\r
+ w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\\r
+ w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\\r
+ w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\\r
+ w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\\r
+ w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\\r
+ w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\\r
+ w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\\r
+ w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\\r
+ w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\\r
+ w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\\r
+ w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\\r
+ w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\\r
+ w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }\r
+\r
+#define mm_data(w) {\\r
+ w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\\r
+ w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\\r
+ w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\\r
+ w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\\r
+ w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\\r
+ w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\\r
+ w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\\r
+ w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\\r
+ w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\\r
+ w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\\r
+ w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\\r
+ w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\\r
+ w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\\r
+ w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\\r
+ w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\\r
+ w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\\r
+ w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\\r
+ w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\\r
+ w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\\r
+ w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\\r
+ w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\\r
+ w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\\r
+ w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\\r
+ w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\\r
+ w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\\r
+ w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\\r
+ w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\\r
+ w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\\r
+ w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\\r
+ w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\\r
+ w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\\r
+ w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }\r
+\r
+#define rc_data(w) {\\r
+ w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\\r
+ w(0x1b), w(0x36) }\r
+\r
+#define h0(x) (x)\r
+\r
+#define w0(p) bytes2word(p, 0, 0, 0)\r
+#define w1(p) bytes2word(0, p, 0, 0)\r
+#define w2(p) bytes2word(0, 0, p, 0)\r
+#define w3(p) bytes2word(0, 0, 0, p)\r
+\r
+#define u0(p) bytes2word(f2(p), p, p, f3(p))\r
+#define u1(p) bytes2word(f3(p), f2(p), p, p)\r
+#define u2(p) bytes2word(p, f3(p), f2(p), p)\r
+#define u3(p) bytes2word(p, p, f3(p), f2(p))\r
+\r
+#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))\r
+#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))\r
+#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))\r
+#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))\r
+\r
+#endif\r
+\r
+#if defined(FIXED_TABLES) || !defined(FF_TABLES)\r
+\r
+#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))\r
+#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))\r
+#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \\r
+ ^ (((x>>5) & 4) * WPOLY))\r
+#define f3(x) (f2(x) ^ x)\r
+#define f9(x) (f8(x) ^ x)\r
+#define fb(x) (f8(x) ^ f2(x) ^ x)\r
+#define fd(x) (f8(x) ^ f4(x) ^ x)\r
+#define fe(x) (f8(x) ^ f4(x) ^ f2(x))\r
+\r
+#else\r
+\r
+#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)\r
+#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)\r
+#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)\r
+#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)\r
+#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)\r
+#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)\r
+#define fi(x) ((x) ? pow[ 255 - log[x]] : 0)\r
+\r
+#endif\r
+\r
+#include "aestab.h"\r
+\r
+#if defined(FIXED_TABLES)\r
+\r
+/* implemented in case of wrong call for fixed tables */\r
+\r
+void gen_tabs(void)\r
+{\r
+}\r
+\r
+#else /* dynamic table generation */\r
+\r
+#if !defined(FF_TABLES)\r
+\r
+/* Generate the tables for the dynamic table option\r
+\r
+ It will generally be sensible to use tables to compute finite\r
+ field multiplies and inverses but where memory is scarse this\r
+ code might sometimes be better. But it only has effect during\r
+ initialisation so its pretty unimportant in overall terms.\r
+*/\r
+\r
+/* return 2 ^ (n - 1) where n is the bit number of the highest bit\r
+ set in x with x in the range 1 < x < 0x00000200. This form is\r
+ used so that locals within fi can be bytes rather than words\r
+*/\r
+\r
+static aes_08t hibit(const aes_32t x)\r
+{ aes_08t r = (aes_08t)((x >> 1) | (x >> 2));\r
+\r
+ r |= (r >> 2);\r
+ r |= (r >> 4);\r
+ return (r + 1) >> 1;\r
+}\r
+\r
+/* return the inverse of the finite field element x */\r
+\r
+static aes_08t fi(const aes_08t x)\r
+{ aes_08t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;\r
+\r
+ if(x < 2) return x;\r
+\r
+ for(;;)\r
+ {\r
+ if(!n1) return v1;\r
+\r
+ while(n2 >= n1)\r
+ {\r
+ n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2);\r
+ }\r
+\r
+ if(!n2) return v2;\r
+\r
+ while(n1 >= n2)\r
+ {\r
+ n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1);\r
+ }\r
+ }\r
+}\r
+\r
+#endif\r
+\r
+/* The forward and inverse affine transformations used in the S-box */\r
+\r
+#define fwd_affine(x) \\r
+ (w = (aes_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(aes_08t)(w^(w>>8)))\r
+\r
+#define inv_affine(x) \\r
+ (w = (aes_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(aes_08t)(w^(w>>8)))\r
+\r
+static int init = 0;\r
+\r
+void gen_tabs(void)\r
+{ aes_32t i, w;\r
+\r
+#if defined(FF_TABLES)\r
+\r
+ aes_08t pow[512], log[256];\r
+\r
+ if(init) return;\r
+ /* log and power tables for GF(2^8) finite field with\r
+ WPOLY as modular polynomial - the simplest primitive\r
+ root is 0x03, used here to generate the tables\r
+ */\r
+\r
+ i = 0; w = 1;\r
+ do\r
+ {\r
+ pow[i] = (aes_08t)w;\r
+ pow[i + 255] = (aes_08t)w;\r
+ log[w] = (aes_08t)i++;\r
+ w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);\r
+ }\r
+ while (w != 1);\r
+\r
+#else\r
+ if(init) return;\r
+#endif\r
+\r
+ for(i = 0, w = 1; i < RC_LENGTH; ++i)\r
+ {\r
+ t_set(r,c)[i] = bytes2word(w, 0, 0, 0);\r
+ w = f2(w);\r
+ }\r
+\r
+ for(i = 0; i < 256; ++i)\r
+ { aes_08t b;\r
+\r
+ b = fwd_affine(fi((aes_08t)i));\r
+ w = bytes2word(f2(b), b, b, f3(b));\r
+\r
+#if defined( SBX_SET )\r
+ t_set(s,box)[i] = b;\r
+#endif\r
+\r
+#if defined( FT1_SET ) /* tables for a normal encryption round */\r
+ t_set(f,n)[i] = w;\r
+#endif\r
+#if defined( FT4_SET )\r
+ t_set(f,n)[0][i] = w;\r
+ t_set(f,n)[1][i] = upr(w,1);\r
+ t_set(f,n)[2][i] = upr(w,2);\r
+ t_set(f,n)[3][i] = upr(w,3);\r
+#endif\r
+ w = bytes2word(b, 0, 0, 0);\r
+\r
+#if defined( FL1_SET ) /* tables for last encryption round (may also */\r
+ t_set(f,l)[i] = w; /* be used in the key schedule) */\r
+#endif\r
+#if defined( FL4_SET )\r
+ t_set(f,l)[0][i] = w;\r
+ t_set(f,l)[1][i] = upr(w,1);\r
+ t_set(f,l)[2][i] = upr(w,2);\r
+ t_set(f,l)[3][i] = upr(w,3);\r
+#endif\r
+\r
+#if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is */\r
+ t_set(l,s)[i] = w; /* not of the required form */\r
+#endif\r
+#if defined( LS4_SET )\r
+ t_set(l,s)[0][i] = w;\r
+ t_set(l,s)[1][i] = upr(w,1);\r
+ t_set(l,s)[2][i] = upr(w,2);\r
+ t_set(l,s)[3][i] = upr(w,3);\r
+#endif\r
+\r
+ b = fi(inv_affine((aes_08t)i));\r
+ w = bytes2word(fe(b), f9(b), fd(b), fb(b));\r
+\r
+#if defined( IM1_SET ) /* tables for the inverse mix column operation */\r
+ t_set(i,m)[b] = w;\r
+#endif\r
+#if defined( IM4_SET )\r
+ t_set(i,m)[0][b] = w;\r
+ t_set(i,m)[1][b] = upr(w,1);\r
+ t_set(i,m)[2][b] = upr(w,2);\r
+ t_set(i,m)[3][b] = upr(w,3);\r
+#endif\r
+\r
+#if defined( ISB_SET )\r
+ t_set(i,box)[i] = b;\r
+#endif\r
+#if defined( IT1_SET ) /* tables for a normal decryption round */\r
+ t_set(i,n)[i] = w;\r
+#endif\r
+#if defined( IT4_SET )\r
+ t_set(i,n)[0][i] = w;\r
+ t_set(i,n)[1][i] = upr(w,1);\r
+ t_set(i,n)[2][i] = upr(w,2);\r
+ t_set(i,n)[3][i] = upr(w,3);\r
+#endif\r
+ w = bytes2word(b, 0, 0, 0);\r
+#if defined( IL1_SET ) /* tables for last decryption round */\r
+ t_set(i,l)[i] = w;\r
+#endif\r
+#if defined( IL4_SET )\r
+ t_set(i,l)[0][i] = w;\r
+ t_set(i,l)[1][i] = upr(w,1);\r
+ t_set(i,l)[2][i] = upr(w,2);\r
+ t_set(i,l)[3][i] = upr(w,3);\r
+#endif\r
+ }\r
+ init = 1;\r
+}\r
+\r
+#endif\r
+\r
+#if defined(__cplusplus)\r
+}\r
+#endif\r
+\r