8 /* dscache.c - Disk store cache for disk store backend.
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
17 * This file implements the whole caching subsystem and contains further
22 * WARNING: most of the following todo items and design issues are no
23 * longer relevant with the new design. Here as a checklist to see if
24 * some old ideas still apply.
26 * - What happens when an object is destroyed?
28 * If the object is destroyed since semantically it was deleted or
29 * replaced with something new, we don't care if there was a SAVE
30 * job pending for it. Anyway when the IO JOb will be created we'll get
31 * the pointer of the current value.
33 * If the object is already a REDIS_IO_SAVEINPROG object, then it is
34 * impossible that we get a decrRefCount() that will reach refcount of zero
35 * since the object is both in the dataset and in the io job entry.
37 * - What happens with MULTI/EXEC?
39 * Good question. Without some kind of versioning with a global counter
40 * it is not possible to have trasactions on disk, but they are still
41 * useful since from the point of view of memory and client bugs it is
42 * a protection anyway. Also it's useful for WATCH.
44 * Btw there is to check what happens when WATCH gets combined to keys
45 * that gets removed from the object cache. Should be save but better
48 * - Check if/why INCR will not update the LRU info for the object.
50 * - Fix/Check the following race condition: a key gets a DEL so there is
51 * a write operation scheduled against this key. Later the same key will
52 * be the argument of a GET, but the write operation was still not
53 * completed (to delete the file). If the GET will be for some reason
54 * a blocking loading (via lookup) we can load the old value on memory.
56 * This problems can be fixed with negative caching. We can use it
57 * to optimize the system, but also when a key is deleted we mark
58 * it as non existing on disk as well (in a way that this cache
59 * entry can't be evicted, setting time to 0), then we avoid looking at
60 * the disk at all if the key can't be there. When an IO Job complete
61 * a deletion, we set the time of the negative caching to a non zero
62 * value so it will be evicted later.
64 * Are there other patterns like this where we load stale data?
66 * Also, make sure that key preloading is ONLY done for keys that are
67 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
68 * data from disk that should instead be deleted.
70 * - dsSet() should use rename(2) in order to avoid corruptions.
72 * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
73 * impossible since anyway the io_keys stuff will work as lock?
75 * - Serialize special encoded things in a raw form.
77 * - When putting IO read operations on top of the queue, do this only if
78 * the already-on-top operation is not a save or if it is a save that
79 * is scheduled for later execution. If there is a save that is ready to
80 * fire, let's insert the load operation just before the first save that
81 * is scheduled for later exection for instance.
83 * - Support MULTI/EXEC transactions via a journal file, that is played on
84 * startup to check if there is cleanup to do. This way we can implement
85 * transactions with our simple file based KV store.
88 /* Virtual Memory is composed mainly of two subsystems:
89 * - Blocking Virutal Memory
90 * - Threaded Virtual Memory I/O
91 * The two parts are not fully decoupled, but functions are split among two
92 * different sections of the source code (delimited by comments) in order to
93 * make more clear what functionality is about the blocking VM and what about
94 * the threaded (not blocking) VM.
98 * Redis VM is a blocking VM (one that blocks reading swapped values from
99 * disk into memory when a value swapped out is needed in memory) that is made
100 * unblocking by trying to examine the command argument vector in order to
101 * load in background values that will likely be needed in order to exec
102 * the command. The command is executed only once all the relevant keys
103 * are loaded into memory.
105 * This basically is almost as simple of a blocking VM, but almost as parallel
106 * as a fully non-blocking VM.
109 void spawnIOThread(void);
110 int cacheScheduleIOPushJobs(int flags
);
111 int processActiveIOJobs(int max
);
113 /* =================== Virtual Memory - Blocking Side ====================== */
119 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
121 redisLog(REDIS_NOTICE
,"Opening Disk Store: %s", server
.ds_path
);
122 /* Open Disk Store */
123 if (dsOpen() != REDIS_OK
) {
124 redisLog(REDIS_WARNING
,"Fatal error opening disk store. Exiting.");
128 /* Initialize threaded I/O for Object Cache */
129 server
.io_newjobs
= listCreate();
130 server
.io_processing
= listCreate();
131 server
.io_processed
= listCreate();
132 server
.io_ready_clients
= listCreate();
133 pthread_mutex_init(&server
.io_mutex
,NULL
);
134 pthread_cond_init(&server
.io_condvar
,NULL
);
135 pthread_mutex_init(&server
.bgsavethread_mutex
,NULL
);
136 server
.io_active_threads
= 0;
137 if (pipe(pipefds
) == -1) {
138 redisLog(REDIS_WARNING
,"Unable to intialized DS: pipe(2): %s. Exiting."
142 server
.io_ready_pipe_read
= pipefds
[0];
143 server
.io_ready_pipe_write
= pipefds
[1];
144 redisAssert(anetNonBlock(NULL
,server
.io_ready_pipe_read
) != ANET_ERR
);
145 /* LZF requires a lot of stack */
146 pthread_attr_init(&server
.io_threads_attr
);
147 pthread_attr_getstacksize(&server
.io_threads_attr
, &stacksize
);
149 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
150 * multiplying it by 2 in the while loop later will not really help ;) */
151 if (!stacksize
) stacksize
= 1;
153 while (stacksize
< REDIS_THREAD_STACK_SIZE
) stacksize
*= 2;
154 pthread_attr_setstacksize(&server
.io_threads_attr
, stacksize
);
155 /* Listen for events in the threaded I/O pipe */
156 if (aeCreateFileEvent(server
.el
, server
.io_ready_pipe_read
, AE_READABLE
,
157 vmThreadedIOCompletedJob
, NULL
) == AE_ERR
)
158 oom("creating file event");
160 /* Spawn our I/O thread */
164 /* Compute how good candidate the specified object is for eviction.
165 * An higher number means a better candidate. */
166 double computeObjectSwappability(robj
*o
) {
167 /* actual age can be >= minage, but not < minage. As we use wrapping
168 * 21 bit clocks with minutes resolution for the LRU. */
169 return (double) estimateObjectIdleTime(o
);
172 /* Try to free one entry from the diskstore object cache */
173 int cacheFreeOneEntry(void) {
175 struct dictEntry
*best
= NULL
;
176 double best_swappability
= 0;
177 redisDb
*best_db
= NULL
;
181 for (j
= 0; j
< server
.dbnum
; j
++) {
182 redisDb
*db
= server
.db
+j
;
183 /* Why maxtries is set to 100?
184 * Because this way (usually) we'll find 1 object even if just 1% - 2%
185 * are swappable objects */
188 if (dictSize(db
->dict
) == 0) continue;
189 for (i
= 0; i
< 5; i
++) {
195 if (maxtries
) maxtries
--;
196 de
= dictGetRandomKey(db
->dict
);
197 keystr
= dictGetEntryKey(de
);
198 val
= dictGetEntryVal(de
);
199 initStaticStringObject(keyobj
,keystr
);
201 /* Don't remove objects that are currently target of a
202 * read or write operation. */
203 if (cacheScheduleIOGetFlags(db
,&keyobj
) != 0) {
204 if (maxtries
) i
--; /* don't count this try */
207 swappability
= computeObjectSwappability(val
);
208 if (!best
|| swappability
> best_swappability
) {
210 best_swappability
= swappability
;
216 /* Was not able to fix a single object... we should check if our
217 * IO queues have stuff in queue, and try to consume the queue
218 * otherwise we'll use an infinite amount of memory if changes to
219 * the dataset are faster than I/O */
220 if (listLength(server
.cache_io_queue
) > 0) {
221 redisLog(REDIS_DEBUG
,"--- Busy waiting IO to reclaim memory");
222 cacheScheduleIOPushJobs(REDIS_IO_ASAP
);
223 processActiveIOJobs(1);
226 /* Nothing to free at all... */
229 key
= dictGetEntryKey(best
);
230 val
= dictGetEntryVal(best
);
232 redisLog(REDIS_DEBUG
,"Key selected for cache eviction: %s swappability:%f",
233 key
, best_swappability
);
235 /* Delete this key from memory */
237 robj
*kobj
= createStringObject(key
,sdslen(key
));
238 dbDelete(best_db
,kobj
);
244 /* Return true if it's safe to swap out objects in a given moment.
245 * Basically we don't want to swap objects out while there is a BGSAVE
246 * or a BGAEOREWRITE running in backgroud. */
247 int dsCanTouchDiskStore(void) {
248 return (server
.bgsavechildpid
== -1 && server
.bgrewritechildpid
== -1);
251 /* ==================== Disk store negative caching ========================
253 * When disk store is enabled, we need negative caching, that is, to remember
254 * keys that are for sure *not* on the disk key-value store.
256 * This is usefuls because without negative caching cache misses will cost us
257 * a disk lookup, even if the same non existing key is accessed again and again.
259 * With negative caching we remember that the key is not on disk, so if it's
260 * not in memory and we have a negative cache entry, we don't try a disk
264 /* Returns true if the specified key may exists on disk, that is, we don't
265 * have an entry in our negative cache for this key */
266 int cacheKeyMayExist(redisDb
*db
, robj
*key
) {
267 return dictFind(db
->io_negcache
,key
) == NULL
;
270 /* Set the specified key as an entry that may possibily exist on disk, that is,
271 * remove the negative cache entry for this key if any. */
272 void cacheSetKeyMayExist(redisDb
*db
, robj
*key
) {
273 dictDelete(db
->io_negcache
,key
);
276 /* Set the specified key as non existing on disk, that is, create a negative
277 * cache entry for this key. */
278 void cacheSetKeyDoesNotExist(redisDb
*db
, robj
*key
) {
279 if (dictReplace(db
->io_negcache
,key
,(void*)time(NULL
))) {
284 /* Remove one entry from negative cache using approximated LRU. */
285 int negativeCacheEvictOneEntry(void) {
286 struct dictEntry
*de
;
288 redisDb
*best_db
= NULL
;
289 time_t time
, best_time
= 0;
292 for (j
= 0; j
< server
.dbnum
; j
++) {
293 redisDb
*db
= server
.db
+j
;
296 if (dictSize(db
->io_negcache
) == 0) continue;
297 for (i
= 0; i
< 3; i
++) {
298 de
= dictGetRandomKey(db
->io_negcache
);
299 time
= (time_t) dictGetEntryVal(de
);
301 if (best
== NULL
|| time
< best_time
) {
302 best
= dictGetEntryKey(de
);
309 dictDelete(best_db
->io_negcache
,best
);
316 /* ================== Disk store cache - Threaded I/O ====================== */
318 void freeIOJob(iojob
*j
) {
319 decrRefCount(j
->key
);
320 /* j->val can be NULL if the job is about deleting the key from disk. */
321 if (j
->val
) decrRefCount(j
->val
);
325 /* Every time a thread finished a Job, it writes a byte into the write side
326 * of an unix pipe in order to "awake" the main thread, and this function
328 void vmThreadedIOCompletedJob(aeEventLoop
*el
, int fd
, void *privdata
,
332 int retval
, processed
= 0, toprocess
= -1;
335 REDIS_NOTUSED(privdata
);
337 /* For every byte we read in the read side of the pipe, there is one
338 * I/O job completed to process. */
339 while((retval
= read(fd
,buf
,1)) == 1) {
343 redisLog(REDIS_DEBUG
,"Processing I/O completed job");
345 /* Get the processed element (the oldest one) */
347 redisAssert(listLength(server
.io_processed
) != 0);
348 if (toprocess
== -1) {
349 toprocess
= (listLength(server
.io_processed
)*REDIS_MAX_COMPLETED_JOBS_PROCESSED
)/100;
350 if (toprocess
<= 0) toprocess
= 1;
352 ln
= listFirst(server
.io_processed
);
354 listDelNode(server
.io_processed
,ln
);
357 /* Post process it in the main thread, as there are things we
358 * can do just here to avoid race conditions and/or invasive locks */
359 redisLog(REDIS_DEBUG
,"COMPLETED Job type %s, key: %s",
360 (j
->type
== REDIS_IOJOB_LOAD
) ? "load" : "save",
361 (unsigned char*)j
->key
->ptr
);
362 if (j
->type
== REDIS_IOJOB_LOAD
) {
363 /* Create the key-value pair in the in-memory database */
364 if (j
->val
!= NULL
) {
365 /* Note: it's possible that the key is already in memory
366 * due to a blocking load operation. */
367 if (dbAdd(j
->db
,j
->key
,j
->val
) == REDIS_OK
) {
368 incrRefCount(j
->val
);
369 if (j
->expire
!= -1) setExpire(j
->db
,j
->key
,j
->expire
);
372 /* Key not found on disk. If it is also not in memory
373 * as a cached object, nor there is a job writing it
374 * in background, we are sure the key does not exist
377 * So we set a negative cache entry avoiding that the
378 * resumed client will block load what does not exist... */
379 if (dictFind(j
->db
->dict
,j
->key
->ptr
) == NULL
&&
380 (cacheScheduleIOGetFlags(j
->db
,j
->key
) &
381 (REDIS_IO_SAVE
|REDIS_IO_SAVEINPROG
)) == 0)
383 cacheSetKeyDoesNotExist(j
->db
,j
->key
);
386 cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_LOADINPROG
);
387 handleClientsBlockedOnSwappedKey(j
->db
,j
->key
);
389 } else if (j
->type
== REDIS_IOJOB_SAVE
) {
390 cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_SAVEINPROG
);
394 if (processed
== toprocess
) return;
396 if (retval
< 0 && errno
!= EAGAIN
) {
397 redisLog(REDIS_WARNING
,
398 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
403 void lockThreadedIO(void) {
404 pthread_mutex_lock(&server
.io_mutex
);
407 void unlockThreadedIO(void) {
408 pthread_mutex_unlock(&server
.io_mutex
);
411 void *IOThreadEntryPoint(void *arg
) {
416 pthread_detach(pthread_self());
419 /* Get a new job to process */
420 if (listLength(server
.io_newjobs
) == 0) {
421 /* Wait for more work to do */
422 pthread_cond_wait(&server
.io_condvar
,&server
.io_mutex
);
425 redisLog(REDIS_DEBUG
,"%ld IO jobs to process",
426 listLength(server
.io_newjobs
));
427 ln
= listFirst(server
.io_newjobs
);
429 listDelNode(server
.io_newjobs
,ln
);
430 /* Add the job in the processing queue */
431 listAddNodeTail(server
.io_processing
,j
);
432 ln
= listLast(server
.io_processing
); /* We use ln later to remove it */
435 redisLog(REDIS_DEBUG
,"Thread %ld: new job type %s: %p about key '%s'",
436 (long) pthread_self(),
437 (j
->type
== REDIS_IOJOB_LOAD
) ? "load" : "save",
438 (void*)j
, (char*)j
->key
->ptr
);
440 /* Process the Job */
441 if (j
->type
== REDIS_IOJOB_LOAD
) {
444 j
->val
= dsGet(j
->db
,j
->key
,&expire
);
445 if (j
->val
) j
->expire
= expire
;
446 } else if (j
->type
== REDIS_IOJOB_SAVE
) {
448 dsSet(j
->db
,j
->key
,j
->val
);
454 /* Done: insert the job into the processed queue */
455 redisLog(REDIS_DEBUG
,"Thread %ld completed the job: %p (key %s)",
456 (long) pthread_self(), (void*)j
, (char*)j
->key
->ptr
);
459 listDelNode(server
.io_processing
,ln
);
460 listAddNodeTail(server
.io_processed
,j
);
462 /* Signal the main thread there is new stuff to process */
463 redisAssert(write(server
.io_ready_pipe_write
,"x",1) == 1);
465 /* never reached, but that's the full pattern... */
470 void spawnIOThread(void) {
472 sigset_t mask
, omask
;
476 sigaddset(&mask
,SIGCHLD
);
477 sigaddset(&mask
,SIGHUP
);
478 sigaddset(&mask
,SIGPIPE
);
479 pthread_sigmask(SIG_SETMASK
, &mask
, &omask
);
480 while ((err
= pthread_create(&thread
,&server
.io_threads_attr
,IOThreadEntryPoint
,NULL
)) != 0) {
481 redisLog(REDIS_WARNING
,"Unable to spawn an I/O thread: %s",
485 pthread_sigmask(SIG_SETMASK
, &omask
, NULL
);
486 server
.io_active_threads
++;
489 /* Wait that up to 'max' pending IO Jobs are processed by the I/O thread.
490 * From our point of view an IO job processed means that the count of
491 * server.io_processed must increase by one.
493 * If max is -1, all the pending IO jobs will be processed.
495 * Returns the number of IO jobs processed.
497 * NOTE: while this may appear like a busy loop, we are actually blocked
498 * by IO since we continuously acquire/release the IO lock. */
499 int processActiveIOJobs(int max
) {
502 while(max
== -1 || max
> 0) {
503 int io_processed_len
;
506 if (listLength(server
.io_newjobs
) == 0 &&
507 listLength(server
.io_processing
) == 0)
509 /* There is nothing more to process */
515 /* If there are new jobs we need to signal the thread to
516 * process the next one. FIXME: drop this if useless. */
517 redisLog(REDIS_DEBUG
,"waitEmptyIOJobsQueue: new %d, processing %d",
518 listLength(server
.io_newjobs
),
519 listLength(server
.io_processing
));
521 if (listLength(server
.io_newjobs
)) {
522 pthread_cond_signal(&server
.io_condvar
);
526 /* Check if we can process some finished job */
527 io_processed_len
= listLength(server
.io_processed
);
529 if (io_processed_len
) {
530 vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
,
531 (void*)0xdeadbeef,0);
533 if (max
!= -1) max
--;
539 void waitEmptyIOJobsQueue(void) {
540 processActiveIOJobs(-1);
543 /* Process up to 'max' IO Jobs already completed by threads but still waiting
544 * processing from the main thread.
546 * If max == -1 all the pending jobs are processed.
548 * The number of processed jobs is returned. */
549 int processPendingIOJobs(int max
) {
552 while(max
== -1 || max
> 0) {
553 int io_processed_len
;
556 io_processed_len
= listLength(server
.io_processed
);
558 if (io_processed_len
== 0) break;
559 vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
,
560 (void*)0xdeadbeef,0);
561 if (max
!= -1) max
--;
567 void processAllPendingIOJobs(void) {
568 processPendingIOJobs(-1);
571 /* This function must be called while with threaded IO locked */
572 void queueIOJob(iojob
*j
) {
573 redisLog(REDIS_DEBUG
,"Queued IO Job %p type %d about key '%s'\n",
574 (void*)j
, j
->type
, (char*)j
->key
->ptr
);
575 listAddNodeTail(server
.io_newjobs
,j
);
576 if (server
.io_active_threads
< server
.vm_max_threads
)
580 /* Consume all the IO scheduled operations, and all the thread IO jobs
581 * so that eventually the state of diskstore is a point-in-time snapshot.
583 * This is useful when we need to BGSAVE with diskstore enabled. */
584 void cacheForcePointInTime(void) {
585 redisLog(REDIS_NOTICE
,"Diskstore: synching on disk to reach point-in-time state.");
586 while (listLength(server
.cache_io_queue
) != 0) {
587 cacheScheduleIOPushJobs(REDIS_IO_ASAP
);
588 processActiveIOJobs(1);
590 waitEmptyIOJobsQueue();
591 processAllPendingIOJobs();
594 void cacheCreateIOJob(int type
, redisDb
*db
, robj
*key
, robj
*val
) {
597 j
= zmalloc(sizeof(*j
));
603 if (val
) incrRefCount(val
);
607 pthread_cond_signal(&server
.io_condvar
);
611 /* ============= Disk store cache - Scheduling of IO operations =============
613 * We use a queue and an hash table to hold the state of IO operations
614 * so that's fast to lookup if there is already an IO operation in queue
617 * There are two types of IO operations for a given key:
618 * REDIS_IO_LOAD and REDIS_IO_SAVE.
620 * The function cacheScheduleIO() function pushes the specified IO operation
621 * in the queue, but avoid adding the same key for the same operation
622 * multiple times, thanks to the associated hash table.
624 * We take a set of flags per every key, so when the scheduled IO operation
625 * gets moved from the scheduled queue to the actual IO Jobs queue that
626 * is processed by the IO thread, we flag it as IO_LOADINPROG or
629 * So for every given key we always know if there is some IO operation
630 * scheduled, or in progress, for this key.
632 * NOTE: all this is very important in order to guarantee correctness of
633 * the Disk Store Cache. Jobs are always queued here. Load jobs are
634 * queued at the head for faster execution only in the case there is not
635 * already a write operation of some kind for this job.
637 * So we have ordering, but can do exceptions when there are no already
638 * operations for a given key. Also when we need to block load a given
639 * key, for an immediate lookup operation, we can check if the key can
640 * be accessed synchronously without race conditions (no IN PROGRESS
641 * operations for this key), otherwise we blocking wait for completion. */
643 #define REDIS_IO_LOAD 1
644 #define REDIS_IO_SAVE 2
645 #define REDIS_IO_LOADINPROG 4
646 #define REDIS_IO_SAVEINPROG 8
648 void cacheScheduleIOAddFlag(redisDb
*db
, robj
*key
, long flag
) {
649 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
652 dictAdd(db
->io_queued
,key
,(void*)flag
);
656 long flags
= (long) dictGetEntryVal(de
);
659 redisLog(REDIS_WARNING
,"Adding the same flag again: was: %ld, addede: %ld",flags
,flag
);
660 redisAssert(!(flags
& flag
));
663 dictGetEntryVal(de
) = (void*) flags
;
667 void cacheScheduleIODelFlag(redisDb
*db
, robj
*key
, long flag
) {
668 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
671 redisAssert(de
!= NULL
);
672 flags
= (long) dictGetEntryVal(de
);
673 redisAssert(flags
& flag
);
676 dictDelete(db
->io_queued
,key
);
678 dictGetEntryVal(de
) = (void*) flags
;
682 int cacheScheduleIOGetFlags(redisDb
*db
, robj
*key
) {
683 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
685 return (de
== NULL
) ? 0 : ((long) dictGetEntryVal(de
));
688 void cacheScheduleIO(redisDb
*db
, robj
*key
, int type
) {
692 if ((flags
= cacheScheduleIOGetFlags(db
,key
)) & type
) return;
694 redisLog(REDIS_DEBUG
,"Scheduling key %s for %s",
695 key
->ptr
, type
== REDIS_IO_LOAD
? "loading" : "saving");
696 cacheScheduleIOAddFlag(db
,key
,type
);
697 op
= zmalloc(sizeof(*op
));
702 op
->ctime
= time(NULL
);
704 /* Give priority to load operations if there are no save already
705 * in queue for the same key. */
706 if (type
== REDIS_IO_LOAD
&& !(flags
& REDIS_IO_SAVE
)) {
707 listAddNodeHead(server
.cache_io_queue
, op
);
708 cacheScheduleIOPushJobs(REDIS_IO_ONLYLOADS
);
710 /* FIXME: probably when this happens we want to at least move
711 * the write job about this queue on top, and set the creation time
712 * to a value that will force processing ASAP. */
713 listAddNodeTail(server
.cache_io_queue
, op
);
717 /* Push scheduled IO operations into IO Jobs that the IO thread can process.
719 * If flags include REDIS_IO_ONLYLOADS only load jobs are processed:this is
720 * useful since it's safe to push LOAD IO jobs from any place of the code, while
721 * SAVE io jobs should never be pushed while we are processing a command
722 * (not protected by lookupKey() that will block on keys in IO_SAVEINPROG
725 * The REDIS_IO_ASAP flag tells the function to don't wait for the IO job
726 * scheduled completion time, but just do the operation ASAP. This is useful
727 * when we need to reclaim memory from the IO queue.
729 #define MAX_IO_JOBS_QUEUE 100
730 int cacheScheduleIOPushJobs(int flags
) {
731 time_t now
= time(NULL
);
733 int jobs
, topush
= 0, pushed
= 0;
735 /* Don't push new jobs if there is a threaded BGSAVE in progress. */
736 if (server
.bgsavethread
!= (pthread_t
) -1) return 0;
738 /* Sync stuff on disk, but only if we have less
739 * than MAX_IO_JOBS_QUEUE IO jobs. */
741 jobs
= listLength(server
.io_newjobs
);
744 topush
= MAX_IO_JOBS_QUEUE
-jobs
;
745 if (topush
< 0) topush
= 0;
746 if (topush
> (signed)listLength(server
.cache_io_queue
))
747 topush
= listLength(server
.cache_io_queue
);
749 while((ln
= listFirst(server
.cache_io_queue
)) != NULL
) {
750 ioop
*op
= ln
->value
;
751 struct dictEntry
*de
;
757 if (op
->type
!= REDIS_IO_LOAD
&& flags
& REDIS_IO_ONLYLOADS
) break;
759 if (!(flags
& REDIS_IO_ASAP
) &&
760 (now
- op
->ctime
) < server
.cache_flush_delay
) break;
762 /* Don't add a SAVE job in the IO thread queue if there is already
763 * a save in progress for the same key. */
764 if (op
->type
== REDIS_IO_SAVE
&&
765 cacheScheduleIOGetFlags(op
->db
,op
->key
) & REDIS_IO_SAVEINPROG
)
767 /* Move the operation at the end of the list if there
768 * are other operations, so we can try to process the next one.
769 * Otherwise break, nothing to do here. */
770 if (listLength(server
.cache_io_queue
) > 1) {
771 listDelNode(server
.cache_io_queue
,ln
);
772 listAddNodeTail(server
.cache_io_queue
,op
);
779 redisLog(REDIS_DEBUG
,"Creating IO %s Job for key %s",
780 op
->type
== REDIS_IO_LOAD
? "load" : "save", op
->key
->ptr
);
782 if (op
->type
== REDIS_IO_LOAD
) {
783 cacheCreateIOJob(REDIS_IOJOB_LOAD
,op
->db
,op
->key
,NULL
);
785 /* Lookup the key, in order to put the current value in the IO
786 * Job. Otherwise if the key does not exists we schedule a disk
787 * store delete operation, setting the value to NULL. */
788 de
= dictFind(op
->db
->dict
,op
->key
->ptr
);
790 val
= dictGetEntryVal(de
);
792 /* Setting the value to NULL tells the IO thread to delete
793 * the key on disk. */
796 cacheCreateIOJob(REDIS_IOJOB_SAVE
,op
->db
,op
->key
,val
);
798 /* Mark the operation as in progress. */
799 cacheScheduleIODelFlag(op
->db
,op
->key
,op
->type
);
800 cacheScheduleIOAddFlag(op
->db
,op
->key
,
801 (op
->type
== REDIS_IO_LOAD
) ? REDIS_IO_LOADINPROG
:
802 REDIS_IO_SAVEINPROG
);
803 /* Finally remove the operation from the queue.
804 * But we'll have trace of it in the hash table. */
805 listDelNode(server
.cache_io_queue
,ln
);
806 decrRefCount(op
->key
);
813 void cacheCron(void) {
815 cacheScheduleIOPushJobs(0);
817 /* Reclaim memory from the object cache */
818 while (server
.ds_enabled
&& zmalloc_used_memory() >
819 server
.cache_max_memory
)
823 if (cacheFreeOneEntry() == REDIS_OK
) done
++;
824 if (negativeCacheEvictOneEntry() == REDIS_OK
) done
++;
825 if (done
== 0) break; /* nothing more to free */
829 /* ========== Disk store cache - Blocking clients on missing keys =========== */
831 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
832 * If the key is already in memory we don't need to block.
834 * FIXME: we should try if it's actually better to suspend the client
835 * accessing an object that is being saved, and awake it only when
836 * the saving was completed.
838 * Otherwise if the key is not in memory, we block the client and start
839 * an IO Job to load it:
841 * the key is added to the io_keys list in the client structure, and also
842 * in the hash table mapping swapped keys to waiting clients, that is,
843 * server.io_waited_keys. */
844 int waitForSwappedKey(redisClient
*c
, robj
*key
) {
845 struct dictEntry
*de
;
848 /* Return ASAP if the key is in memory */
849 de
= dictFind(c
->db
->dict
,key
->ptr
);
850 if (de
!= NULL
) return 0;
852 /* Don't wait for keys we are sure are not on disk either */
853 if (!cacheKeyMayExist(c
->db
,key
)) return 0;
855 /* Add the key to the list of keys this client is waiting for.
856 * This maps clients to keys they are waiting for. */
857 listAddNodeTail(c
->io_keys
,key
);
860 /* Add the client to the swapped keys => clients waiting map. */
861 de
= dictFind(c
->db
->io_keys
,key
);
865 /* For every key we take a list of clients blocked for it */
867 retval
= dictAdd(c
->db
->io_keys
,key
,l
);
869 redisAssert(retval
== DICT_OK
);
871 l
= dictGetEntryVal(de
);
873 listAddNodeTail(l
,c
);
875 /* Are we already loading the key from disk? If not create a job */
877 cacheScheduleIO(c
->db
,key
,REDIS_IO_LOAD
);
881 /* Preload keys for any command with first, last and step values for
882 * the command keys prototype, as defined in the command table. */
883 void waitForMultipleSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
885 if (cmd
->vm_firstkey
== 0) return;
886 last
= cmd
->vm_lastkey
;
887 if (last
< 0) last
= argc
+last
;
888 for (j
= cmd
->vm_firstkey
; j
<= last
; j
+= cmd
->vm_keystep
) {
889 redisAssert(j
< argc
);
890 waitForSwappedKey(c
,argv
[j
]);
894 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
895 * Note that the number of keys to preload is user-defined, so we need to
896 * apply a sanity check against argc. */
897 void zunionInterBlockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
901 num
= atoi(argv
[2]->ptr
);
902 if (num
> (argc
-3)) return;
903 for (i
= 0; i
< num
; i
++) {
904 waitForSwappedKey(c
,argv
[3+i
]);
908 /* Preload keys needed to execute the entire MULTI/EXEC block.
910 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
911 * and will block the client when any command requires a swapped out value. */
912 void execBlockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
914 struct redisCommand
*mcmd
;
920 if (!(c
->flags
& REDIS_MULTI
)) return;
921 for (i
= 0; i
< c
->mstate
.count
; i
++) {
922 mcmd
= c
->mstate
.commands
[i
].cmd
;
923 margc
= c
->mstate
.commands
[i
].argc
;
924 margv
= c
->mstate
.commands
[i
].argv
;
926 if (mcmd
->vm_preload_proc
!= NULL
) {
927 mcmd
->vm_preload_proc(c
,mcmd
,margc
,margv
);
929 waitForMultipleSwappedKeys(c
,mcmd
,margc
,margv
);
934 /* Is this client attempting to run a command against swapped keys?
935 * If so, block it ASAP, load the keys in background, then resume it.
937 * The important idea about this function is that it can fail! If keys will
938 * still be swapped when the client is resumed, this key lookups will
939 * just block loading keys from disk. In practical terms this should only
940 * happen with SORT BY command or if there is a bug in this function.
942 * Return 1 if the client is marked as blocked, 0 if the client can
943 * continue as the keys it is going to access appear to be in memory. */
944 int blockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
) {
945 if (cmd
->vm_preload_proc
!= NULL
) {
946 cmd
->vm_preload_proc(c
,cmd
,c
->argc
,c
->argv
);
948 waitForMultipleSwappedKeys(c
,cmd
,c
->argc
,c
->argv
);
951 /* If the client was blocked for at least one key, mark it as blocked. */
952 if (listLength(c
->io_keys
)) {
953 c
->flags
|= REDIS_IO_WAIT
;
954 aeDeleteFileEvent(server
.el
,c
->fd
,AE_READABLE
);
955 server
.cache_blocked_clients
++;
962 /* Remove the 'key' from the list of blocked keys for a given client.
964 * The function returns 1 when there are no longer blocking keys after
965 * the current one was removed (and the client can be unblocked). */
966 int dontWaitForSwappedKey(redisClient
*c
, robj
*key
) {
970 struct dictEntry
*de
;
972 /* The key object might be destroyed when deleted from the c->io_keys
973 * list (and the "key" argument is physically the same object as the
974 * object inside the list), so we need to protect it. */
977 /* Remove the key from the list of keys this client is waiting for. */
978 listRewind(c
->io_keys
,&li
);
979 while ((ln
= listNext(&li
)) != NULL
) {
980 if (equalStringObjects(ln
->value
,key
)) {
981 listDelNode(c
->io_keys
,ln
);
985 redisAssert(ln
!= NULL
);
987 /* Remove the client form the key => waiting clients map. */
988 de
= dictFind(c
->db
->io_keys
,key
);
989 redisAssert(de
!= NULL
);
990 l
= dictGetEntryVal(de
);
991 ln
= listSearchKey(l
,c
);
992 redisAssert(ln
!= NULL
);
994 if (listLength(l
) == 0)
995 dictDelete(c
->db
->io_keys
,key
);
998 return listLength(c
->io_keys
) == 0;
1001 /* Every time we now a key was loaded back in memory, we handle clients
1002 * waiting for this key if any. */
1003 void handleClientsBlockedOnSwappedKey(redisDb
*db
, robj
*key
) {
1004 struct dictEntry
*de
;
1009 de
= dictFind(db
->io_keys
,key
);
1012 l
= dictGetEntryVal(de
);
1013 len
= listLength(l
);
1014 /* Note: we can't use something like while(listLength(l)) as the list
1015 * can be freed by the calling function when we remove the last element. */
1018 redisClient
*c
= ln
->value
;
1020 if (dontWaitForSwappedKey(c
,key
)) {
1021 /* Put the client in the list of clients ready to go as we
1022 * loaded all the keys about it. */
1023 listAddNodeTail(server
.io_ready_clients
,c
);