]> git.saurik.com Git - redis.git/blob - src/dict.c
f98fdd0ee78c818b315158cabf7ae4ea0b9ecc04
[redis.git] / src / dict.c
1 /* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include "fmacros.h"
37
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <stdarg.h>
42 #include <assert.h>
43 #include <limits.h>
44 #include <sys/time.h>
45 #include <ctype.h>
46
47 #include "dict.h"
48 #include "zmalloc.h"
49
50 /* Using dictEnableResize() / dictDisableResize() we make possible to
51 * enable/disable resizing of the hash table as needed. This is very important
52 * for Redis, as we use copy-on-write and don't want to move too much memory
53 * around when there is a child performing saving operations.
54 *
55 * Note that even when dict_can_resize is set to 0, not all resizes are
56 * prevented: an hash table is still allowed to grow if the ratio between
57 * the number of elements and the buckets > dict_force_resize_ratio. */
58 static int dict_can_resize = 1;
59 static unsigned int dict_force_resize_ratio = 5;
60
61 /* -------------------------- private prototypes ---------------------------- */
62
63 static int _dictExpandIfNeeded(dict *ht);
64 static unsigned long _dictNextPower(unsigned long size);
65 static int _dictKeyIndex(dict *ht, const void *key);
66 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
67
68 /* -------------------------- hash functions -------------------------------- */
69
70 /* Thomas Wang's 32 bit Mix Function */
71 unsigned int dictIntHashFunction(unsigned int key)
72 {
73 key += ~(key << 15);
74 key ^= (key >> 10);
75 key += (key << 3);
76 key ^= (key >> 6);
77 key += ~(key << 11);
78 key ^= (key >> 16);
79 return key;
80 }
81
82 /* Identity hash function for integer keys */
83 unsigned int dictIdentityHashFunction(unsigned int key)
84 {
85 return key;
86 }
87
88 /* Generic hash function (a popular one from Bernstein).
89 * I tested a few and this was the best. */
90 unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
91 unsigned int hash = 5381;
92
93 while (len--)
94 hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
95 return hash;
96 }
97
98 /* And a case insensitive version */
99 unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
100 unsigned int hash = 5381;
101
102 while (len--)
103 hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
104 return hash;
105 }
106
107 /* ----------------------------- API implementation ------------------------- */
108
109 /* Reset an hashtable already initialized with ht_init().
110 * NOTE: This function should only called by ht_destroy(). */
111 static void _dictReset(dictht *ht)
112 {
113 ht->table = NULL;
114 ht->size = 0;
115 ht->sizemask = 0;
116 ht->used = 0;
117 }
118
119 /* Create a new hash table */
120 dict *dictCreate(dictType *type,
121 void *privDataPtr)
122 {
123 dict *d = zmalloc(sizeof(*d));
124
125 _dictInit(d,type,privDataPtr);
126 return d;
127 }
128
129 /* Initialize the hash table */
130 int _dictInit(dict *d, dictType *type,
131 void *privDataPtr)
132 {
133 _dictReset(&d->ht[0]);
134 _dictReset(&d->ht[1]);
135 d->type = type;
136 d->privdata = privDataPtr;
137 d->rehashidx = -1;
138 d->iterators = 0;
139 return DICT_OK;
140 }
141
142 /* Resize the table to the minimal size that contains all the elements,
143 * but with the invariant of a USER/BUCKETS ratio near to <= 1 */
144 int dictResize(dict *d)
145 {
146 int minimal;
147
148 if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
149 minimal = d->ht[0].used;
150 if (minimal < DICT_HT_INITIAL_SIZE)
151 minimal = DICT_HT_INITIAL_SIZE;
152 return dictExpand(d, minimal);
153 }
154
155 /* Expand or create the hashtable */
156 int dictExpand(dict *d, unsigned long size)
157 {
158 dictht n; /* the new hashtable */
159 unsigned long realsize = _dictNextPower(size);
160
161 /* the size is invalid if it is smaller than the number of
162 * elements already inside the hashtable */
163 if (dictIsRehashing(d) || d->ht[0].used > size)
164 return DICT_ERR;
165
166 /* Allocate the new hashtable and initialize all pointers to NULL */
167 n.size = realsize;
168 n.sizemask = realsize-1;
169 n.table = zcalloc(realsize*sizeof(dictEntry*));
170 n.used = 0;
171
172 /* Is this the first initialization? If so it's not really a rehashing
173 * we just set the first hash table so that it can accept keys. */
174 if (d->ht[0].table == NULL) {
175 d->ht[0] = n;
176 return DICT_OK;
177 }
178
179 /* Prepare a second hash table for incremental rehashing */
180 d->ht[1] = n;
181 d->rehashidx = 0;
182 return DICT_OK;
183 }
184
185 /* Performs N steps of incremental rehashing. Returns 1 if there are still
186 * keys to move from the old to the new hash table, otherwise 0 is returned.
187 * Note that a rehashing step consists in moving a bucket (that may have more
188 * thank one key as we use chaining) from the old to the new hash table. */
189 int dictRehash(dict *d, int n) {
190 if (!dictIsRehashing(d)) return 0;
191
192 while(n--) {
193 dictEntry *de, *nextde;
194
195 /* Check if we already rehashed the whole table... */
196 if (d->ht[0].used == 0) {
197 zfree(d->ht[0].table);
198 d->ht[0] = d->ht[1];
199 _dictReset(&d->ht[1]);
200 d->rehashidx = -1;
201 return 0;
202 }
203
204 /* Note that rehashidx can't overflow as we are sure there are more
205 * elements because ht[0].used != 0 */
206 assert(d->ht[0].size > (unsigned)d->rehashidx);
207 while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
208 de = d->ht[0].table[d->rehashidx];
209 /* Move all the keys in this bucket from the old to the new hash HT */
210 while(de) {
211 unsigned int h;
212
213 nextde = de->next;
214 /* Get the index in the new hash table */
215 h = dictHashKey(d, de->key) & d->ht[1].sizemask;
216 de->next = d->ht[1].table[h];
217 d->ht[1].table[h] = de;
218 d->ht[0].used--;
219 d->ht[1].used++;
220 de = nextde;
221 }
222 d->ht[0].table[d->rehashidx] = NULL;
223 d->rehashidx++;
224 }
225 return 1;
226 }
227
228 long long timeInMilliseconds(void) {
229 struct timeval tv;
230
231 gettimeofday(&tv,NULL);
232 return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
233 }
234
235 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
236 int dictRehashMilliseconds(dict *d, int ms) {
237 long long start = timeInMilliseconds();
238 int rehashes = 0;
239
240 while(dictRehash(d,100)) {
241 rehashes += 100;
242 if (timeInMilliseconds()-start > ms) break;
243 }
244 return rehashes;
245 }
246
247 /* This function performs just a step of rehashing, and only if there are
248 * no safe iterators bound to our hash table. When we have iterators in the
249 * middle of a rehashing we can't mess with the two hash tables otherwise
250 * some element can be missed or duplicated.
251 *
252 * This function is called by common lookup or update operations in the
253 * dictionary so that the hash table automatically migrates from H1 to H2
254 * while it is actively used. */
255 static void _dictRehashStep(dict *d) {
256 if (d->iterators == 0) dictRehash(d,1);
257 }
258
259 /* Add an element to the target hash table */
260 int dictAdd(dict *d, void *key, void *val)
261 {
262 int index;
263 dictEntry *entry;
264 dictht *ht;
265
266 if (dictIsRehashing(d)) _dictRehashStep(d);
267
268 /* Get the index of the new element, or -1 if
269 * the element already exists. */
270 if ((index = _dictKeyIndex(d, key)) == -1)
271 return DICT_ERR;
272
273 /* Allocate the memory and store the new entry */
274 ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
275 entry = zmalloc(sizeof(*entry));
276 entry->next = ht->table[index];
277 ht->table[index] = entry;
278 ht->used++;
279
280 /* Set the hash entry fields. */
281 dictSetHashKey(d, entry, key);
282 dictSetHashVal(d, entry, val);
283 return DICT_OK;
284 }
285
286 /* Add an element, discarding the old if the key already exists.
287 * Return 1 if the key was added from scratch, 0 if there was already an
288 * element with such key and dictReplace() just performed a value update
289 * operation. */
290 int dictReplace(dict *d, void *key, void *val)
291 {
292 dictEntry *entry, auxentry;
293
294 /* Try to add the element. If the key
295 * does not exists dictAdd will suceed. */
296 if (dictAdd(d, key, val) == DICT_OK)
297 return 1;
298 /* It already exists, get the entry */
299 entry = dictFind(d, key);
300 /* Set the new value and free the old one. Note that it is important
301 * to do that in this order, as the value may just be exactly the same
302 * as the previous one. In this context, think to reference counting,
303 * you want to increment (set), and then decrement (free), and not the
304 * reverse. */
305 auxentry = *entry;
306 dictSetHashVal(d, entry, val);
307 dictFreeEntryVal(d, &auxentry);
308 return 0;
309 }
310
311 /* Search and remove an element */
312 static int dictGenericDelete(dict *d, const void *key, int nofree)
313 {
314 unsigned int h, idx;
315 dictEntry *he, *prevHe;
316 int table;
317
318 if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
319 if (dictIsRehashing(d)) _dictRehashStep(d);
320 h = dictHashKey(d, key);
321
322 for (table = 0; table <= 1; table++) {
323 idx = h & d->ht[table].sizemask;
324 he = d->ht[table].table[idx];
325 prevHe = NULL;
326 while(he) {
327 if (dictCompareHashKeys(d, key, he->key)) {
328 /* Unlink the element from the list */
329 if (prevHe)
330 prevHe->next = he->next;
331 else
332 d->ht[table].table[idx] = he->next;
333 if (!nofree) {
334 dictFreeEntryKey(d, he);
335 dictFreeEntryVal(d, he);
336 }
337 zfree(he);
338 d->ht[table].used--;
339 return DICT_OK;
340 }
341 prevHe = he;
342 he = he->next;
343 }
344 if (!dictIsRehashing(d)) break;
345 }
346 return DICT_ERR; /* not found */
347 }
348
349 int dictDelete(dict *ht, const void *key) {
350 return dictGenericDelete(ht,key,0);
351 }
352
353 int dictDeleteNoFree(dict *ht, const void *key) {
354 return dictGenericDelete(ht,key,1);
355 }
356
357 /* Destroy an entire dictionary */
358 int _dictClear(dict *d, dictht *ht)
359 {
360 unsigned long i;
361
362 /* Free all the elements */
363 for (i = 0; i < ht->size && ht->used > 0; i++) {
364 dictEntry *he, *nextHe;
365
366 if ((he = ht->table[i]) == NULL) continue;
367 while(he) {
368 nextHe = he->next;
369 dictFreeEntryKey(d, he);
370 dictFreeEntryVal(d, he);
371 zfree(he);
372 ht->used--;
373 he = nextHe;
374 }
375 }
376 /* Free the table and the allocated cache structure */
377 zfree(ht->table);
378 /* Re-initialize the table */
379 _dictReset(ht);
380 return DICT_OK; /* never fails */
381 }
382
383 /* Clear & Release the hash table */
384 void dictRelease(dict *d)
385 {
386 _dictClear(d,&d->ht[0]);
387 _dictClear(d,&d->ht[1]);
388 zfree(d);
389 }
390
391 dictEntry *dictFind(dict *d, const void *key)
392 {
393 dictEntry *he;
394 unsigned int h, idx, table;
395
396 if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
397 if (dictIsRehashing(d)) _dictRehashStep(d);
398 h = dictHashKey(d, key);
399 for (table = 0; table <= 1; table++) {
400 idx = h & d->ht[table].sizemask;
401 he = d->ht[table].table[idx];
402 while(he) {
403 if (dictCompareHashKeys(d, key, he->key))
404 return he;
405 he = he->next;
406 }
407 if (!dictIsRehashing(d)) return NULL;
408 }
409 return NULL;
410 }
411
412 void *dictFetchValue(dict *d, const void *key) {
413 dictEntry *he;
414
415 he = dictFind(d,key);
416 return he ? dictGetEntryVal(he) : NULL;
417 }
418
419 dictIterator *dictGetIterator(dict *d)
420 {
421 dictIterator *iter = zmalloc(sizeof(*iter));
422
423 iter->d = d;
424 iter->table = 0;
425 iter->index = -1;
426 iter->safe = 0;
427 iter->entry = NULL;
428 iter->nextEntry = NULL;
429 return iter;
430 }
431
432 dictIterator *dictGetSafeIterator(dict *d) {
433 dictIterator *i = dictGetIterator(d);
434
435 i->safe = 1;
436 return i;
437 }
438
439 dictEntry *dictNext(dictIterator *iter)
440 {
441 while (1) {
442 if (iter->entry == NULL) {
443 dictht *ht = &iter->d->ht[iter->table];
444 if (iter->safe && iter->index == -1 && iter->table == 0)
445 iter->d->iterators++;
446 iter->index++;
447 if (iter->index >= (signed) ht->size) {
448 if (dictIsRehashing(iter->d) && iter->table == 0) {
449 iter->table++;
450 iter->index = 0;
451 ht = &iter->d->ht[1];
452 } else {
453 break;
454 }
455 }
456 iter->entry = ht->table[iter->index];
457 } else {
458 iter->entry = iter->nextEntry;
459 }
460 if (iter->entry) {
461 /* We need to save the 'next' here, the iterator user
462 * may delete the entry we are returning. */
463 iter->nextEntry = iter->entry->next;
464 return iter->entry;
465 }
466 }
467 return NULL;
468 }
469
470 void dictReleaseIterator(dictIterator *iter)
471 {
472 if (iter->safe && !(iter->index == -1 && iter->table == 0))
473 iter->d->iterators--;
474 zfree(iter);
475 }
476
477 /* Return a random entry from the hash table. Useful to
478 * implement randomized algorithms */
479 dictEntry *dictGetRandomKey(dict *d)
480 {
481 dictEntry *he, *orighe;
482 unsigned int h;
483 int listlen, listele;
484
485 if (dictSize(d) == 0) return NULL;
486 if (dictIsRehashing(d)) _dictRehashStep(d);
487 if (dictIsRehashing(d)) {
488 do {
489 h = random() % (d->ht[0].size+d->ht[1].size);
490 he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
491 d->ht[0].table[h];
492 } while(he == NULL);
493 } else {
494 do {
495 h = random() & d->ht[0].sizemask;
496 he = d->ht[0].table[h];
497 } while(he == NULL);
498 }
499
500 /* Now we found a non empty bucket, but it is a linked
501 * list and we need to get a random element from the list.
502 * The only sane way to do so is counting the elements and
503 * select a random index. */
504 listlen = 0;
505 orighe = he;
506 while(he) {
507 he = he->next;
508 listlen++;
509 }
510 listele = random() % listlen;
511 he = orighe;
512 while(listele--) he = he->next;
513 return he;
514 }
515
516 /* ------------------------- private functions ------------------------------ */
517
518 /* Expand the hash table if needed */
519 static int _dictExpandIfNeeded(dict *d)
520 {
521 /* Incremental rehashing already in progress. Return. */
522 if (dictIsRehashing(d)) return DICT_OK;
523
524 /* If the hash table is empty expand it to the intial size. */
525 if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
526
527 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
528 * table (global setting) or we should avoid it but the ratio between
529 * elements/buckets is over the "safe" threshold, we resize doubling
530 * the number of buckets. */
531 if (d->ht[0].used >= d->ht[0].size &&
532 (dict_can_resize ||
533 d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
534 {
535 return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
536 d->ht[0].size : d->ht[0].used)*2);
537 }
538 return DICT_OK;
539 }
540
541 /* Our hash table capability is a power of two */
542 static unsigned long _dictNextPower(unsigned long size)
543 {
544 unsigned long i = DICT_HT_INITIAL_SIZE;
545
546 if (size >= LONG_MAX) return LONG_MAX;
547 while(1) {
548 if (i >= size)
549 return i;
550 i *= 2;
551 }
552 }
553
554 /* Returns the index of a free slot that can be populated with
555 * an hash entry for the given 'key'.
556 * If the key already exists, -1 is returned.
557 *
558 * Note that if we are in the process of rehashing the hash table, the
559 * index is always returned in the context of the second (new) hash table. */
560 static int _dictKeyIndex(dict *d, const void *key)
561 {
562 unsigned int h, idx, table;
563 dictEntry *he;
564
565 /* Expand the hashtable if needed */
566 if (_dictExpandIfNeeded(d) == DICT_ERR)
567 return -1;
568 /* Compute the key hash value */
569 h = dictHashKey(d, key);
570 for (table = 0; table <= 1; table++) {
571 idx = h & d->ht[table].sizemask;
572 /* Search if this slot does not already contain the given key */
573 he = d->ht[table].table[idx];
574 while(he) {
575 if (dictCompareHashKeys(d, key, he->key))
576 return -1;
577 he = he->next;
578 }
579 if (!dictIsRehashing(d)) break;
580 }
581 return idx;
582 }
583
584 void dictEmpty(dict *d) {
585 _dictClear(d,&d->ht[0]);
586 _dictClear(d,&d->ht[1]);
587 d->rehashidx = -1;
588 d->iterators = 0;
589 }
590
591 #define DICT_STATS_VECTLEN 50
592 static void _dictPrintStatsHt(dictht *ht) {
593 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
594 unsigned long totchainlen = 0;
595 unsigned long clvector[DICT_STATS_VECTLEN];
596
597 if (ht->used == 0) {
598 printf("No stats available for empty dictionaries\n");
599 return;
600 }
601
602 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
603 for (i = 0; i < ht->size; i++) {
604 dictEntry *he;
605
606 if (ht->table[i] == NULL) {
607 clvector[0]++;
608 continue;
609 }
610 slots++;
611 /* For each hash entry on this slot... */
612 chainlen = 0;
613 he = ht->table[i];
614 while(he) {
615 chainlen++;
616 he = he->next;
617 }
618 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
619 if (chainlen > maxchainlen) maxchainlen = chainlen;
620 totchainlen += chainlen;
621 }
622 printf("Hash table stats:\n");
623 printf(" table size: %ld\n", ht->size);
624 printf(" number of elements: %ld\n", ht->used);
625 printf(" different slots: %ld\n", slots);
626 printf(" max chain length: %ld\n", maxchainlen);
627 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
628 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
629 printf(" Chain length distribution:\n");
630 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
631 if (clvector[i] == 0) continue;
632 printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
633 }
634 }
635
636 void dictPrintStats(dict *d) {
637 _dictPrintStatsHt(&d->ht[0]);
638 if (dictIsRehashing(d)) {
639 printf("-- Rehashing into ht[1]:\n");
640 _dictPrintStatsHt(&d->ht[1]);
641 }
642 }
643
644 void dictEnableResize(void) {
645 dict_can_resize = 1;
646 }
647
648 void dictDisableResize(void) {
649 dict_can_resize = 0;
650 }
651
652 #if 0
653
654 /* The following are just example hash table types implementations.
655 * Not useful for Redis so they are commented out.
656 */
657
658 /* ----------------------- StringCopy Hash Table Type ------------------------*/
659
660 static unsigned int _dictStringCopyHTHashFunction(const void *key)
661 {
662 return dictGenHashFunction(key, strlen(key));
663 }
664
665 static void *_dictStringDup(void *privdata, const void *key)
666 {
667 int len = strlen(key);
668 char *copy = zmalloc(len+1);
669 DICT_NOTUSED(privdata);
670
671 memcpy(copy, key, len);
672 copy[len] = '\0';
673 return copy;
674 }
675
676 static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
677 const void *key2)
678 {
679 DICT_NOTUSED(privdata);
680
681 return strcmp(key1, key2) == 0;
682 }
683
684 static void _dictStringDestructor(void *privdata, void *key)
685 {
686 DICT_NOTUSED(privdata);
687
688 zfree(key);
689 }
690
691 dictType dictTypeHeapStringCopyKey = {
692 _dictStringCopyHTHashFunction, /* hash function */
693 _dictStringDup, /* key dup */
694 NULL, /* val dup */
695 _dictStringCopyHTKeyCompare, /* key compare */
696 _dictStringDestructor, /* key destructor */
697 NULL /* val destructor */
698 };
699
700 /* This is like StringCopy but does not auto-duplicate the key.
701 * It's used for intepreter's shared strings. */
702 dictType dictTypeHeapStrings = {
703 _dictStringCopyHTHashFunction, /* hash function */
704 NULL, /* key dup */
705 NULL, /* val dup */
706 _dictStringCopyHTKeyCompare, /* key compare */
707 _dictStringDestructor, /* key destructor */
708 NULL /* val destructor */
709 };
710
711 /* This is like StringCopy but also automatically handle dynamic
712 * allocated C strings as values. */
713 dictType dictTypeHeapStringCopyKeyValue = {
714 _dictStringCopyHTHashFunction, /* hash function */
715 _dictStringDup, /* key dup */
716 _dictStringDup, /* val dup */
717 _dictStringCopyHTKeyCompare, /* key compare */
718 _dictStringDestructor, /* key destructor */
719 _dictStringDestructor, /* val destructor */
720 };
721 #endif