]>
git.saurik.com Git - redis.git/blob - deps/lua/src/lopcodes.h
41224d6ee14daca139e35f2fa0c41c92a8bc99c8
2 ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
3 ** Opcodes for Lua virtual machine
4 ** See Copyright Notice in lua.h
13 /*===========================================================================
14 We assume that instructions are unsigned numbers.
15 All instructions have an opcode in the first 6 bits.
16 Instructions can have the following fields:
20 `Bx' : 18 bits (`B' and `C' together)
23 A signed argument is represented in excess K; that is, the number
24 value is the unsigned value minus K. K is exactly the maximum value
25 for that argument (so that -max is represented by 0, and +max is
26 represented by 2*max), which is half the maximum for the corresponding
28 ===========================================================================*/
31 enum OpMode
{iABC
, iABx
, iAsBx
}; /* basic instruction format */
35 ** size and position of opcode arguments.
39 #define SIZE_Bx (SIZE_C + SIZE_B)
45 #define POS_A (POS_OP + SIZE_OP)
46 #define POS_C (POS_A + SIZE_A)
47 #define POS_B (POS_C + SIZE_C)
52 ** limits for opcode arguments.
53 ** we use (signed) int to manipulate most arguments,
54 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
56 #if SIZE_Bx < LUAI_BITSINT-1
57 #define MAXARG_Bx ((1<<SIZE_Bx)-1)
58 #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
60 #define MAXARG_Bx MAX_INT
61 #define MAXARG_sBx MAX_INT
65 #define MAXARG_A ((1<<SIZE_A)-1)
66 #define MAXARG_B ((1<<SIZE_B)-1)
67 #define MAXARG_C ((1<<SIZE_C)-1)
70 /* creates a mask with `n' 1 bits at position `p' */
71 #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
73 /* creates a mask with `n' 0 bits at position `p' */
74 #define MASK0(n,p) (~MASK1(n,p))
77 ** the following macros help to manipulate instructions
80 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
81 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
82 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
84 #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
85 #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
86 ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
88 #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
89 #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
90 ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
92 #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
93 #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
94 ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
96 #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
97 #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
98 ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
100 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
101 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
104 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
105 | (cast(Instruction, a)<<POS_A) \
106 | (cast(Instruction, b)<<POS_B) \
107 | (cast(Instruction, c)<<POS_C))
109 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
110 | (cast(Instruction, a)<<POS_A) \
111 | (cast(Instruction, bc)<<POS_Bx))
115 ** Macros to operate RK indices
118 /* this bit 1 means constant (0 means register) */
119 #define BITRK (1 << (SIZE_B - 1))
121 /* test whether value is a constant */
122 #define ISK(x) ((x) & BITRK)
124 /* gets the index of the constant */
125 #define INDEXK(r) ((int)(r) & ~BITRK)
127 #define MAXINDEXRK (BITRK - 1)
129 /* code a constant index as a RK value */
130 #define RKASK(x) ((x) | BITRK)
134 ** invalid register that fits in 8 bits
136 #define NO_REG MAXARG_A
141 ** Kst(x) - constant (in constant table)
142 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
147 ** grep "ORDER OP" if you change these enums
151 /*----------------------------------------------------------------------
152 name args description
153 ------------------------------------------------------------------------*/
154 OP_MOVE
,/* A B R(A) := R(B) */
155 OP_LOADK
,/* A Bx R(A) := Kst(Bx) */
156 OP_LOADBOOL
,/* A B C R(A) := (Bool)B; if (C) pc++ */
157 OP_LOADNIL
,/* A B R(A) := ... := R(B) := nil */
158 OP_GETUPVAL
,/* A B R(A) := UpValue[B] */
160 OP_GETGLOBAL
,/* A Bx R(A) := Gbl[Kst(Bx)] */
161 OP_GETTABLE
,/* A B C R(A) := R(B)[RK(C)] */
163 OP_SETGLOBAL
,/* A Bx Gbl[Kst(Bx)] := R(A) */
164 OP_SETUPVAL
,/* A B UpValue[B] := R(A) */
165 OP_SETTABLE
,/* A B C R(A)[RK(B)] := RK(C) */
167 OP_NEWTABLE
,/* A B C R(A) := {} (size = B,C) */
169 OP_SELF
,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
171 OP_ADD
,/* A B C R(A) := RK(B) + RK(C) */
172 OP_SUB
,/* A B C R(A) := RK(B) - RK(C) */
173 OP_MUL
,/* A B C R(A) := RK(B) * RK(C) */
174 OP_DIV
,/* A B C R(A) := RK(B) / RK(C) */
175 OP_MOD
,/* A B C R(A) := RK(B) % RK(C) */
176 OP_POW
,/* A B C R(A) := RK(B) ^ RK(C) */
177 OP_UNM
,/* A B R(A) := -R(B) */
178 OP_NOT
,/* A B R(A) := not R(B) */
179 OP_LEN
,/* A B R(A) := length of R(B) */
181 OP_CONCAT
,/* A B C R(A) := R(B).. ... ..R(C) */
183 OP_JMP
,/* sBx pc+=sBx */
185 OP_EQ
,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
186 OP_LT
,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
187 OP_LE
,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
189 OP_TEST
,/* A C if not (R(A) <=> C) then pc++ */
190 OP_TESTSET
,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
192 OP_CALL
,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
193 OP_TAILCALL
,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
194 OP_RETURN
,/* A B return R(A), ... ,R(A+B-2) (see note) */
196 OP_FORLOOP
,/* A sBx R(A)+=R(A+2);
197 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
198 OP_FORPREP
,/* A sBx R(A)-=R(A+2); pc+=sBx */
200 OP_TFORLOOP
,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
201 if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */
202 OP_SETLIST
,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
204 OP_CLOSE
,/* A close all variables in the stack up to (>=) R(A)*/
205 OP_CLOSURE
,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */
207 OP_VARARG
/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */
211 #define NUM_OPCODES (cast(int, OP_VARARG) + 1)
215 /*===========================================================================
217 (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
218 and can be 0: OP_CALL then sets `top' to last_result+1, so
219 next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
221 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
222 set top (like in OP_CALL with C == 0).
224 (*) In OP_RETURN, if (B == 0) then return up to `top'
226 (*) In OP_SETLIST, if (B == 0) then B = `top';
227 if (C == 0) then next `instruction' is real C
229 (*) For comparisons, A specifies what condition the test should accept
232 (*) All `skips' (pc++) assume that next instruction is a jump
233 ===========================================================================*/
237 ** masks for instruction properties. The format is:
239 ** bits 2-3: C arg mode
240 ** bits 4-5: B arg mode
241 ** bit 6: instruction set register A
242 ** bit 7: operator is a test
246 OpArgN
, /* argument is not used */
247 OpArgU
, /* argument is used */
248 OpArgR
, /* argument is a register or a jump offset */
249 OpArgK
/* argument is a constant or register/constant */
252 LUAI_DATA
const lu_byte luaP_opmodes
[NUM_OPCODES
];
254 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
255 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
256 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
257 #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
258 #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
261 LUAI_DATA
const char *const luaP_opnames
[NUM_OPCODES
+1]; /* opcode names */
264 /* number of list items to accumulate before a SETLIST instruction */
265 #define LFIELDS_PER_FLUSH 50