Go to the first, previous, next, last section, table of contents.
For the programmer, changes to the C source code fall into three
categories. First, you have to make the localization functions
known to all modules needing message translation. Second, you should
properly trigger the operation of GNU gettext
when the program
initializes, usually from the main
function. Last, you should
identify and especially mark all constant strings in your program
needing translation.
Presuming that your set of programs, or package, has been adjusted
so all needed GNU gettext
files are available, and your
`Makefile' files are adjusted (see section The Maintainer's View), each C module
having translated C strings should contain the line:
#include <libintl.h>
The remaining changes to your C sources are discussed in the further sections of this chapter.
gettext
OperationsThe initialization of locale data should be done with more or less the same code in every program, as demonstrated below:
int main (argc, argv) int argc; char argv; { ... setlocale (LC_ALL, ""); bindtextdomain (PACKAGE, LOCALEDIR); textdomain (PACKAGE); ... }
PACKAGE and LOCALEDIR should be provided either by
`config.h' or by the Makefile. For now consult the gettext
sources for more information.
The use of LC_ALL
might not be appropriate for you.
LC_ALL
includes all locale categories and especially
LC_CTYPE
. This later category is responsible for determining
character classes with the isalnum
etc. functions from
`ctype.h' which could especially for programs, which process some
kind of input language, be wrong. For example this would mean that a
source code using the @,{c} (c-cedilla character) is runnable in
France but not in the U.S.
Some systems also have problems with parsing number using the
scanf
functions if an other but the LC_ALL
locale is used.
The standards say that additional formats but the one known in the
"C"
locale might be recognized. But some systems seem to reject
numbers in the "C"
locale format. In some situation, it might
also be a problem with the notation itself which makes it impossible to
recognize whether the number is in the "C"
locale or the local
format. This can happen if thousands separator characters are used.
Some locales define this character according to the national
conventions to '.'
which is the same character used in the
"C"
locale to denote the decimal point.
So it is sometimes necessary to replace the LC_ALL
line in the
code above by a sequence of setlocale
lines
{ ... setlocale (LC_TIME, ""); setlocale (LC_MESSAGES, ""); ... }
or to switch for and back to the character class in question. On all
POSIX conformant systems the locale categories LC_CTYPE
,
LC_COLLATE
, LC_MONETARY
, LC_NUMERIC
, and
LC_TIME
are available. On some modern systems there is also a
locale LC_MESSAGES
which is called on some old, XPG2 compliant
systems LC_RESPONSES
.
All strings requiring translation should be marked in the C sources. Marking
is done in such a way that each translatable string appears to be
the sole argument of some function or preprocessor macro. There are
only a few such possible functions or macros meant for translation,
and their names are said to be marking keywords. The marking is
attached to strings themselves, rather than to what we do with them.
This approach has more uses. A blatant example is an error message
produced by formatting. The format string needs translation, as
well as some strings inserted through some `%s' specification
in the format, while the result from sprintf
may have so many
different instances that it is impractical to list them all in some
`error_string_out()' routine, say.
This marking operation has two goals. The first goal of marking is for triggering the retrieval of the translation, at run time. The keyword are possibly resolved into a routine able to dynamically return the proper translation, as far as possible or wanted, for the argument string. Most localizable strings are found in executable positions, that is, attached to variables or given as parameters to functions. But this is not universal usage, and some translatable strings appear in structured initializations. See section Special Cases of Translatable Strings.
The second goal of the marking operation is to help xgettext
at properly extracting all translatable strings when it scans a set
of program sources and produces PO file templates.
The canonical keyword for marking translatable strings is
`gettext', it gave its name to the whole GNU gettext
package. For packages making only light use of the `gettext'
keyword, macro or function, it is easily used as is. However,
for packages using the gettext
interface more heavily, it
is usually more convenient to give the main keyword a shorter, less
obtrusive name. Indeed, the keyword might appear on a lot of strings
all over the package, and programmers usually do not want nor need
their program sources to remind them forcefully, all the time, that they
are internationalized. Further, a long keyword has the disadvantage
of using more horizontal space, forcing more indentation work on
sources for those trying to keep them within 79 or 80 columns.
Many packages use `_' (a simple underline) as a keyword,
and write `_("Translatable string")' instead of `gettext
("Translatable string")'. Further, the coding rule, from GNU standards,
wanting that there is a space between the keyword and the opening
parenthesis is relaxed, in practice, for this particular usage.
So, the textual overhead per translatable string is reduced to
only three characters: the underline and the two parentheses.
However, even if GNU gettext
uses this convention internally,
it does not offer it officially. The real, genuine keyword is truly
`gettext' indeed. It is fairly easy for those wanting to use
`_' instead of `gettext' to declare:
#include <libintl.h> #define _(String) gettext (String)
instead of merely using `#include <libintl.h>'.
Later on, the maintenance is relatively easy. If, as a programmer, you add or modify a string, you will have to ask yourself if the new or altered string requires translation, and include it within `_()' if you think it should be translated. `"%s: %d"' is an example of string not requiring translation!
In PO mode, one set of features is meant more for the programmer than for the translator, and allows him to interactively mark which strings, in a set of program sources, are translatable, and which are not. Even if it is a fairly easy job for a programmer to find and mark such strings by other means, using any editor of his choice, PO mode makes this work more comfortable. Further, this gives translators who feel a little like programmers, or programmers who feel a little like translators, a tool letting them work at marking translatable strings in the program sources, while simultaneously producing a set of translation in some language, for the package being internationalized.
The set of program sources, targetted by the PO mode commands describe here, should have an Emacs tags table constructed for your project, prior to using these PO file commands. This is easy to do. In any shell window, change the directory to the root of your project, then execute a command resembling:
etags src/*.[hc] lib/*.[hc]
presuming here you want to process all `.h' and `.c' files from the `src/' and `lib/' directories. This command will explore all said files and create a `TAGS' file in your root directory, somewhat summarizing the contents using a special file format Emacs can understand.
For packages following the GNU coding standards, there is
a make goal tags
or TAGS
which construct the tag files in
all directories and for all files containing source code.
Once your `TAGS' file is ready, the following commands assist the programmer at marking translatable strings in his set of sources. But these commands are necessarily driven from within a PO file window, and it is likely that you do not even have such a PO file yet. This is not a problem at all, as you may safely open a new, empty PO file, mainly for using these commands. This empty PO file will slowly fill in while you mark strings as translatable in your program sources.
The , (po-tags-search
) command search for the next
occurrence of a string which looks like a possible candidate for
translation, and displays the program source in another Emacs window,
positioned in such a way that the string is near the top of this other
window. If the string is too big to fit whole in this window, it is
positioned so only its end is shown. In any case, the cursor
is left in the PO file window. If the shown string would be better
presented differently in different native languages, you may mark it
using M-, or M-.. Otherwise, you might rather ignore it
and skip to the next string by merely repeating the , command.
A string is a good candidate for translation if it contains a sequence of three or more letters. A string containing at most two letters in a row will be considered as a candidate if it has more letters than non-letters. The command disregards strings containing no letters, or isolated letters only. It also disregards strings within comments, or strings already marked with some keyword PO mode knows (see below).
If you have never told Emacs about some `TAGS' file to use, the command will request that you specify one from the minibuffer, the first time you use the command. You may later change your `TAGS' file by using the regular Emacs command M-x visit-tags-table, which will ask you to name the precise `TAGS' file you want to use. See section `Tag Tables' in The Emacs Editor.
Each time you use the , command, the search resumes from where it was left by the previous search, and goes through all program sources, obeying the `TAGS' file, until all sources have been processed. However, by giving a prefix argument to the command (C-u ,), you may request that the search be restarted all over again from the first program source; but in this case, strings that you recently marked as translatable will be automatically skipped.
Using this , command does not prevent using of other regular
Emacs tags commands. For example, regular tags-search
or
tags-query-replace
commands may be used without disrupting the
independent , search sequence. However, as implemented, the
initial , command (or the , command is used with a
prefix) might also reinitialize the regular Emacs tags searching to the
first tags file, this reinitialization might be considered spurious.
The M-, (po-mark-translatable
) command will mark the
recently found string with the `_' keyword. The M-.
(po-select-mark-and-mark
) command will request that you type
one keyword from the minibuffer and use that keyword for marking
the string. Both commands will automatically create a new PO file
untranslated entry for the string being marked, and make it the
current entry (making it easy for you to immediately proceed to its
translation, if you feel like doing it right away). It is possible
that the modifications made to the program source by M-, or
M-. render some source line longer than 80 columns, forcing you
to break and re-indent this line differently. You may use the O
command from PO mode, or any other window changing command from
GNU Emacs, to break out into the program source window, and do any
needed adjustments. You will have to use some regular Emacs command
to return the cursor to the PO file window, if you want command
, for the next string, say.
The M-. command has a few built-in speedups, so you do not have to explicitly type all keywords all the time. The first such speedup is that you are presented with a preferred keyword, which you may accept by merely typing RET at the prompt. The second speedup is that you may type any non-ambiguous prefix of the keyword you really mean, and the command will complete it automatically for you. This also means that PO mode has to know all your possible keywords, and that it will not accept mistyped keywords.
If you reply ? to the keyword request, the command gives a list of all known keywords, from which you may choose. When the command is prefixed by an argument (C-u M-.), it inhibits updating any program source or PO file buffer, and does some simple keyword management instead. In this case, the command asks for a keyword, written in full, which becomes a new allowed keyword for later M-. commands. Moreover, this new keyword automatically becomes the preferred keyword for later commands. By typing an already known keyword in response to C-u M-., one merely changes the preferred keyword and does nothing more.
All keywords known for M-. are recognized by the , command when scanning for strings, and strings already marked by any of those known keywords are automatically skipped. If many PO files are opened simultaneously, each one has its own independent set of known keywords. There is no provision in PO mode, currently, for deleting a known keyword, you have to quit the file (maybe using q) and reopen it afresh. When a PO file is newly brought up in an Emacs window, only `gettext' and `_' are known as keywords, and `gettext' is preferred for the M-. command. In fact, this is not useful to prefer `_', as this one is already built in the M-, command.
In C programs strings are often used within calls of functions from the
printf
family. The special thing about these format strings is
that they can contain format specifiers introduced with %. Assume
we have the code
printf (gettext ("String `%s' has %d characters\n"), s, strlen (s));
A possible German translation for the above string might be:
"%d Zeichen lang ist die Zeichenkette `%s'"
A C programmer, even if he cannot speak German, will recognize that
there is something wrong here. The order of the two format specifiers
is changed but of course the arguments in the printf
don't have.
This will most probably lead to problems because now the length of the
string is regarded as the address.
To prevent errors at runtime caused by translations the msgfmt
tool can check statically whether the arguments in the original and the
translation string match in type and number. If this is not the case a
warning will be given and the error cannot causes problems at runtime.
If the word order in the above German translation would be correct one would have to write
"%2$d Zeichen lang ist die Zeichenkette `%1$s'"
The routines in msgfmt
know about this special notation.
Because not all strings in a program must be format strings it is not
useful for msgfmt
to test all the strings in the `.po' file.
This might cause problems because the string might contain what looks
like a format specifier, but the string is not used in printf
.
Therefore the xgettext
adds a special tag to those messages it
thinks might be a format string. There is no absolute rule for this,
only a heuristic. In the `.po' file the entry is marked using the
c-format
flag in the #, comment line (see section The Format of PO Files).
The careful reader now might say that this again can cause problems.
The heuristic might guess it wrong. This is true and therefore
xgettext
knows about special kind of comment which lets
the programmer take over the decision. If in the same line or
the immediately preceding line of the gettext
keyword
the xgettext
program find a comment containing the words
xgettext:c-format it will mark the string in any case with
the c-format flag. This kind of comment should be used when
xgettext
does not recognize the string as a format string but
is really is one and it should be tested. Please note that when the
comment is in the same line of the gettext
keyword, it must be
before the string to be translated.
This situation happens quite often. The printf
function is often
called with strings which do not contain a format specifier. Of course
one would normally use fputs
but it does happen. In this case
xgettext
does not recognize this as a format string but what
happens if the translation introduces a valid format specifier? The
printf
function will try to access one of the parameter but none
exists because the original code does not refer to any parameter.
xgettext
of course could make a wrong decision the other way
round. A string marked as a format string is not really a format
string. In this case the msgfmt
might give too many warnings and
would prevent translating the `.po' file. The method to prevent
this wrong decision is similar to the one used above, only the comment
to use must contain the string xgettext:no-c-format.
If a string is marked with c-format and this is not correct the
user can find out who is responsible for the decision. See section Invoking the xgettext
Program to see how the --debug option can be used for solving
this problem.
The attentive reader might now point out that it is not always possible
to mark translatable string with gettext
or something like this.
Consider the following case:
{ static const char *messages[] = { "some very meaningful message", "and another one" }; const char *string; ... string = index > 1 ? "a default message" : messages[index]; fputs (string); ... }
While it is no problem to mark the string "a default message"
it
is not possible to mark the string initializers for messages
.
What is to be done? We have to fulfil two tasks. First we have to mark the
strings so that the xgettext
program (see section Invoking the xgettext
Program)
can find them, and second we have to translate the string at runtime
before printing them.
The first task can be fulfilled by creating a new keyword, which names a no-op. For the second we have to mark all access points to a string from the array. So one solution can look like this:
#define gettext_noop(String) (String) { static const char *messages[] = { gettext_noop ("some very meaningful message"), gettext_noop ("and another one") }; const char *string; ... string = index > 1 ? gettext ("a default message") : gettext (messages[index]); fputs (string); ... }
Please convince yourself that the string which is written by
fputs
is translated in any case. How to get xgettext
know
the additional keyword gettext_noop
is explained in section Invoking the xgettext
Program.
The above is of course not the only solution. You could also come along with the following one:
#define gettext_noop(String) (String) { static const char *messages[] = { gettext_noop ("some very meaningful message", gettext_noop ("and another one") }; const char *string; ... string = index > 1 ? gettext_noop ("a default message") : messages[index]; fputs (gettext (string)); ... }
But this has some drawbacks. First the programmer has to take care that
he uses gettext_noop
for the string "a default message"
.
A use of gettext
could have in rare cases unpredictable results.
The second reason is found in the internals of the GNU gettext
Library which will make this solution less efficient.
One advantage is that you need not make control flow analysis to make sure the output is really translated in any case. But this analysis is generally not very difficult. If it should be in any situation you can use this second method in this situation.
Go to the first, previous, next, last section, table of contents.