]> git.saurik.com Git - redis.git/blob - src/dscache.c
d24ec77cd3478dd8dd9f55793be39f283c2118eb
[redis.git] / src / dscache.c
1 #include "redis.h"
2
3 #include <fcntl.h>
4 #include <pthread.h>
5 #include <math.h>
6 #include <signal.h>
7
8 /* dscache.c - Disk store cache for disk store backend.
9 *
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
13 *
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
16 *
17 * This file implements the whole caching subsystem and contains further
18 * documentation. */
19
20 /* TODO:
21 *
22 * - The WATCH helper will be used to signal the cache system
23 * we need to flush a given key/dbid into disk, adding this key/dbid
24 * pair into a server.ds_cache_dirty linked list AND hash table (so that we
25 * don't add the same thing multiple times).
26 *
27 * - cron() checks if there are elements on this list. When there are things
28 * to flush, we create an IO Job for the I/O thread.
29 * NOTE: We disalbe object sharing when server.ds_enabled == 1 so objects
30 * that are referenced an IO job for flushing on disk are marked as
31 * o->storage == REDIS_DS_SAVING.
32 *
33 * - This is what we do on key lookup:
34 * 1) The key already exists in memory. object->storage == REDIS_DS_MEMORY
35 * or it is object->storage == REDIS_DS_DIRTY:
36 * We don't do nothing special, lookup, return value object pointer.
37 * 2) The key is in memory but object->storage == REDIS_DS_SAVING.
38 * When this happens we block waiting for the I/O thread to process
39 * this object. Then continue.
40 * 3) The key is not in memory. We block to load the key from disk.
41 * Of course the key may not be present at all on the disk store as well,
42 * in such case we just detect this condition and continue, returning
43 * NULL from lookup.
44 *
45 * - Preloading of needed keys:
46 * 1) As it was done with VM, also with this new system we try preloading
47 * keys a client is going to use. We block the client, load keys
48 * using the I/O thread, unblock the client. Same code as VM more or less.
49 *
50 * - Reclaiming memory.
51 * In cron() we detect our memory limit was reached. What we
52 * do is deleting keys that are REDIS_DS_MEMORY, using LRU.
53 *
54 * If this is not enough to return again under the memory limits we also
55 * start to flush keys that need to be synched on disk synchronously,
56 * removing it from the memory. We do this blocking as memory limit is a
57 * much "harder" barrirer in the new design.
58 *
59 * - IO thread operations are no longer stopped for sync loading/saving of
60 * things. When a key is found to be in the process of being saved
61 * we simply wait for the IO thread to end its work.
62 *
63 * Otherwise if there is to load a key without any IO thread operation
64 * just started it is blocking-loaded in the lookup function.
65 *
66 * - What happens when an object is destroyed?
67 *
68 * If o->storage == REDIS_DS_MEMORY then we simply destory the object.
69 * If o->storage == REDIS_DS_DIRTY we can still remove the object. It had
70 * changes not flushed on disk, but is being removed so
71 * who cares.
72 * if o->storage == REDIS_DS_SAVING then the object is being saved so
73 * it is impossible that its refcount == 1, must be at
74 * least two. When the object is saved the storage will
75 * be set back to DS_MEMORY.
76 *
77 * - What happens when keys are deleted?
78 *
79 * We simply schedule a key flush operation as usually, but when the
80 * IO thread will be created the object pointer will be set to NULL
81 * so the IO thread will know that the work to do is to delete the key
82 * from the disk store.
83 *
84 * - What happens with MULTI/EXEC?
85 *
86 * Good question.
87 */
88
89 /* Virtual Memory is composed mainly of two subsystems:
90 * - Blocking Virutal Memory
91 * - Threaded Virtual Memory I/O
92 * The two parts are not fully decoupled, but functions are split among two
93 * different sections of the source code (delimited by comments) in order to
94 * make more clear what functionality is about the blocking VM and what about
95 * the threaded (not blocking) VM.
96 *
97 * Redis VM design:
98 *
99 * Redis VM is a blocking VM (one that blocks reading swapped values from
100 * disk into memory when a value swapped out is needed in memory) that is made
101 * unblocking by trying to examine the command argument vector in order to
102 * load in background values that will likely be needed in order to exec
103 * the command. The command is executed only once all the relevant keys
104 * are loaded into memory.
105 *
106 * This basically is almost as simple of a blocking VM, but almost as parallel
107 * as a fully non-blocking VM.
108 */
109
110 void spawnIOThread(void);
111
112 /* =================== Virtual Memory - Blocking Side ====================== */
113
114 void dsInit(void) {
115 int pipefds[2];
116 size_t stacksize;
117
118 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
119
120 redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path);
121 /* Open Disk Store */
122 if (dsOpen() != REDIS_OK) {
123 redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
124 exit(1);
125 };
126
127 /* Initialize threaded I/O for Object Cache */
128 server.io_newjobs = listCreate();
129 server.io_processing = listCreate();
130 server.io_processed = listCreate();
131 server.io_ready_clients = listCreate();
132 pthread_mutex_init(&server.io_mutex,NULL);
133 server.io_active_threads = 0;
134 if (pipe(pipefds) == -1) {
135 redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
136 ,strerror(errno));
137 exit(1);
138 }
139 server.io_ready_pipe_read = pipefds[0];
140 server.io_ready_pipe_write = pipefds[1];
141 redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
142 /* LZF requires a lot of stack */
143 pthread_attr_init(&server.io_threads_attr);
144 pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
145
146 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
147 * multiplying it by 2 in the while loop later will not really help ;) */
148 if (!stacksize) stacksize = 1;
149
150 while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
151 pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
152 /* Listen for events in the threaded I/O pipe */
153 if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
154 vmThreadedIOCompletedJob, NULL) == AE_ERR)
155 oom("creating file event");
156
157 /* Spawn our I/O thread */
158 spawnIOThread();
159 }
160
161 /* Compute how good candidate the specified object is for eviction.
162 * An higher number means a better candidate. */
163 double computeObjectSwappability(robj *o) {
164 /* actual age can be >= minage, but not < minage. As we use wrapping
165 * 21 bit clocks with minutes resolution for the LRU. */
166 return (double) estimateObjectIdleTime(o);
167 }
168
169 /* Try to free one entry from the diskstore object cache */
170 int cacheFreeOneEntry(void) {
171 int j, i;
172 struct dictEntry *best = NULL;
173 double best_swappability = 0;
174 redisDb *best_db = NULL;
175 robj *val;
176 sds key;
177
178 for (j = 0; j < server.dbnum; j++) {
179 redisDb *db = server.db+j;
180 /* Why maxtries is set to 100?
181 * Because this way (usually) we'll find 1 object even if just 1% - 2%
182 * are swappable objects */
183 int maxtries = 100;
184
185 if (dictSize(db->dict) == 0) continue;
186 for (i = 0; i < 5; i++) {
187 dictEntry *de;
188 double swappability;
189
190 if (maxtries) maxtries--;
191 de = dictGetRandomKey(db->dict);
192 val = dictGetEntryVal(de);
193 /* Only swap objects that are currently in memory.
194 *
195 * Also don't swap shared objects: not a good idea in general and
196 * we need to ensure that the main thread does not touch the
197 * object while the I/O thread is using it, but we can't
198 * control other keys without adding additional mutex. */
199 if (val->storage != REDIS_DS_MEMORY) {
200 if (maxtries) i--; /* don't count this try */
201 continue;
202 }
203 swappability = computeObjectSwappability(val);
204 if (!best || swappability > best_swappability) {
205 best = de;
206 best_swappability = swappability;
207 best_db = db;
208 }
209 }
210 }
211 if (best == NULL) {
212 /* FIXME: If there are objects marked as DS_DIRTY or DS_SAVING
213 * let's wait for this objects to be clear and retry...
214 *
215 * Object cache vm limit is considered an hard limit. */
216 return REDIS_ERR;
217 }
218 key = dictGetEntryKey(best);
219 val = dictGetEntryVal(best);
220
221 redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
222 key, best_swappability);
223
224 /* Delete this key from memory */
225 {
226 robj *kobj = createStringObject(key,sdslen(key));
227 dbDelete(best_db,kobj);
228 decrRefCount(kobj);
229 }
230 return REDIS_OK;
231 }
232
233 /* Return true if it's safe to swap out objects in a given moment.
234 * Basically we don't want to swap objects out while there is a BGSAVE
235 * or a BGAEOREWRITE running in backgroud. */
236 int dsCanTouchDiskStore(void) {
237 return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1);
238 }
239
240 /* =================== Virtual Memory - Threaded I/O ======================= */
241
242 void freeIOJob(iojob *j) {
243 decrRefCount(j->key);
244 /* j->val can be NULL if the job is about deleting the key from disk. */
245 if (j->val) decrRefCount(j->val);
246 zfree(j);
247 }
248
249 /* Every time a thread finished a Job, it writes a byte into the write side
250 * of an unix pipe in order to "awake" the main thread, and this function
251 * is called. */
252 void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
253 int mask)
254 {
255 char buf[1];
256 int retval, processed = 0, toprocess = -1;
257 REDIS_NOTUSED(el);
258 REDIS_NOTUSED(mask);
259 REDIS_NOTUSED(privdata);
260
261 /* For every byte we read in the read side of the pipe, there is one
262 * I/O job completed to process. */
263 while((retval = read(fd,buf,1)) == 1) {
264 iojob *j;
265 listNode *ln;
266
267 redisLog(REDIS_DEBUG,"Processing I/O completed job");
268
269 /* Get the processed element (the oldest one) */
270 lockThreadedIO();
271 redisAssert(listLength(server.io_processed) != 0);
272 if (toprocess == -1) {
273 toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
274 if (toprocess <= 0) toprocess = 1;
275 }
276 ln = listFirst(server.io_processed);
277 j = ln->value;
278 listDelNode(server.io_processed,ln);
279 unlockThreadedIO();
280
281 /* Post process it in the main thread, as there are things we
282 * can do just here to avoid race conditions and/or invasive locks */
283 redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s",
284 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
285 (unsigned char*)j->key->ptr);
286 if (j->type == REDIS_IOJOB_LOAD) {
287 /* Create the key-value pair in the in-memory database */
288 dbAdd(j->db,j->key,j->val);
289 incrRefCount(j->val);
290 /* Handle clients waiting for this key to be loaded. */
291 handleClientsBlockedOnSwappedKey(j->db,j->key);
292 freeIOJob(j);
293 } else if (j->type == REDIS_IOJOB_SAVE) {
294 redisAssert(j->val->storage == REDIS_DS_SAVING);
295 j->val->storage = REDIS_DS_MEMORY;
296 freeIOJob(j);
297 }
298 processed++;
299 if (processed == toprocess) return;
300 }
301 if (retval < 0 && errno != EAGAIN) {
302 redisLog(REDIS_WARNING,
303 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
304 strerror(errno));
305 }
306 }
307
308 void lockThreadedIO(void) {
309 pthread_mutex_lock(&server.io_mutex);
310 }
311
312 void unlockThreadedIO(void) {
313 pthread_mutex_unlock(&server.io_mutex);
314 }
315
316 void *IOThreadEntryPoint(void *arg) {
317 iojob *j;
318 listNode *ln;
319 REDIS_NOTUSED(arg);
320
321 pthread_detach(pthread_self());
322 while(1) {
323 /* Get a new job to process */
324 lockThreadedIO();
325 if (listLength(server.io_newjobs) == 0) {
326 /* No new jobs in queue, exit. */
327 unlockThreadedIO();
328 sleep(1);
329 continue;
330 }
331 ln = listFirst(server.io_newjobs);
332 j = ln->value;
333 listDelNode(server.io_newjobs,ln);
334 /* Add the job in the processing queue */
335 listAddNodeTail(server.io_processing,j);
336 ln = listLast(server.io_processing); /* We use ln later to remove it */
337 unlockThreadedIO();
338 redisLog(REDIS_DEBUG,"Thread %ld: new job type %s: %p about key '%s'",
339 (long) pthread_self(),
340 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
341 (void*)j, (char*)j->key->ptr);
342
343 /* Process the Job */
344 if (j->type == REDIS_IOJOB_LOAD) {
345 j->val = dsGet(j->db,j->key);
346 redisAssert(j->val != NULL);
347 } else if (j->type == REDIS_IOJOB_SAVE) {
348 redisAssert(j->val->storage == REDIS_DS_SAVING);
349 if (j->val)
350 dsSet(j->db,j->key,j->val);
351 else
352 dsDel(j->db,j->key);
353 }
354
355 /* Done: insert the job into the processed queue */
356 redisLog(REDIS_DEBUG,"Thread %ld completed the job: %p (key %s)",
357 (long) pthread_self(), (void*)j, (char*)j->key->ptr);
358 lockThreadedIO();
359 listDelNode(server.io_processing,ln);
360 listAddNodeTail(server.io_processed,j);
361 unlockThreadedIO();
362
363 /* Signal the main thread there is new stuff to process */
364 redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
365 }
366 return NULL; /* never reached */
367 }
368
369 void spawnIOThread(void) {
370 pthread_t thread;
371 sigset_t mask, omask;
372 int err;
373
374 sigemptyset(&mask);
375 sigaddset(&mask,SIGCHLD);
376 sigaddset(&mask,SIGHUP);
377 sigaddset(&mask,SIGPIPE);
378 pthread_sigmask(SIG_SETMASK, &mask, &omask);
379 while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
380 redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
381 strerror(err));
382 usleep(1000000);
383 }
384 pthread_sigmask(SIG_SETMASK, &omask, NULL);
385 server.io_active_threads++;
386 }
387
388 /* We need to wait for the last thread to exit before we are able to
389 * fork() in order to BGSAVE or BGREWRITEAOF. */
390 void waitEmptyIOJobsQueue(void) {
391 while(1) {
392 int io_processed_len;
393
394 lockThreadedIO();
395 if (listLength(server.io_newjobs) == 0 &&
396 listLength(server.io_processing) == 0 &&
397 server.io_active_threads == 0)
398 {
399 unlockThreadedIO();
400 return;
401 }
402 /* While waiting for empty jobs queue condition we post-process some
403 * finshed job, as I/O threads may be hanging trying to write against
404 * the io_ready_pipe_write FD but there are so much pending jobs that
405 * it's blocking. */
406 io_processed_len = listLength(server.io_processed);
407 unlockThreadedIO();
408 if (io_processed_len) {
409 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
410 (void*)0xdeadbeef,0);
411 usleep(1000); /* 1 millisecond */
412 } else {
413 usleep(10000); /* 10 milliseconds */
414 }
415 }
416 }
417
418 /* This function must be called while with threaded IO locked */
419 void queueIOJob(iojob *j) {
420 redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
421 (void*)j, j->type, (char*)j->key->ptr);
422 listAddNodeTail(server.io_newjobs,j);
423 if (server.io_active_threads < server.vm_max_threads)
424 spawnIOThread();
425 }
426
427 void dsCreateIOJob(int type, redisDb *db, robj *key, robj *val) {
428 iojob *j;
429
430 j = zmalloc(sizeof(*j));
431 j->type = type;
432 j->db = db;
433 j->key = key;
434 incrRefCount(key);
435 j->val = val;
436 if (val) incrRefCount(val);
437
438 lockThreadedIO();
439 queueIOJob(j);
440 unlockThreadedIO();
441 }
442
443 void cacheScheduleForFlush(redisDb *db, robj *key) {
444 dirtykey *dk;
445 dictEntry *de;
446
447 de = dictFind(db->dict,key->ptr);
448 if (de) {
449 robj *val = dictGetEntryVal(de);
450 if (val->storage == REDIS_DS_DIRTY)
451 return;
452 else
453 val->storage = REDIS_DS_DIRTY;
454 }
455
456 redisLog(REDIS_DEBUG,"Scheduling key %s for saving",key->ptr);
457 dk = zmalloc(sizeof(*dk));
458 dk->db = db;
459 dk->key = key;
460 incrRefCount(key);
461 dk->ctime = time(NULL);
462 listAddNodeTail(server.cache_flush_queue, key);
463 }
464
465 void cacheCron(void) {
466 time_t now = time(NULL);
467 listNode *ln;
468
469 /* Sync stuff on disk */
470 while((ln = listFirst(server.cache_flush_queue)) != NULL) {
471 dirtykey *dk = ln->value;
472
473 if ((now - dk->ctime) >= server.cache_flush_delay) {
474 struct dictEntry *de;
475 robj *val;
476
477 redisLog(REDIS_DEBUG,"Creating IO Job to save key %s",dk->key->ptr);
478
479 /* Lookup the key. We need to check if it's still here and
480 * possibly access to the value. */
481 de = dictFind(dk->db->dict,dk->key->ptr);
482 if (de) {
483 val = dictGetEntryVal(de);
484 redisAssert(val->storage == REDIS_DS_DIRTY);
485 val->storage = REDIS_DS_SAVING;
486 } else {
487 /* Setting the value to NULL tells the IO thread to delete
488 * the key on disk. */
489 val = NULL;
490 }
491 dsCreateIOJob(REDIS_IOJOB_SAVE,dk->db,dk->key,val);
492 listDelNode(server.cache_flush_queue,ln);
493 } else {
494 break; /* too early */
495 }
496 }
497
498 /* Reclaim memory from the object cache */
499 while (server.ds_enabled && zmalloc_used_memory() >
500 server.cache_max_memory)
501 {
502 if (cacheFreeOneEntry() == REDIS_ERR) break;
503 }
504 }
505
506 /* ============ Virtual Memory - Blocking clients on missing keys =========== */
507
508 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
509 * If the key is already in memory we don't need to block, regardless
510 * of the storage of the value object for this key:
511 *
512 * - If it's REDIS_DS_MEMORY we have the key in memory.
513 * - If it's REDIS_DS_DIRTY they key was modified, but still in memory.
514 * - if it's REDIS_DS_SAVING the key is being saved by an IO Job. When
515 * the client will lookup the key it will block if the key is still
516 * in this stage but it's more or less the best we can do.
517 *
518 * FIXME: we should try if it's actually better to suspend the client
519 * accessing an object that is being saved, and awake it only when
520 * the saving was completed.
521 *
522 * Otherwise if the key is not in memory, we block the client and start
523 * an IO Job to load it:
524 *
525 * the key is added to the io_keys list in the client structure, and also
526 * in the hash table mapping swapped keys to waiting clients, that is,
527 * server.io_waited_keys. */
528 int waitForSwappedKey(redisClient *c, robj *key) {
529 struct dictEntry *de;
530 list *l;
531
532 /* Return ASAP if the key is in memory */
533 de = dictFind(c->db->dict,key->ptr);
534 if (de != NULL) return 0;
535
536 /* Add the key to the list of keys this client is waiting for.
537 * This maps clients to keys they are waiting for. */
538 listAddNodeTail(c->io_keys,key);
539 incrRefCount(key);
540
541 /* Add the client to the swapped keys => clients waiting map. */
542 de = dictFind(c->db->io_keys,key);
543 if (de == NULL) {
544 int retval;
545
546 /* For every key we take a list of clients blocked for it */
547 l = listCreate();
548 retval = dictAdd(c->db->io_keys,key,l);
549 incrRefCount(key);
550 redisAssert(retval == DICT_OK);
551 } else {
552 l = dictGetEntryVal(de);
553 }
554 listAddNodeTail(l,c);
555
556 /* Are we already loading the key from disk? If not create a job */
557 if (de == NULL)
558 dsCreateIOJob(REDIS_IOJOB_LOAD,c->db,key,NULL);
559 return 1;
560 }
561
562 /* Preload keys for any command with first, last and step values for
563 * the command keys prototype, as defined in the command table. */
564 void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
565 int j, last;
566 if (cmd->vm_firstkey == 0) return;
567 last = cmd->vm_lastkey;
568 if (last < 0) last = argc+last;
569 for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) {
570 redisAssert(j < argc);
571 waitForSwappedKey(c,argv[j]);
572 }
573 }
574
575 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
576 * Note that the number of keys to preload is user-defined, so we need to
577 * apply a sanity check against argc. */
578 void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
579 int i, num;
580 REDIS_NOTUSED(cmd);
581
582 num = atoi(argv[2]->ptr);
583 if (num > (argc-3)) return;
584 for (i = 0; i < num; i++) {
585 waitForSwappedKey(c,argv[3+i]);
586 }
587 }
588
589 /* Preload keys needed to execute the entire MULTI/EXEC block.
590 *
591 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
592 * and will block the client when any command requires a swapped out value. */
593 void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
594 int i, margc;
595 struct redisCommand *mcmd;
596 robj **margv;
597 REDIS_NOTUSED(cmd);
598 REDIS_NOTUSED(argc);
599 REDIS_NOTUSED(argv);
600
601 if (!(c->flags & REDIS_MULTI)) return;
602 for (i = 0; i < c->mstate.count; i++) {
603 mcmd = c->mstate.commands[i].cmd;
604 margc = c->mstate.commands[i].argc;
605 margv = c->mstate.commands[i].argv;
606
607 if (mcmd->vm_preload_proc != NULL) {
608 mcmd->vm_preload_proc(c,mcmd,margc,margv);
609 } else {
610 waitForMultipleSwappedKeys(c,mcmd,margc,margv);
611 }
612 }
613 }
614
615 /* Is this client attempting to run a command against swapped keys?
616 * If so, block it ASAP, load the keys in background, then resume it.
617 *
618 * The important idea about this function is that it can fail! If keys will
619 * still be swapped when the client is resumed, this key lookups will
620 * just block loading keys from disk. In practical terms this should only
621 * happen with SORT BY command or if there is a bug in this function.
622 *
623 * Return 1 if the client is marked as blocked, 0 if the client can
624 * continue as the keys it is going to access appear to be in memory. */
625 int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
626 if (cmd->vm_preload_proc != NULL) {
627 cmd->vm_preload_proc(c,cmd,c->argc,c->argv);
628 } else {
629 waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv);
630 }
631
632 /* If the client was blocked for at least one key, mark it as blocked. */
633 if (listLength(c->io_keys)) {
634 c->flags |= REDIS_IO_WAIT;
635 aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
636 server.cache_blocked_clients++;
637 return 1;
638 } else {
639 return 0;
640 }
641 }
642
643 /* Remove the 'key' from the list of blocked keys for a given client.
644 *
645 * The function returns 1 when there are no longer blocking keys after
646 * the current one was removed (and the client can be unblocked). */
647 int dontWaitForSwappedKey(redisClient *c, robj *key) {
648 list *l;
649 listNode *ln;
650 listIter li;
651 struct dictEntry *de;
652
653 /* The key object might be destroyed when deleted from the c->io_keys
654 * list (and the "key" argument is physically the same object as the
655 * object inside the list), so we need to protect it. */
656 incrRefCount(key);
657
658 /* Remove the key from the list of keys this client is waiting for. */
659 listRewind(c->io_keys,&li);
660 while ((ln = listNext(&li)) != NULL) {
661 if (equalStringObjects(ln->value,key)) {
662 listDelNode(c->io_keys,ln);
663 break;
664 }
665 }
666 redisAssert(ln != NULL);
667
668 /* Remove the client form the key => waiting clients map. */
669 de = dictFind(c->db->io_keys,key);
670 redisAssert(de != NULL);
671 l = dictGetEntryVal(de);
672 ln = listSearchKey(l,c);
673 redisAssert(ln != NULL);
674 listDelNode(l,ln);
675 if (listLength(l) == 0)
676 dictDelete(c->db->io_keys,key);
677
678 decrRefCount(key);
679 return listLength(c->io_keys) == 0;
680 }
681
682 /* Every time we now a key was loaded back in memory, we handle clients
683 * waiting for this key if any. */
684 void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
685 struct dictEntry *de;
686 list *l;
687 listNode *ln;
688 int len;
689
690 de = dictFind(db->io_keys,key);
691 if (!de) return;
692
693 l = dictGetEntryVal(de);
694 len = listLength(l);
695 /* Note: we can't use something like while(listLength(l)) as the list
696 * can be freed by the calling function when we remove the last element. */
697 while (len--) {
698 ln = listFirst(l);
699 redisClient *c = ln->value;
700
701 if (dontWaitForSwappedKey(c,key)) {
702 /* Put the client in the list of clients ready to go as we
703 * loaded all the keys about it. */
704 listAddNodeTail(server.io_ready_clients,c);
705 }
706 }
707 }