]> git.saurik.com Git - apple/boot.git/blob - i386/nasm/nasm.h
boot-132.tar.gz
[apple/boot.git] / i386 / nasm / nasm.h
1 /*
2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Portions Copyright (c) 1999 Apple Computer, Inc. All Rights
7 * Reserved. This file contains Original Code and/or Modifications of
8 * Original Code as defined in and that are subject to the Apple Public
9 * Source License Version 1.1 (the "License"). You may not use this file
10 * except in compliance with the License. Please obtain a copy of the
11 * License at http://www.apple.com/publicsource and read it before using
12 * this file.
13 *
14 * The Original Code and all software distributed under the License are
15 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE OR NON- INFRINGEMENT. Please see the
19 * License for the specific language governing rights and limitations
20 * under the License.
21 *
22 * @APPLE_LICENSE_HEADER_END@
23 */
24 /* nasm.h main header file for the Netwide Assembler: inter-module interface
25 *
26 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
27 * Julian Hall. All rights reserved. The software is
28 * redistributable under the licence given in the file "Licence"
29 * distributed in the NASM archive.
30 *
31 * initial version: 27/iii/95 by Simon Tatham
32 */
33
34 #ifndef NASM_NASM_H
35 #define NASM_NASM_H
36
37 #define NASM_MAJOR_VER 0
38 #define NASM_MINOR_VER 97
39 #define NASM_VER "0.97"
40
41 #ifndef NULL
42 #define NULL 0
43 #endif
44
45 #ifndef FALSE
46 #define FALSE 0 /* comes in handy */
47 #endif
48 #ifndef TRUE
49 #define TRUE 1
50 #endif
51
52 #define NO_SEG -1L /* null segment value */
53 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
54
55 #ifndef FILENAME_MAX
56 #define FILENAME_MAX 256
57 #endif
58
59 /*
60 * Name pollution problems: <time.h> on Digital UNIX pulls in some
61 * strange hardware header file which sees fit to define R_SP. We
62 * undefine it here so as not to break the enum below.
63 */
64 #ifdef R_SP
65 #undef R_SP
66 #endif
67
68 /*
69 * We must declare the existence of this structure type up here,
70 * since we have to reference it before we define it...
71 */
72 struct ofmt;
73
74 /*
75 * -------------------------
76 * Error reporting functions
77 * -------------------------
78 */
79
80 /*
81 * An error reporting function should look like this.
82 */
83 typedef void (*efunc) (int severity, char *fmt, ...);
84
85 /*
86 * These are the error severity codes which get passed as the first
87 * argument to an efunc.
88 */
89
90 #define ERR_WARNING 0 /* warn only: no further action */
91 #define ERR_NONFATAL 1 /* terminate assembly after phase */
92 #define ERR_FATAL 2 /* instantly fatal: exit with error */
93 #define ERR_PANIC 3 /* internal error: panic instantly
94 * and dump core for reference */
95 #define ERR_MASK 0x0F /* mask off the above codes */
96 #define ERR_NOFILE 0x10 /* don't give source file name/line */
97 #define ERR_USAGE 0x20 /* print a usage message */
98 #define ERR_OFFBY1 0x40 /* report error as being on the line
99 * we're just _about_ to read, not
100 * the one we've just read */
101 #define ERR_PASS1 0x80 /* only print this error on pass one */
102
103 /*
104 * These codes define specific types of suppressible warning.
105 */
106 #define ERR_WARN_MNP 0x0100 /* macro-num-parameters warning */
107 #define ERR_WARN_OL 0x0200 /* orphan label (no colon, and
108 * alone on line) */
109 #define ERR_WARN_NOV 0x0300 /* numeric overflow */
110 #define ERR_WARN_MASK 0xFF00 /* the mask for this feature */
111 #define ERR_WARN_SHR 8 /* how far to shift right */
112 #define ERR_WARN_MAX 3 /* the highest numbered one */
113
114 /*
115 * -----------------------
116 * Other function typedefs
117 * -----------------------
118 */
119
120 /*
121 * A label-lookup function should look like this.
122 */
123 typedef int (*lfunc) (char *label, long *segment, long *offset);
124
125 /*
126 * And a label-definition function like this. The boolean parameter
127 * `is_norm' states whether the label is a `normal' label (which
128 * should affect the local-label system), or something odder like
129 * an EQU or a segment-base symbol, which shouldn't.
130 */
131 typedef void (*ldfunc) (char *label, long segment, long offset, char *special,
132 int is_norm, int isextrn, struct ofmt *ofmt,
133 efunc error);
134
135 /*
136 * List-file generators should look like this:
137 */
138 typedef struct {
139 /*
140 * Called to initialise the listing file generator. Before this
141 * is called, the other routines will silently do nothing when
142 * called. The `char *' parameter is the file name to write the
143 * listing to.
144 */
145 void (*init) (char *, efunc);
146
147 /*
148 * Called to clear stuff up and close the listing file.
149 */
150 void (*cleanup) (void);
151
152 /*
153 * Called to output binary data. Parameters are: the offset;
154 * the data; the data type. Data types are similar to the
155 * output-format interface, only OUT_ADDRESS will _always_ be
156 * displayed as if it's relocatable, so ensure that any non-
157 * relocatable address has been converted to OUT_RAWDATA by
158 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
159 * dummy call used to give the listing generator an offset to
160 * work with when doing things like uplevel(LIST_TIMES) or
161 * uplevel(LIST_INCBIN).
162 */
163 void (*output) (long, void *, unsigned long);
164
165 /*
166 * Called to send a text line to the listing generator. The
167 * `int' parameter is LIST_READ or LIST_MACRO depending on
168 * whether the line came directly from an input file or is the
169 * result of a multi-line macro expansion.
170 */
171 void (*line) (int, char *);
172
173 /*
174 * Called to change one of the various levelled mechanisms in
175 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
176 * used to increase the nesting level of include files and
177 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
178 * two binary-output-suppression mechanisms for large-scale
179 * pseudo-instructions.
180 *
181 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
182 * it indicates the beginning of the expansion of a `nolist'
183 * macro, so anything under that level won't be expanded unless
184 * it includes another file.
185 */
186 void (*uplevel) (int);
187
188 /*
189 * Reverse the effects of uplevel.
190 */
191 void (*downlevel) (int);
192 } ListGen;
193
194 /*
195 * The expression evaluator must be passed a scanner function; a
196 * standard scanner is provided as part of nasmlib.c. The
197 * preprocessor will use a different one. Scanners, and the
198 * token-value structures they return, look like this.
199 *
200 * The return value from the scanner is always a copy of the
201 * `t_type' field in the structure.
202 */
203 struct tokenval {
204 int t_type;
205 long t_integer, t_inttwo;
206 char *t_charptr;
207 };
208 typedef int (*scanner) (void *private_data, struct tokenval *tv);
209
210 /*
211 * Token types returned by the scanner, in addition to ordinary
212 * ASCII character values, and zero for end-of-string.
213 */
214 enum { /* token types, other than chars */
215 TOKEN_INVALID = -1, /* a placeholder value */
216 TOKEN_EOS = 0, /* end of string */
217 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
218 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
219 TOKEN_ERRNUM, /* numeric constant with error in */
220 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
221 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, FAR, NEAR, etc */
222 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
223 TOKEN_SHL, TOKEN_SHR, /* << and >> */
224 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
225 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
226 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
227 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
228 TOKEN_FLOAT /* floating-point constant */
229 };
230
231 /*
232 * Expression-evaluator datatype. Expressions, within the
233 * evaluator, are stored as an array of these beasts, terminated by
234 * a record with type==0. Mostly, it's a vector type: each type
235 * denotes some kind of a component, and the value denotes the
236 * multiple of that component present in the expression. The
237 * exception is the WRT type, whose `value' field denotes the
238 * segment to which the expression is relative. These segments will
239 * be segment-base types, i.e. either odd segment values or SEG_ABS
240 * types. So it is still valid to assume that anything with a
241 * `value' field of zero is insignificant.
242 */
243 typedef struct {
244 long type; /* a register, or EXPR_xxx */
245 long value; /* must be >= 32 bits */
246 } expr;
247
248 /*
249 * The evaluator can also return hints about which of two registers
250 * used in an expression should be the base register. See also the
251 * `operand' structure.
252 */
253 struct eval_hints {
254 int base;
255 int type;
256 };
257
258 /*
259 * The actual expression evaluator function looks like this. When
260 * called, it expects the first token of its expression to already
261 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
262 * it will start by calling the scanner.
263 *
264 * If a forward reference happens during evaluation, the evaluator
265 * must set `*fwref' to TRUE if `fwref' is non-NULL.
266 *
267 * `critical' is non-zero if the expression may not contain forward
268 * references. The evaluator will report its own error if this
269 * occurs; if `critical' is 1, the error will be "symbol not
270 * defined before use", whereas if `critical' is 2, the error will
271 * be "symbol undefined".
272 *
273 * If `critical' has bit 4 set (in addition to its main value: 0x11
274 * and 0x12 correspond to 1 and 2) then an extended expression
275 * syntax is recognised, in which relational operators such as =, <
276 * and >= are accepted, as well as low-precedence logical operators
277 * &&, ^^ and ||.
278 *
279 * If `hints' is non-NULL, it gets filled in with some hints as to
280 * the base register in complex effective addresses.
281 */
282 typedef expr *(*evalfunc) (scanner sc, void *scprivate, struct tokenval *tv,
283 int *fwref, int critical, efunc error,
284 struct eval_hints *hints);
285
286 /*
287 * There's also an auxiliary routine through which the evaluator
288 * needs to hear about the value of $ and the label (if any)
289 * defined on the current line.
290 */
291 typedef void (*evalinfofunc) (char *labelname, long segment, long offset);
292
293 /*
294 * Special values for expr->type. ASSUMPTION MADE HERE: the number
295 * of distinct register names (i.e. possible "type" fields for an
296 * expr structure) does not exceed 124 (EXPR_REG_START through
297 * EXPR_REG_END).
298 */
299 #define EXPR_REG_START 1
300 #define EXPR_REG_END 124
301 #define EXPR_UNKNOWN 125L /* for forward references */
302 #define EXPR_SIMPLE 126L
303 #define EXPR_WRT 127L
304 #define EXPR_SEGBASE 128L
305
306 /*
307 * Preprocessors ought to look like this:
308 */
309 typedef struct {
310 /*
311 * Called at the start of a pass; given a file name, the number
312 * of the pass, an error reporting function, an evaluator
313 * function, and a listing generator to talk to.
314 */
315 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
316
317 /*
318 * Called to fetch a line of preprocessed source. The line
319 * returned has been malloc'ed, and so should be freed after
320 * use.
321 */
322 char *(*getline) (void);
323
324 /*
325 * Called at the end of a pass.
326 */
327 void (*cleanup) (void);
328 } Preproc;
329
330 /*
331 * ----------------------------------------------------------------
332 * Some lexical properties of the NASM source language, included
333 * here because they are shared between the parser and preprocessor
334 * ----------------------------------------------------------------
335 */
336
337 /* isidstart matches any character that may start an identifier, and isidchar
338 * matches any character that may appear at places other than the start of an
339 * identifier. E.g. a period may only appear at the start of an identifier
340 * (for local labels), whereas a number may appear anywhere *but* at the
341 * start. */
342
343 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
344 || (c)=='@' )
345 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
346 || (c)=='~' )
347
348 /* Ditto for numeric constants. */
349
350 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
351 #define isnumchar(c) ( isalnum(c) )
352
353 /* This returns the numeric value of a given 'digit'. */
354
355 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
356
357 /*
358 * Data-type flags that get passed to listing-file routines.
359 */
360 enum {
361 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
362 LIST_INCBIN, LIST_TIMES
363 };
364
365 /*
366 * -----------------------------------------------------------
367 * Format of the `insn' structure returned from `parser.c' and
368 * passed into `assemble.c'
369 * -----------------------------------------------------------
370 */
371
372 /*
373 * Here we define the operand types. These are implemented as bit
374 * masks, since some are subsets of others; e.g. AX in a MOV
375 * instruction is a special operand type, whereas AX in other
376 * contexts is just another 16-bit register. (Also, consider CL in
377 * shift instructions, DX in OUT, etc.)
378 */
379
380 /* size, and other attributes, of the operand */
381 #define BITS8 0x00000001L
382 #define BITS16 0x00000002L
383 #define BITS32 0x00000004L
384 #define BITS64 0x00000008L /* FPU only */
385 #define BITS80 0x00000010L /* FPU only */
386 #define FAR 0x00000020L /* grotty: this means 16:16 or */
387 /* 16:32, like in CALL/JMP */
388 #define NEAR 0x00000040L
389 #define SHORT 0x00000080L /* and this means what it says :) */
390
391 #define SIZE_MASK 0x000000FFL /* all the size attributes */
392 #define NON_SIZE (~SIZE_MASK)
393
394 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
395 #define COLON 0x00000200L /* operand is followed by a colon */
396
397 /* type of operand: memory reference, register, etc. */
398 #define MEMORY 0x00204000L
399 #define REGISTER 0x00001000L /* register number in 'basereg' */
400 #define IMMEDIATE 0x00002000L
401
402 #define REGMEM 0x00200000L /* for r/m, ie EA, operands */
403 #define REGNORM 0x00201000L /* 'normal' reg, qualifies as EA */
404 #define REG8 0x00201001L
405 #define REG16 0x00201002L
406 #define REG32 0x00201004L
407 #define MMXREG 0x00201008L /* MMX registers */
408 #define FPUREG 0x01000000L /* floating point stack registers */
409 #define FPU0 0x01000800L /* FPU stack register zero */
410
411 /* special register operands: these may be treated differently */
412 #define REG_SMASK 0x00070000L /* a mask for the following */
413 #define REG_ACCUM 0x00211000L /* accumulator: AL, AX or EAX */
414 #define REG_AL 0x00211001L /* REG_ACCUM | BITSxx */
415 #define REG_AX 0x00211002L /* ditto */
416 #define REG_EAX 0x00211004L /* and again */
417 #define REG_COUNT 0x00221000L /* counter: CL, CX or ECX */
418 #define REG_CL 0x00221001L /* REG_COUNT | BITSxx */
419 #define REG_CX 0x00221002L /* ditto */
420 #define REG_ECX 0x00221004L /* another one */
421 #define REG_DX 0x00241002L
422 #define REG_SREG 0x00081002L /* any segment register */
423 #define REG_CS 0x01081002L /* CS */
424 #define REG_DESS 0x02081002L /* DS, ES, SS (non-CS 86 registers) */
425 #define REG_FSGS 0x04081002L /* FS, GS (386 extended registers) */
426 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
427 #define REG_CREG 0x08101004L /* CRn */
428 #define REG_CR4 0x08101404L /* CR4 (Pentium only) */
429 #define REG_DREG 0x10101004L /* DRn */
430 #define REG_TREG 0x20101004L /* TRn */
431
432 /* special type of EA */
433 #define MEM_OFFS 0x00604000L /* simple [address] offset */
434
435 /* special type of immediate operand */
436 #define ONENESS 0x00800000L /* so UNITY == IMMEDIATE | ONENESS */
437 #define UNITY 0x00802000L /* for shift/rotate instructions */
438
439 /*
440 * Next, the codes returned from the parser, for registers and
441 * instructions.
442 */
443
444 enum { /* register names */
445 R_AH = EXPR_REG_START, R_AL, R_AX, R_BH, R_BL, R_BP, R_BX, R_CH,
446 R_CL, R_CR0, R_CR2, R_CR3, R_CR4, R_CS, R_CX, R_DH, R_DI, R_DL,
447 R_DR0, R_DR1, R_DR2, R_DR3, R_DR6, R_DR7, R_DS, R_DX, R_EAX,
448 R_EBP, R_EBX, R_ECX, R_EDI, R_EDX, R_ES, R_ESI, R_ESP, R_FS,
449 R_GS, R_MM0, R_MM1, R_MM2, R_MM3, R_MM4, R_MM5, R_MM6, R_MM7,
450 R_SI, R_SP, R_SS, R_ST0, R_ST1, R_ST2, R_ST3, R_ST4, R_ST5,
451 R_ST6, R_ST7, R_TR3, R_TR4, R_TR5, R_TR6, R_TR7, REG_ENUM_LIMIT
452 };
453
454 enum { /* instruction names */
455 I_AAA, I_AAD, I_AAM, I_AAS, I_ADC, I_ADD, I_AND, I_ARPL,
456 I_BOUND, I_BSF, I_BSR, I_BSWAP, I_BT, I_BTC, I_BTR, I_BTS,
457 I_CALL, I_CBW, I_CDQ, I_CLC, I_CLD, I_CLI, I_CLTS, I_CMC, I_CMP,
458 I_CMPSB, I_CMPSD, I_CMPSW, I_CMPXCHG, I_CMPXCHG486, I_CMPXCHG8B,
459 I_CPUID, I_CWD, I_CWDE, I_DAA, I_DAS, I_DB, I_DD, I_DEC, I_DIV,
460 I_DQ, I_DT, I_DW, I_EMMS, I_ENTER, I_EQU, I_F2XM1, I_FABS,
461 I_FADD, I_FADDP, I_FBLD, I_FBSTP, I_FCHS, I_FCLEX, I_FCMOVB,
462 I_FCMOVBE, I_FCMOVE, I_FCMOVNB, I_FCMOVNBE, I_FCMOVNE,
463 I_FCMOVNU, I_FCMOVU, I_FCOM, I_FCOMI, I_FCOMIP, I_FCOMP,
464 I_FCOMPP, I_FCOS, I_FDECSTP, I_FDISI, I_FDIV, I_FDIVP, I_FDIVR,
465 I_FDIVRP, I_FENI, I_FFREE, I_FIADD, I_FICOM, I_FICOMP, I_FIDIV,
466 I_FIDIVR, I_FILD, I_FIMUL, I_FINCSTP, I_FINIT, I_FIST, I_FISTP,
467 I_FISUB, I_FISUBR, I_FLD, I_FLD1, I_FLDCW, I_FLDENV, I_FLDL2E,
468 I_FLDL2T, I_FLDLG2, I_FLDLN2, I_FLDPI, I_FLDZ, I_FMUL, I_FMULP,
469 I_FNCLEX, I_FNDISI, I_FNENI, I_FNINIT, I_FNOP, I_FNSAVE,
470 I_FNSTCW, I_FNSTENV, I_FNSTSW, I_FPATAN, I_FPREM, I_FPREM1,
471 I_FPTAN, I_FRNDINT, I_FRSTOR, I_FSAVE, I_FSCALE, I_FSETPM,
472 I_FSIN, I_FSINCOS, I_FSQRT, I_FST, I_FSTCW, I_FSTENV, I_FSTP,
473 I_FSTSW, I_FSUB, I_FSUBP, I_FSUBR, I_FSUBRP, I_FTST, I_FUCOM,
474 I_FUCOMI, I_FUCOMIP, I_FUCOMP, I_FUCOMPP, I_FXAM, I_FXCH,
475 I_FXTRACT, I_FYL2X, I_FYL2XP1, I_HLT, I_IBTS, I_ICEBP, I_IDIV,
476 I_IMUL, I_IN, I_INC, I_INCBIN, I_INSB, I_INSD, I_INSW, I_INT,
477 I_INT1, I_INT01, I_INT3, I_INTO, I_INVD, I_INVLPG, I_IRET,
478 I_IRETD, I_IRETW, I_JCXZ, I_JECXZ, I_JMP, I_LAHF, I_LAR, I_LDS,
479 I_LEA, I_LEAVE, I_LES, I_LFS, I_LGDT, I_LGS, I_LIDT, I_LLDT,
480 I_LMSW, I_LOADALL, I_LOADALL286, I_LODSB, I_LODSD, I_LODSW,
481 I_LOOP, I_LOOPE, I_LOOPNE, I_LOOPNZ, I_LOOPZ, I_LSL, I_LSS,
482 I_LTR, I_MOV, I_MOVD, I_MOVQ, I_MOVSB, I_MOVSD, I_MOVSW,
483 I_MOVSX, I_MOVZX, I_MUL, I_NEG, I_NOP, I_NOT, I_OR, I_OUT,
484 I_OUTSB, I_OUTSD, I_OUTSW, I_PACKSSDW, I_PACKSSWB, I_PACKUSWB,
485 I_PADDB, I_PADDD, I_PADDSB, I_PADDSIW, I_PADDSW, I_PADDUSB,
486 I_PADDUSW, I_PADDW, I_PAND, I_PANDN, I_PAVEB, I_PCMPEQB,
487 I_PCMPEQD, I_PCMPEQW, I_PCMPGTB, I_PCMPGTD, I_PCMPGTW,
488 I_PDISTIB, I_PMACHRIW, I_PMADDWD, I_PMAGW, I_PMULHRW,
489 I_PMULHRIW, I_PMULHW, I_PMULLW, I_PMVGEZB, I_PMVLZB, I_PMVNZB,
490 I_PMVZB, I_POP, I_POPA, I_POPAD, I_POPAW, I_POPF, I_POPFD,
491 I_POPFW, I_POR, I_PSLLD, I_PSLLQ, I_PSLLW, I_PSRAD, I_PSRAW,
492 I_PSRLD, I_PSRLQ, I_PSRLW, I_PSUBB, I_PSUBD, I_PSUBSB,
493 I_PSUBSIW, I_PSUBSW, I_PSUBUSB, I_PSUBUSW, I_PSUBW, I_PUNPCKHBW,
494 I_PUNPCKHDQ, I_PUNPCKHWD, I_PUNPCKLBW, I_PUNPCKLDQ, I_PUNPCKLWD,
495 I_PUSH, I_PUSHA, I_PUSHAD, I_PUSHAW, I_PUSHF, I_PUSHFD,
496 I_PUSHFW, I_PXOR, I_RCL, I_RCR, I_RDMSR, I_RDPMC, I_RDTSC,
497 I_RESB, I_RESD, I_RESQ, I_REST, I_RESW, I_RET, I_RETF, I_RETN,
498 I_ROL, I_ROR, I_RSM, I_SAHF, I_SAL, I_SALC, I_SAR, I_SBB,
499 I_SCASB, I_SCASD, I_SCASW, I_SGDT, I_SHL, I_SHLD, I_SHR, I_SHRD,
500 I_SIDT, I_SLDT, I_SMI, I_SMSW, I_STC, I_STD, I_STI, I_STOSB,
501 I_STOSD, I_STOSW, I_STR, I_SUB, I_TEST, I_UMOV, I_VERR, I_VERW,
502 I_WAIT, I_WBINVD, I_WRMSR, I_XADD, I_XBTS, I_XCHG, I_XLATB,
503 I_XOR, I_CMOVcc, I_Jcc, I_SETcc
504 };
505
506 enum { /* condition code names */
507 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
508 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
509 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z
510 };
511
512 /*
513 * Note that because segment registers may be used as instruction
514 * prefixes, we must ensure the enumerations for prefixes and
515 * register names do not overlap.
516 */
517 enum { /* instruction prefixes */
518 PREFIX_ENUM_START = REG_ENUM_LIMIT,
519 P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32, P_REP, P_REPE,
520 P_REPNE, P_REPNZ, P_REPZ, P_TIMES
521 };
522
523 enum { /* extended operand types */
524 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
525 };
526
527 enum { /* special EA flags */
528 EAF_BYTEOFFS = 1, /* force offset part to byte size */
529 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
530 EAF_TIMESTWO = 4 /* really do EAX*2 not EAX+EAX */
531 };
532
533 enum { /* values for `hinttype' */
534 EAH_NOHINT = 0, /* no hint at all - our discretion */
535 EAH_MAKEBASE = 1, /* try to make given reg the base */
536 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
537 };
538
539 typedef struct { /* operand to an instruction */
540 long type; /* type of operand */
541 int addr_size; /* 0 means default; 16; 32 */
542 int basereg, indexreg, scale; /* registers and scale involved */
543 int hintbase, hinttype; /* hint as to real base register */
544 long segment; /* immediate segment, if needed */
545 long offset; /* any immediate number */
546 long wrt; /* segment base it's relative to */
547 int eaflags; /* special EA flags */
548 } operand;
549
550 typedef struct extop { /* extended operand */
551 struct extop *next; /* linked list */
552 long type; /* defined above */
553 char *stringval; /* if it's a string, then here it is */
554 int stringlen; /* ... and here's how long it is */
555 long segment; /* if it's a number/address, then... */
556 long offset; /* ... it's given here ... */
557 long wrt; /* ... and here */
558 } extop;
559
560 #define MAXPREFIX 4
561
562 typedef struct { /* an instruction itself */
563 char *label; /* the label defined, or NULL */
564 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
565 int nprefix; /* number of entries in above */
566 int opcode; /* the opcode - not just the string */
567 int condition; /* the condition code, if Jcc/SETcc */
568 int operands; /* how many operands? 0-3 */
569 operand oprs[3]; /* the operands, defined as above */
570 extop *eops; /* extended operands */
571 long times; /* repeat count (TIMES prefix) */
572 int forw_ref; /* is there a forward reference? */
573 } insn;
574
575 /*
576 * ------------------------------------------------------------
577 * The data structure defining an output format driver, and the
578 * interfaces to the functions therein.
579 * ------------------------------------------------------------
580 */
581
582 struct ofmt {
583 /*
584 * This is a short (one-liner) description of the type of
585 * output generated by the driver.
586 */
587 char *fullname;
588
589 /*
590 * This is a single keyword used to select the driver.
591 */
592 char *shortname;
593
594 /*
595 * This, if non-NULL, is a NULL-terminated list of `char *'s
596 * pointing to extra standard macros supplied by the object
597 * format (e.g. a sensible initial default value of __SECT__,
598 * and user-level equivalents for any format-specific
599 * directives).
600 */
601 char **stdmac;
602
603 /*
604 * This procedure is called at the start of an output session.
605 * It tells the output format what file it will be writing to,
606 * what routine to report errors through, and how to interface
607 * to the label manager and expression evaluator if necessary.
608 * It also gives it a chance to do other initialisation.
609 */
610 void (*init) (FILE *fp, efunc error, ldfunc ldef, evalfunc eval);
611
612 /*
613 * This procedure is called by assemble() to write actual
614 * generated code or data to the object file. Typically it
615 * doesn't have to actually _write_ it, just store it for
616 * later.
617 *
618 * The `type' argument specifies the type of output data, and
619 * usually the size as well: its contents are described below.
620 */
621 void (*output) (long segto, void *data, unsigned long type,
622 long segment, long wrt);
623
624 /*
625 * This procedure is called once for every symbol defined in
626 * the module being assembled. It gives the name and value of
627 * the symbol, in NASM's terms, and indicates whether it has
628 * been declared to be global. Note that the parameter "name",
629 * when passed, will point to a piece of static storage
630 * allocated inside the label manager - it's safe to keep using
631 * that pointer, because the label manager doesn't clean up
632 * until after the output driver has.
633 *
634 * Values of `is_global' are: 0 means the symbol is local; 1
635 * means the symbol is global; 2 means the symbol is common (in
636 * which case `offset' holds the _size_ of the variable).
637 * Anything else is available for the output driver to use
638 * internally.
639 *
640 * This routine explicitly _is_ allowed to call the label
641 * manager to define further symbols, if it wants to, even
642 * though it's been called _from_ the label manager. That much
643 * re-entrancy is guaranteed in the label manager. However, the
644 * label manager will in turn call this routine, so it should
645 * be prepared to be re-entrant itself.
646 *
647 * The `special' parameter contains special information passed
648 * through from the command that defined the label: it may have
649 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
650 * be obvious to the output format from the other parameters.
651 */
652 void (*symdef) (char *name, long segment, long offset, int is_global,
653 char *special);
654
655 /*
656 * This procedure is called when the source code requests a
657 * segment change. It should return the corresponding segment
658 * _number_ for the name, or NO_SEG if the name is not a valid
659 * segment name.
660 *
661 * It may also be called with NULL, in which case it is to
662 * return the _default_ section number for starting assembly in.
663 *
664 * It is allowed to modify the string it is given a pointer to.
665 *
666 * It is also allowed to specify a default instruction size for
667 * the segment, by setting `*bits' to 16 or 32. Or, if it
668 * doesn't wish to define a default, it can leave `bits' alone.
669 */
670 long (*section) (char *name, int pass, int *bits);
671
672 /*
673 * This procedure is called to modify the segment base values
674 * returned from the SEG operator. It is given a segment base
675 * value (i.e. a segment value with the low bit set), and is
676 * required to produce in return a segment value which may be
677 * different. It can map segment bases to absolute numbers by
678 * means of returning SEG_ABS types.
679 *
680 * It should return NO_SEG if the segment base cannot be
681 * determined; the evaluator (which calls this routine) is
682 * responsible for throwing an error condition if that occurs
683 * in pass two or in a critical expression.
684 */
685 long (*segbase) (long segment);
686
687 /*
688 * This procedure is called to allow the output driver to
689 * process its own specific directives. When called, it has the
690 * directive word in `directive' and the parameter string in
691 * `value'. It is called in both assembly passes, and `pass'
692 * will be either 1 or 2.
693 *
694 * This procedure should return zero if it does not _recognise_
695 * the directive, so that the main program can report an error.
696 * If it recognises the directive but then has its own errors,
697 * it should report them itself and then return non-zero. It
698 * should also return non-zero if it correctly processes the
699 * directive.
700 */
701 int (*directive) (char *directive, char *value, int pass);
702
703 /*
704 * This procedure is called before anything else - even before
705 * the "init" routine - and is passed the name of the input
706 * file from which this output file is being generated. It
707 * should return its preferred name for the output file in
708 * `outname', if outname[0] is not '\0', and do nothing to
709 * `outname' otherwise. Since it is called before the driver is
710 * properly initialised, it has to be passed its error handler
711 * separately.
712 *
713 * This procedure may also take its own copy of the input file
714 * name for use in writing the output file: it is _guaranteed_
715 * that it will be called before the "init" routine.
716 *
717 * The parameter `outname' points to an area of storage
718 * guaranteed to be at least FILENAME_MAX in size.
719 */
720 void (*filename) (char *inname, char *outname, efunc error);
721
722 /*
723 * This procedure is called after assembly finishes, to allow
724 * the output driver to clean itself up and free its memory.
725 * Typically, it will also be the point at which the object
726 * file actually gets _written_.
727 *
728 * One thing the cleanup routine should always do is to close
729 * the output file pointer.
730 */
731 void (*cleanup) (void);
732 };
733
734 /*
735 * values for the `type' parameter to an output function. Each one
736 * must have the actual number of _bytes_ added to it.
737 *
738 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
739 * which will be a relative jump. For this we need to know the
740 * distance in bytes from the start of the relocated record until
741 * the end of the containing instruction. _This_ is what is stored
742 * in the size part of the parameter, in this case.
743 *
744 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
745 * and the contents of the "data" parameter is irrelevant.
746 *
747 * The "data" parameter for the output function points to a "long",
748 * containing the address in question, unless the type is
749 * OUT_RAWDATA, in which case it points to an "unsigned char"
750 * array.
751 */
752 #define OUT_RAWDATA 0x00000000UL
753 #define OUT_ADDRESS 0x10000000UL
754 #define OUT_REL2ADR 0x20000000UL
755 #define OUT_REL4ADR 0x30000000UL
756 #define OUT_RESERVE 0x40000000UL
757 #define OUT_TYPMASK 0xF0000000UL
758 #define OUT_SIZMASK 0x0FFFFFFFUL
759
760 /*
761 * -----
762 * Other
763 * -----
764 */
765
766 /*
767 * This is a useful #define which I keep meaning to use more often:
768 * the number of elements of a statically defined array.
769 */
770
771 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
772
773 #endif