]> git.saurik.com Git - apple/bootx.git/blob - bootx.tproj/sl.subproj/aesopt.h
BootX-81.tar.gz
[apple/bootx.git] / bootx.tproj / sl.subproj / aesopt.h
1 /*
2 ---------------------------------------------------------------------------
3 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
4
5 LICENSE TERMS
6
7 The free distribution and use of this software in both source and binary
8 form is allowed (with or without changes) provided that:
9
10 1. distributions of this source code include the above copyright
11 notice, this list of conditions and the following disclaimer;
12
13 2. distributions in binary form include the above copyright
14 notice, this list of conditions and the following disclaimer
15 in the documentation and/or other associated materials;
16
17 3. the copyright holder's name is not used to endorse products
18 built using this software without specific written permission.
19
20 ALTERNATIVELY, provided that this notice is retained in full, this product
21 may be distributed under the terms of the GNU General Public License (GPL),
22 in which case the provisions of the GPL apply INSTEAD OF those given above.
23
24 DISCLAIMER
25
26 This software is provided 'as is' with no explicit or implied warranties
27 in respect of its properties, including, but not limited to, correctness
28 and/or fitness for purpose.
29 ---------------------------------------------------------------------------
30 Issue 28/01/2004
31
32 My thanks go to Dag Arne Osvik for devising the schemes used here for key
33 length derivation from the form of the key schedule
34
35 This file contains the compilation options for AES (Rijndael) and code
36 that is common across encryption, key scheduling and table generation.
37
38 OPERATION
39
40 These source code files implement the AES algorithm Rijndael designed by
41 Joan Daemen and Vincent Rijmen. This version is designed for the standard
42 block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
43 and 32 bytes).
44
45 This version is designed for flexibility and speed using operations on
46 32-bit words rather than operations on bytes. It can be compiled with
47 either big or little endian internal byte order but is faster when the
48 native byte order for the processor is used.
49
50 THE CIPHER INTERFACE
51
52 The cipher interface is implemented as an array of bytes in which lower
53 AES bit sequence indexes map to higher numeric significance within bytes.
54
55 aes_08t (an unsigned 8-bit type)
56 aes_32t (an unsigned 32-bit type)
57 struct aes_encrypt_ctx (structure for the cipher encryption context)
58 struct aes_decrypt_ctx (structure for the cipher decryption context)
59 aes_rval the function return type
60
61 C subroutine calls:
62
63 aes_rval aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
64 aes_rval aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
65 aes_rval aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
66 aes_rval aes_encrypt(const unsigned char *in, unsigned char *out,
67 const aes_encrypt_ctx cx[1]);
68
69 aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
70 aes_rval aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
71 aes_rval aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
72 aes_rval aes_decrypt(const unsigned char *in, unsigned char *out,
73 const aes_decrypt_ctx cx[1]);
74
75 IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
76 you call genTabs() before AES is used so that the tables are initialised.
77
78 C++ aes class subroutines:
79
80 Class AESencrypt for encryption
81
82 Construtors:
83 AESencrypt(void)
84 AESencrypt(const unsigned char *key) - 128 bit key
85 Members:
86 aes_rval key128(const unsigned char *key)
87 aes_rval key192(const unsigned char *key)
88 aes_rval key256(const unsigned char *key)
89 aes_rval encrypt(const unsigned char *in, unsigned char *out) const
90
91 Class AESdecrypt for encryption
92 Construtors:
93 AESdecrypt(void)
94 AESdecrypt(const unsigned char *key) - 128 bit key
95 Members:
96 aes_rval key128(const unsigned char *key)
97 aes_rval key192(const unsigned char *key)
98 aes_rval key256(const unsigned char *key)
99 aes_rval decrypt(const unsigned char *in, unsigned char *out) const
100
101 COMPILATION
102
103 The files used to provide AES (Rijndael) are
104
105 a. aes.h for the definitions needed for use in C.
106 b. aescpp.h for the definitions needed for use in C++.
107 c. aesopt.h for setting compilation options (also includes common code).
108 d. aescrypt.c for encryption and decrytpion, or
109 e. aeskey.c for key scheduling.
110 f. aestab.c for table loading or generation.
111 g. aescrypt.asm for encryption and decryption using assembler code.
112 h. aescrypt.mmx.asm for encryption and decryption using MMX assembler.
113
114 To compile AES (Rijndael) for use in C code use aes.h and set the
115 defines here for the facilities you need (key lengths, encryption
116 and/or decryption). Do not define AES_DLL or AES_CPP. Set the options
117 for optimisations and table sizes here.
118
119 To compile AES (Rijndael) for use in in C++ code use aescpp.h but do
120 not define AES_DLL
121
122 To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use
123 aes.h and include the AES_DLL define.
124
125 CONFIGURATION OPTIONS (here and in aes.h)
126
127 a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL
128 b. You may need to set PLATFORM_BYTE_ORDER to define the byte order.
129 c. If you want the code to run in a specific internal byte order, then
130 ALGORITHM_BYTE_ORDER must be set accordingly.
131 d. set other configuration options decribed below.
132 */
133
134 #if !defined( _AESOPT_H )
135 #define _AESOPT_H
136
137 #include "aes.h"
138
139 /* CONFIGURATION - USE OF DEFINES
140
141 Later in this section there are a number of defines that control the
142 operation of the code. In each section, the purpose of each define is
143 explained so that the relevant form can be included or excluded by
144 setting either 1's or 0's respectively on the branches of the related
145 #if clauses.
146
147 PLATFORM SPECIFIC INCLUDES AND BYTE ORDER IN 32-BIT WORDS
148
149 To obtain the highest speed on processors with 32-bit words, this code
150 needs to determine the byte order of the target machine. The following
151 block of code is an attempt to capture the most obvious ways in which
152 various environemnts define byte order. It may well fail, in which case
153 the definitions will need to be set by editing at the points marked
154 **** EDIT HERE IF NECESSARY **** below. My thanks go to Peter Gutmann
155 for his assistance with this endian detection nightmare.
156 */
157
158 #define BRG_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
159 #define BRG_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
160
161 #if defined(__GNUC__) || defined(__GNU_LIBRARY__)
162 # if defined(__FreeBSD__) || defined(__OpenBSD__)
163 # include <sys/endian.h>
164 # elif defined( BSD ) && BSD >= 199103
165 # include <machine/endian.h>
166 # elif defined(__APPLE__)
167 # if defined(__BIG_ENDIAN__) && !defined( BIG_ENDIAN )
168 # define BIG_ENDIAN
169 # elif defined(__LITTLE_ENDIAN__) && !defined( LITTLE_ENDIAN )
170 # define LITTLE_ENDIAN
171 # endif
172 # else
173 # include <endian.h>
174 # if defined(__BEOS__)
175 # include <byteswap.h>
176 # endif
177 # endif
178 #endif
179
180 #if !defined(PLATFORM_BYTE_ORDER)
181 # if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
182 # if defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
183 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
184 # elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
185 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
186 # elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
187 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
188 # elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
189 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
190 # endif
191 # elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
192 # if defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
193 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
194 # elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
195 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
196 # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
197 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
198 # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
199 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
200 # endif
201 # elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
202 # if defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
203 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
204 # elif !defined(__LITTLE_ENDIAN__) && defined(__BIG_ENDIAN__)
205 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
206 # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
207 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
208 # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
209 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
210 # endif
211 # endif
212 #endif
213
214 /* if the platform is still unknown, try to find its byte order */
215 /* from commonly used machine defines */
216
217 #if !defined(PLATFORM_BYTE_ORDER)
218
219 #if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
220 defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
221 defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
222 defined( vax ) || defined( vms ) || defined( VMS ) || \
223 defined( __VMS )
224 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
225
226 #elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
227 defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
228 defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
229 defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
230 defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
231 defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
232 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
233
234 #elif 0 /* **** EDIT HERE IF NECESSARY **** */
235 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
236 #elif 0 /* **** EDIT HERE IF NECESSARY **** */
237 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
238 #else
239 # error Please edit aesopt.h (line 234 or 236) to set the platform byte order
240 #endif
241
242 #endif
243
244 /* SOME LOCAL DEFINITIONS */
245
246 #define NO_TABLES 0
247 #define ONE_TABLE 1
248 #define FOUR_TABLES 4
249 #define NONE 0
250 #define PARTIAL 1
251 #define FULL 2
252
253 #if defined(bswap32)
254 #define aes_sw32 bswap32
255 #elif defined(bswap_32)
256 #define aes_sw32 bswap_32
257 #else
258 #define brot(x,n) (((aes_32t)(x) << n) | ((aes_32t)(x) >> (32 - n)))
259 #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
260 #endif
261
262 /* 1. FUNCTIONS REQUIRED
263
264 This implementation provides subroutines for encryption, decryption
265 and for setting the three key lengths (separately) for encryption
266 and decryption. When the assembler code is not being used the following
267 definition blocks allow the selection of the routines that are to be
268 included in the compilation.
269 */
270 #if defined( AES_ENCRYPT )
271 #define ENCRYPTION
272 #define ENCRYPTION_KEY_SCHEDULE
273 #endif
274
275 #if defined( AES_DECRYPT )
276 #define DECRYPTION
277 #define DECRYPTION_KEY_SCHEDULE
278 #endif
279
280 /* 2. ASSEMBLER SUPPORT
281
282 This define (which can be on the command line) enables the use of the
283 assembler code routines for encryption and decryption with the C code
284 only providing key scheduling
285 */
286 #if 0 && !defined(AES_ASM)
287 #define AES_ASM
288 #endif
289
290 /* 3. BYTE ORDER WITHIN 32 BIT WORDS
291
292 The fundamental data processing units in Rijndael are 8-bit bytes. The
293 input, output and key input are all enumerated arrays of bytes in which
294 bytes are numbered starting at zero and increasing to one less than the
295 number of bytes in the array in question. This enumeration is only used
296 for naming bytes and does not imply any adjacency or order relationship
297 from one byte to another. When these inputs and outputs are considered
298 as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
299 byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
300 In this implementation bits are numbered from 0 to 7 starting at the
301 numerically least significant end of each byte (bit n represents 2^n).
302
303 However, Rijndael can be implemented more efficiently using 32-bit
304 words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
305 into word[n]. While in principle these bytes can be assembled into words
306 in any positions, this implementation only supports the two formats in
307 which bytes in adjacent positions within words also have adjacent byte
308 numbers. This order is called big-endian if the lowest numbered bytes
309 in words have the highest numeric significance and little-endian if the
310 opposite applies.
311
312 This code can work in either order irrespective of the order used by the
313 machine on which it runs. Normally the internal byte order will be set
314 to the order of the processor on which the code is to be run but this
315 define can be used to reverse this in special situations
316
317 NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set
318 */
319 #if 1 || defined(AES_ASM)
320 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
321 #elif 0
322 #define ALGORITHM_BYTE_ORDER BRG_LITTLE_ENDIAN
323 #elif 0
324 #define ALGORITHM_BYTE_ORDER BRG_BIG_ENDIAN
325 #else
326 #error The algorithm byte order is not defined
327 #endif
328
329 /* 4. FAST INPUT/OUTPUT OPERATIONS.
330
331 On some machines it is possible to improve speed by transferring the
332 bytes in the input and output arrays to and from the internal 32-bit
333 variables by addressing these arrays as if they are arrays of 32-bit
334 words. On some machines this will always be possible but there may
335 be a large performance penalty if the byte arrays are not aligned on
336 the normal word boundaries. On other machines this technique will
337 lead to memory access errors when such 32-bit word accesses are not
338 properly aligned. The option SAFE_IO avoids such problems but will
339 often be slower on those machines that support misaligned access
340 (especially so if care is taken to align the input and output byte
341 arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
342 assumed that access to byte arrays as if they are arrays of 32-bit
343 words will not cause problems when such accesses are misaligned.
344 */
345 #if 0 && !defined(_MSC_VER)
346 #define SAFE_IO
347 #endif
348
349 /* 5. LOOP UNROLLING
350
351 The code for encryption and decrytpion cycles through a number of rounds
352 that can be implemented either in a loop or by expanding the code into a
353 long sequence of instructions, the latter producing a larger program but
354 one that will often be much faster. The latter is called loop unrolling.
355 There are also potential speed advantages in expanding two iterations in
356 a loop with half the number of iterations, which is called partial loop
357 unrolling. The following options allow partial or full loop unrolling
358 to be set independently for encryption and decryption
359 */
360 #if 1
361 #define ENC_UNROLL FULL
362 #elif 0
363 #define ENC_UNROLL PARTIAL
364 #else
365 #define ENC_UNROLL NONE
366 #endif
367
368 #if 1
369 #define DEC_UNROLL FULL
370 #elif 0
371 #define DEC_UNROLL PARTIAL
372 #else
373 #define DEC_UNROLL NONE
374 #endif
375
376 /* 6. FAST FINITE FIELD OPERATIONS
377
378 If this section is included, tables are used to provide faster finite
379 field arithmetic (this has no effect if FIXED_TABLES is defined).
380 */
381 #if 1
382 #define FF_TABLES
383 #endif
384
385 /* 7. INTERNAL STATE VARIABLE FORMAT
386
387 The internal state of Rijndael is stored in a number of local 32-bit
388 word varaibles which can be defined either as an array or as individual
389 names variables. Include this section if you want to store these local
390 varaibles in arrays. Otherwise individual local variables will be used.
391 */
392 #if 0
393 #define ARRAYS
394 #endif
395
396 /* In this implementation the columns of the state array are each held in
397 32-bit words. The state array can be held in various ways: in an array
398 of words, in a number of individual word variables or in a number of
399 processor registers. The following define maps a variable name x and
400 a column number c to the way the state array variable is to be held.
401 The first define below maps the state into an array x[c] whereas the
402 second form maps the state into a number of individual variables x0,
403 x1, etc. Another form could map individual state colums to machine
404 register names.
405 */
406
407 #if defined(ARRAYS)
408 #define s(x,c) x[c]
409 #else
410 #define s(x,c) x##c
411 #endif
412
413 /* 8. FIXED OR DYNAMIC TABLES
414
415 When this section is included the tables used by the code are compiled
416 statically into the binary file. Otherwise the subroutine gen_tabs()
417 must be called to compute them before the code is first used.
418 */
419 #if 1
420 #define FIXED_TABLES
421 #endif
422
423 /* 9. TABLE ALIGNMENT
424
425 On some sytsems speed will be improved by aligning the AES large lookup
426 tables on particular boundaries. This define should be set to a power of
427 two giving the desired alignment. It can be left undefined if alignment
428 is not needed. This option is specific to the Microsft VC++ compiler -
429 it seems to sometimes cause trouble for the VC++ version 6 compiler.
430 */
431
432 #if 0 && defined(_MSC_VER) && (_MSC_VER >= 1300)
433 #define TABLE_ALIGN 64
434 #endif
435
436 /* 10. INTERNAL TABLE CONFIGURATION
437
438 This cipher proceeds by repeating in a number of cycles known as 'rounds'
439 which are implemented by a round function which can optionally be speeded
440 up using tables. The basic tables are each 256 32-bit words, with either
441 one or four tables being required for each round function depending on
442 how much speed is required. The encryption and decryption round functions
443 are different and the last encryption and decrytpion round functions are
444 different again making four different round functions in all.
445
446 This means that:
447 1. Normal encryption and decryption rounds can each use either 0, 1
448 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
449 2. The last encryption and decryption rounds can also use either 0, 1
450 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
451
452 Include or exclude the appropriate definitions below to set the number
453 of tables used by this implementation.
454 */
455
456 #if 1 /* set tables for the normal encryption round */
457 #define ENC_ROUND FOUR_TABLES
458 #elif 0
459 #define ENC_ROUND ONE_TABLE
460 #else
461 #define ENC_ROUND NO_TABLES
462 #endif
463
464 #if 1 /* set tables for the last encryption round */
465 #define LAST_ENC_ROUND FOUR_TABLES
466 #elif 0
467 #define LAST_ENC_ROUND ONE_TABLE
468 #else
469 #define LAST_ENC_ROUND NO_TABLES
470 #endif
471
472 #if 1 /* set tables for the normal decryption round */
473 #define DEC_ROUND FOUR_TABLES
474 #elif 0
475 #define DEC_ROUND ONE_TABLE
476 #else
477 #define DEC_ROUND NO_TABLES
478 #endif
479
480 #if 1 /* set tables for the last decryption round */
481 #define LAST_DEC_ROUND FOUR_TABLES
482 #elif 0
483 #define LAST_DEC_ROUND ONE_TABLE
484 #else
485 #define LAST_DEC_ROUND NO_TABLES
486 #endif
487
488 /* The decryption key schedule can be speeded up with tables in the same
489 way that the round functions can. Include or exclude the following
490 defines to set this requirement.
491 */
492 #if 1
493 #define KEY_SCHED FOUR_TABLES
494 #elif 0
495 #define KEY_SCHED ONE_TABLE
496 #else
497 #define KEY_SCHED NO_TABLES
498 #endif
499
500 /* 11. TABLE POINTER CACHING
501
502 Normally tables are referenced directly, Enable this option if you wish to
503 cache pointers to the tables in the encrypt/decrypt code. Note that this
504 only works if you are using FOUR_TABLES for the ROUND you enable this for.
505 */
506 #if 1
507 #define ENC_ROUND_CACHE_TABLES
508 #endif
509 #if 1
510 #define LAST_ENC_ROUND_CACHE_TABLES
511 #endif
512 #if 1
513 #define DEC_ROUND_CACHE_TABLES
514 #endif
515 #if 1
516 #define LAST_DEC_ROUND_CACHE_TABLES
517 #endif
518
519
520 /* END OF CONFIGURATION OPTIONS */
521
522 #define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
523
524 /* Disable or report errors on some combinations of options */
525
526 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
527 #undef LAST_ENC_ROUND
528 #define LAST_ENC_ROUND NO_TABLES
529 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
530 #undef LAST_ENC_ROUND
531 #define LAST_ENC_ROUND ONE_TABLE
532 #endif
533
534 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
535 #undef ENC_UNROLL
536 #define ENC_UNROLL NONE
537 #endif
538
539 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
540 #undef LAST_DEC_ROUND
541 #define LAST_DEC_ROUND NO_TABLES
542 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
543 #undef LAST_DEC_ROUND
544 #define LAST_DEC_ROUND ONE_TABLE
545 #endif
546
547 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
548 #undef DEC_UNROLL
549 #define DEC_UNROLL NONE
550 #endif
551
552 /* upr(x,n): rotates bytes within words by n positions, moving bytes to
553 higher index positions with wrap around into low positions
554 ups(x,n): moves bytes by n positions to higher index positions in
555 words but without wrap around
556 bval(x,n): extracts a byte from a word
557
558 NOTE: The definitions given here are intended only for use with
559 unsigned variables and with shift counts that are compile
560 time constants
561 */
562
563 #if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
564 #define upr(x,n) (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n))))
565 #define ups(x,n) ((aes_32t) (x) << (8 * (n)))
566 #define bval(x,n) ((aes_08t)((x) >> (8 * (n))))
567 #define bytes2word(b0, b1, b2, b3) \
568 (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))
569 #endif
570
571 #if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN)
572 #define upr(x,n) (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n))))
573 #define ups(x,n) ((aes_32t) (x) >> (8 * (n))))
574 #define bval(x,n) ((aes_08t)((x) >> (24 - 8 * (n))))
575 #define bytes2word(b0, b1, b2, b3) \
576 (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))
577 #endif
578
579 #if defined(SAFE_IO)
580
581 #define word_in(x,c) bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \
582 ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3])
583 #define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \
584 ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); }
585
586 #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
587
588 #define word_in(x,c) (*((aes_32t*)(x)+(c)))
589 #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v))
590
591 #else
592
593 #define word_in(x,c) aes_sw32(*((aes_32t*)(x)+(c)))
594 #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v))
595
596 #endif
597
598 /* the finite field modular polynomial and elements */
599
600 #define WPOLY 0x011b
601 #define BPOLY 0x1b
602
603 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
604
605 #define m1 0x80808080
606 #define m2 0x7f7f7f7f
607 #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
608
609 /* The following defines provide alternative definitions of gf_mulx that might
610 give improved performance if a fast 32-bit multiply is not available. Note
611 that a temporary variable u needs to be defined where gf_mulx is used.
612
613 #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
614 #define m4 (0x01010101 * BPOLY)
615 #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
616 */
617
618 /* Work out which tables are needed for the different options */
619
620 #if defined( AES_ASM )
621 #if defined( ENC_ROUND )
622 #undef ENC_ROUND
623 #endif
624 #define ENC_ROUND FOUR_TABLES
625 #if defined( LAST_ENC_ROUND )
626 #undef LAST_ENC_ROUND
627 #endif
628 #define LAST_ENC_ROUND FOUR_TABLES
629 #if defined( DEC_ROUND )
630 #undef DEC_ROUND
631 #endif
632 #define DEC_ROUND FOUR_TABLES
633 #if defined( LAST_DEC_ROUND )
634 #undef LAST_DEC_ROUND
635 #endif
636 #define LAST_DEC_ROUND FOUR_TABLES
637 #if defined( KEY_SCHED )
638 #undef KEY_SCHED
639 #define KEY_SCHED FOUR_TABLES
640 #endif
641 #endif
642
643 #if defined(ENCRYPTION) || defined(AES_ASM)
644 #if ENC_ROUND == ONE_TABLE
645 #define FT1_SET
646 #elif ENC_ROUND == FOUR_TABLES
647 #define FT4_SET
648 #else
649 #define SBX_SET
650 #endif
651 #if LAST_ENC_ROUND == ONE_TABLE
652 #define FL1_SET
653 #elif LAST_ENC_ROUND == FOUR_TABLES
654 #define FL4_SET
655 #elif !defined(SBX_SET)
656 #define SBX_SET
657 #endif
658 #endif
659
660 #if defined(DECRYPTION) || defined(AES_ASM)
661 #if DEC_ROUND == ONE_TABLE
662 #define IT1_SET
663 #elif DEC_ROUND == FOUR_TABLES
664 #define IT4_SET
665 #else
666 #define ISB_SET
667 #endif
668 #if LAST_DEC_ROUND == ONE_TABLE
669 #define IL1_SET
670 #elif LAST_DEC_ROUND == FOUR_TABLES
671 #define IL4_SET
672 #elif !defined(ISB_SET)
673 #define ISB_SET
674 #endif
675 #endif
676
677 #if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
678 #if KEY_SCHED == ONE_TABLE
679 #define LS1_SET
680 #define IM1_SET
681 #elif KEY_SCHED == FOUR_TABLES
682 #define LS4_SET
683 #define IM4_SET
684 #elif !defined(SBX_SET)
685 #define SBX_SET
686 #endif
687 #endif
688
689 /* generic definitions of Rijndael macros that use tables */
690
691 #define no_table(x,box,vf,rf,c) bytes2word( \
692 box[bval(vf(x,0,c),rf(0,c))], \
693 box[bval(vf(x,1,c),rf(1,c))], \
694 box[bval(vf(x,2,c),rf(2,c))], \
695 box[bval(vf(x,3,c),rf(3,c))])
696
697 #define one_table(x,op,tab,vf,rf,c) \
698 ( tab[bval(vf(x,0,c),rf(0,c))] \
699 ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
700 ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
701 ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
702
703 #define four_tables(x,tab,vf,rf,c) \
704 ( tab[0][bval(vf(x,0,c),rf(0,c))] \
705 ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
706 ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
707 ^ tab[3][bval(vf(x,3,c),rf(3,c))])
708
709 #define four_cached_tables(x,tab,vf,rf,c) \
710 ( tab##0[bval(vf(x,0,c),rf(0,c))] \
711 ^ tab##1[bval(vf(x,1,c),rf(1,c))] \
712 ^ tab##2[bval(vf(x,2,c),rf(2,c))] \
713 ^ tab##3[bval(vf(x,3,c),rf(3,c))])
714
715 #define vf1(x,r,c) (x)
716 #define rf1(r,c) (r)
717 #define rf2(r,c) ((8+r-c)&3)
718
719 /* perform forward and inverse column mix operation on four bytes in long word x in */
720 /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
721
722 #if defined(FM4_SET) /* not currently used */
723 #define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
724 #elif defined(FM1_SET) /* not currently used */
725 #define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
726 #else
727 #define dec_fmvars aes_32t g2
728 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
729 #endif
730
731 #if defined(IM4_SET)
732 #define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
733 #elif defined(IM1_SET)
734 #define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
735 #else
736 #define dec_imvars aes_32t g2, g4, g9
737 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
738 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
739 #endif
740
741 #if defined(FL4_SET)
742 #define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
743 #elif defined(LS4_SET)
744 #define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
745 #elif defined(FL1_SET)
746 #define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
747 #elif defined(LS1_SET)
748 #define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
749 #else
750 #define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
751 #endif
752
753 #endif