1 /* Hash Tables Implementation.
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
49 /* Using dictEnableResize() / dictDisableResize() we make possible to
50 * enable/disable resizing of the hash table as needed. This is very important
51 * for Redis, as we use copy-on-write and don't want to move too much memory
52 * around when there is a child performing saving operations.
54 * Note that even when dict_can_resize is set to 0, not all resizes are
55 * prevented: an hash table is still allowed to grow if the ratio between
56 * the number of elements and the buckets > dict_force_resize_ratio. */
57 static int dict_can_resize
= 1;
58 static unsigned int dict_force_resize_ratio
= 5;
60 /* -------------------------- private prototypes ---------------------------- */
62 static int _dictExpandIfNeeded(dict
*ht
);
63 static unsigned long _dictNextPower(unsigned long size
);
64 static int _dictKeyIndex(dict
*ht
, const void *key
);
65 static int _dictInit(dict
*ht
, dictType
*type
, void *privDataPtr
);
67 /* -------------------------- hash functions -------------------------------- */
69 /* Thomas Wang's 32 bit Mix Function */
70 unsigned int dictIntHashFunction(unsigned int key
)
81 /* Identity hash function for integer keys */
82 unsigned int dictIdentityHashFunction(unsigned int key
)
87 /* Generic hash function (a popular one from Bernstein).
88 * I tested a few and this was the best. */
89 unsigned int dictGenHashFunction(const unsigned char *buf
, int len
) {
90 unsigned int hash
= 5381;
93 hash
= ((hash
<< 5) + hash
) + (*buf
++); /* hash * 33 + c */
97 /* ----------------------------- API implementation ------------------------- */
99 /* Reset an hashtable already initialized with ht_init().
100 * NOTE: This function should only called by ht_destroy(). */
101 static void _dictReset(dictht
*ht
)
109 /* Create a new hash table */
110 dict
*dictCreate(dictType
*type
,
113 dict
*d
= zmalloc(sizeof(*d
));
115 _dictInit(d
,type
,privDataPtr
);
119 /* Initialize the hash table */
120 int _dictInit(dict
*d
, dictType
*type
,
123 _dictReset(&d
->ht
[0]);
124 _dictReset(&d
->ht
[1]);
126 d
->privdata
= privDataPtr
;
132 /* Resize the table to the minimal size that contains all the elements,
133 * but with the invariant of a USER/BUCKETS ratio near to <= 1 */
134 int dictResize(dict
*d
)
138 if (!dict_can_resize
|| dictIsRehashing(d
)) return DICT_ERR
;
139 minimal
= d
->ht
[0].used
;
140 if (minimal
< DICT_HT_INITIAL_SIZE
)
141 minimal
= DICT_HT_INITIAL_SIZE
;
142 return dictExpand(d
, minimal
);
145 /* Expand or create the hashtable */
146 int dictExpand(dict
*d
, unsigned long size
)
148 dictht n
; /* the new hashtable */
149 unsigned long realsize
= _dictNextPower(size
);
151 /* the size is invalid if it is smaller than the number of
152 * elements already inside the hashtable */
153 if (dictIsRehashing(d
) || d
->ht
[0].used
> size
)
156 /* Allocate the new hashtable and initialize all pointers to NULL */
158 n
.sizemask
= realsize
-1;
159 n
.table
= zcalloc(realsize
*sizeof(dictEntry
*));
162 /* Is this the first initialization? If so it's not really a rehashing
163 * we just set the first hash table so that it can accept keys. */
164 if (d
->ht
[0].table
== NULL
) {
169 /* Prepare a second hash table for incremental rehashing */
175 /* Performs N steps of incremental rehashing. Returns 1 if there are still
176 * keys to move from the old to the new hash table, otherwise 0 is returned.
177 * Note that a rehashing step consists in moving a bucket (that may have more
178 * thank one key as we use chaining) from the old to the new hash table. */
179 int dictRehash(dict
*d
, int n
) {
180 if (!dictIsRehashing(d
)) return 0;
183 dictEntry
*de
, *nextde
;
185 /* Check if we already rehashed the whole table... */
186 if (d
->ht
[0].used
== 0) {
187 zfree(d
->ht
[0].table
);
189 _dictReset(&d
->ht
[1]);
194 /* Note that rehashidx can't overflow as we are sure there are more
195 * elements because ht[0].used != 0 */
196 while(d
->ht
[0].table
[d
->rehashidx
] == NULL
) d
->rehashidx
++;
197 de
= d
->ht
[0].table
[d
->rehashidx
];
198 /* Move all the keys in this bucket from the old to the new hash HT */
203 /* Get the index in the new hash table */
204 h
= dictHashKey(d
, de
->key
) & d
->ht
[1].sizemask
;
205 de
->next
= d
->ht
[1].table
[h
];
206 d
->ht
[1].table
[h
] = de
;
211 d
->ht
[0].table
[d
->rehashidx
] = NULL
;
217 long long timeInMilliseconds(void) {
220 gettimeofday(&tv
,NULL
);
221 return (((long long)tv
.tv_sec
)*1000)+(tv
.tv_usec
/1000);
224 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
225 int dictRehashMilliseconds(dict
*d
, int ms
) {
226 long long start
= timeInMilliseconds();
229 while(dictRehash(d
,100)) {
231 if (timeInMilliseconds()-start
> ms
) break;
236 /* This function performs just a step of rehashing, and only if there are
237 * not iterators bound to our hash table. When we have iterators in the middle
238 * of a rehashing we can't mess with the two hash tables otherwise some element
239 * can be missed or duplicated.
241 * This function is called by common lookup or update operations in the
242 * dictionary so that the hash table automatically migrates from H1 to H2
243 * while it is actively used. */
244 static void _dictRehashStep(dict
*d
) {
245 if (d
->iterators
== 0) dictRehash(d
,1);
248 /* Add an element to the target hash table */
249 int dictAdd(dict
*d
, void *key
, void *val
)
255 if (dictIsRehashing(d
)) _dictRehashStep(d
);
257 /* Get the index of the new element, or -1 if
258 * the element already exists. */
259 if ((index
= _dictKeyIndex(d
, key
)) == -1)
262 /* Allocates the memory and stores key */
263 ht
= dictIsRehashing(d
) ? &d
->ht
[1] : &d
->ht
[0];
264 entry
= zmalloc(sizeof(*entry
));
265 entry
->next
= ht
->table
[index
];
266 ht
->table
[index
] = entry
;
269 /* Set the hash entry fields. */
270 dictSetHashKey(d
, entry
, key
);
271 dictSetHashVal(d
, entry
, val
);
275 /* Add an element, discarding the old if the key already exists.
276 * Return 1 if the key was added from scratch, 0 if there was already an
277 * element with such key and dictReplace() just performed a value update
279 int dictReplace(dict
*d
, void *key
, void *val
)
281 dictEntry
*entry
, auxentry
;
283 /* Try to add the element. If the key
284 * does not exists dictAdd will suceed. */
285 if (dictAdd(d
, key
, val
) == DICT_OK
)
287 /* It already exists, get the entry */
288 entry
= dictFind(d
, key
);
289 /* Free the old value and set the new one */
290 /* Set the new value and free the old one. Note that it is important
291 * to do that in this order, as the value may just be exactly the same
292 * as the previous one. In this context, think to reference counting,
293 * you want to increment (set), and then decrement (free), and not the
296 dictSetHashVal(d
, entry
, val
);
297 dictFreeEntryVal(d
, &auxentry
);
301 /* Search and remove an element */
302 static int dictGenericDelete(dict
*d
, const void *key
, int nofree
)
305 dictEntry
*he
, *prevHe
;
308 if (d
->ht
[0].size
== 0) return DICT_ERR
; /* d->ht[0].table is NULL */
309 if (dictIsRehashing(d
)) _dictRehashStep(d
);
310 h
= dictHashKey(d
, key
);
312 for (table
= 0; table
<= 1; table
++) {
313 idx
= h
& d
->ht
[table
].sizemask
;
314 he
= d
->ht
[table
].table
[idx
];
317 if (dictCompareHashKeys(d
, key
, he
->key
)) {
318 /* Unlink the element from the list */
320 prevHe
->next
= he
->next
;
322 d
->ht
[table
].table
[idx
] = he
->next
;
324 dictFreeEntryKey(d
, he
);
325 dictFreeEntryVal(d
, he
);
334 if (!dictIsRehashing(d
)) break;
336 return DICT_ERR
; /* not found */
339 int dictDelete(dict
*ht
, const void *key
) {
340 return dictGenericDelete(ht
,key
,0);
343 int dictDeleteNoFree(dict
*ht
, const void *key
) {
344 return dictGenericDelete(ht
,key
,1);
347 /* Destroy an entire dictionary */
348 int _dictClear(dict
*d
, dictht
*ht
)
352 /* Free all the elements */
353 for (i
= 0; i
< ht
->size
&& ht
->used
> 0; i
++) {
354 dictEntry
*he
, *nextHe
;
356 if ((he
= ht
->table
[i
]) == NULL
) continue;
359 dictFreeEntryKey(d
, he
);
360 dictFreeEntryVal(d
, he
);
366 /* Free the table and the allocated cache structure */
368 /* Re-initialize the table */
370 return DICT_OK
; /* never fails */
373 /* Clear & Release the hash table */
374 void dictRelease(dict
*d
)
376 _dictClear(d
,&d
->ht
[0]);
377 _dictClear(d
,&d
->ht
[1]);
381 dictEntry
*dictFind(dict
*d
, const void *key
)
384 unsigned int h
, idx
, table
;
386 if (d
->ht
[0].size
== 0) return NULL
; /* We don't have a table at all */
387 if (dictIsRehashing(d
)) _dictRehashStep(d
);
388 h
= dictHashKey(d
, key
);
389 for (table
= 0; table
<= 1; table
++) {
390 idx
= h
& d
->ht
[table
].sizemask
;
391 he
= d
->ht
[table
].table
[idx
];
393 if (dictCompareHashKeys(d
, key
, he
->key
))
397 if (!dictIsRehashing(d
)) return NULL
;
402 void *dictFetchValue(dict
*d
, const void *key
) {
405 he
= dictFind(d
,key
);
406 return he
? dictGetEntryVal(he
) : NULL
;
409 dictIterator
*dictGetIterator(dict
*d
)
411 dictIterator
*iter
= zmalloc(sizeof(*iter
));
417 iter
->nextEntry
= NULL
;
421 dictEntry
*dictNext(dictIterator
*iter
)
424 if (iter
->entry
== NULL
) {
425 dictht
*ht
= &iter
->d
->ht
[iter
->table
];
426 if (iter
->index
== -1 && iter
->table
== 0) iter
->d
->iterators
++;
428 if (iter
->index
>= (signed) ht
->size
) {
429 if (dictIsRehashing(iter
->d
) && iter
->table
== 0) {
432 ht
= &iter
->d
->ht
[1];
437 iter
->entry
= ht
->table
[iter
->index
];
439 iter
->entry
= iter
->nextEntry
;
442 /* We need to save the 'next' here, the iterator user
443 * may delete the entry we are returning. */
444 iter
->nextEntry
= iter
->entry
->next
;
451 void dictReleaseIterator(dictIterator
*iter
)
453 if (!(iter
->index
== -1 && iter
->table
== 0)) iter
->d
->iterators
--;
457 /* Return a random entry from the hash table. Useful to
458 * implement randomized algorithms */
459 dictEntry
*dictGetRandomKey(dict
*d
)
461 dictEntry
*he
, *orighe
;
463 int listlen
, listele
;
465 if (dictSize(d
) == 0) return NULL
;
466 if (dictIsRehashing(d
)) _dictRehashStep(d
);
467 if (dictIsRehashing(d
)) {
469 h
= random() % (d
->ht
[0].size
+d
->ht
[1].size
);
470 he
= (h
>= d
->ht
[0].size
) ? d
->ht
[1].table
[h
- d
->ht
[0].size
] :
475 h
= random() & d
->ht
[0].sizemask
;
476 he
= d
->ht
[0].table
[h
];
480 /* Now we found a non empty bucket, but it is a linked
481 * list and we need to get a random element from the list.
482 * The only sane way to do so is counting the elements and
483 * select a random index. */
490 listele
= random() % listlen
;
492 while(listele
--) he
= he
->next
;
496 /* ------------------------- private functions ------------------------------ */
498 /* Expand the hash table if needed */
499 static int _dictExpandIfNeeded(dict
*d
)
501 /* Incremental rehashing already in progress. Return. */
502 if (dictIsRehashing(d
)) return DICT_OK
;
504 /* If the hash table is empty expand it to the intial size. */
505 if (d
->ht
[0].size
== 0) return dictExpand(d
, DICT_HT_INITIAL_SIZE
);
507 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
508 * table (global setting) or we should avoid it but the ratio between
509 * elements/buckets is over the "safe" threshold, we resize doubling
510 * the number of buckets. */
511 if (d
->ht
[0].used
>= d
->ht
[0].size
&&
513 d
->ht
[0].used
/d
->ht
[0].size
> dict_force_resize_ratio
))
515 return dictExpand(d
, ((d
->ht
[0].size
> d
->ht
[0].used
) ?
516 d
->ht
[0].size
: d
->ht
[0].used
)*2);
521 /* Our hash table capability is a power of two */
522 static unsigned long _dictNextPower(unsigned long size
)
524 unsigned long i
= DICT_HT_INITIAL_SIZE
;
526 if (size
>= LONG_MAX
) return LONG_MAX
;
534 /* Returns the index of a free slot that can be populated with
535 * an hash entry for the given 'key'.
536 * If the key already exists, -1 is returned.
538 * Note that if we are in the process of rehashing the hash table, the
539 * index is always returned in the context of the second (new) hash table. */
540 static int _dictKeyIndex(dict
*d
, const void *key
)
542 unsigned int h
, idx
, table
;
545 /* Expand the hashtable if needed */
546 if (_dictExpandIfNeeded(d
) == DICT_ERR
)
548 /* Compute the key hash value */
549 h
= dictHashKey(d
, key
);
550 for (table
= 0; table
<= 1; table
++) {
551 idx
= h
& d
->ht
[table
].sizemask
;
552 /* Search if this slot does not already contain the given key */
553 he
= d
->ht
[table
].table
[idx
];
555 if (dictCompareHashKeys(d
, key
, he
->key
))
559 if (!dictIsRehashing(d
)) break;
564 void dictEmpty(dict
*d
) {
565 _dictClear(d
,&d
->ht
[0]);
566 _dictClear(d
,&d
->ht
[1]);
571 #define DICT_STATS_VECTLEN 50
572 static void _dictPrintStatsHt(dictht
*ht
) {
573 unsigned long i
, slots
= 0, chainlen
, maxchainlen
= 0;
574 unsigned long totchainlen
= 0;
575 unsigned long clvector
[DICT_STATS_VECTLEN
];
578 printf("No stats available for empty dictionaries\n");
582 for (i
= 0; i
< DICT_STATS_VECTLEN
; i
++) clvector
[i
] = 0;
583 for (i
= 0; i
< ht
->size
; i
++) {
586 if (ht
->table
[i
] == NULL
) {
591 /* For each hash entry on this slot... */
598 clvector
[(chainlen
< DICT_STATS_VECTLEN
) ? chainlen
: (DICT_STATS_VECTLEN
-1)]++;
599 if (chainlen
> maxchainlen
) maxchainlen
= chainlen
;
600 totchainlen
+= chainlen
;
602 printf("Hash table stats:\n");
603 printf(" table size: %ld\n", ht
->size
);
604 printf(" number of elements: %ld\n", ht
->used
);
605 printf(" different slots: %ld\n", slots
);
606 printf(" max chain length: %ld\n", maxchainlen
);
607 printf(" avg chain length (counted): %.02f\n", (float)totchainlen
/slots
);
608 printf(" avg chain length (computed): %.02f\n", (float)ht
->used
/slots
);
609 printf(" Chain length distribution:\n");
610 for (i
= 0; i
< DICT_STATS_VECTLEN
-1; i
++) {
611 if (clvector
[i
] == 0) continue;
612 printf(" %s%ld: %ld (%.02f%%)\n",(i
== DICT_STATS_VECTLEN
-1)?">= ":"", i
, clvector
[i
], ((float)clvector
[i
]/ht
->size
)*100);
616 void dictPrintStats(dict
*d
) {
617 _dictPrintStatsHt(&d
->ht
[0]);
618 if (dictIsRehashing(d
)) {
619 printf("-- Rehashing into ht[1]:\n");
620 _dictPrintStatsHt(&d
->ht
[1]);
624 void dictEnableResize(void) {
628 void dictDisableResize(void) {
634 /* The following are just example hash table types implementations.
635 * Not useful for Redis so they are commented out.
638 /* ----------------------- StringCopy Hash Table Type ------------------------*/
640 static unsigned int _dictStringCopyHTHashFunction(const void *key
)
642 return dictGenHashFunction(key
, strlen(key
));
645 static void *_dictStringDup(void *privdata
, const void *key
)
647 int len
= strlen(key
);
648 char *copy
= zmalloc(len
+1);
649 DICT_NOTUSED(privdata
);
651 memcpy(copy
, key
, len
);
656 static int _dictStringCopyHTKeyCompare(void *privdata
, const void *key1
,
659 DICT_NOTUSED(privdata
);
661 return strcmp(key1
, key2
) == 0;
664 static void _dictStringDestructor(void *privdata
, void *key
)
666 DICT_NOTUSED(privdata
);
671 dictType dictTypeHeapStringCopyKey
= {
672 _dictStringCopyHTHashFunction
, /* hash function */
673 _dictStringDup
, /* key dup */
675 _dictStringCopyHTKeyCompare
, /* key compare */
676 _dictStringDestructor
, /* key destructor */
677 NULL
/* val destructor */
680 /* This is like StringCopy but does not auto-duplicate the key.
681 * It's used for intepreter's shared strings. */
682 dictType dictTypeHeapStrings
= {
683 _dictStringCopyHTHashFunction
, /* hash function */
686 _dictStringCopyHTKeyCompare
, /* key compare */
687 _dictStringDestructor
, /* key destructor */
688 NULL
/* val destructor */
691 /* This is like StringCopy but also automatically handle dynamic
692 * allocated C strings as values. */
693 dictType dictTypeHeapStringCopyKeyValue
= {
694 _dictStringCopyHTHashFunction
, /* hash function */
695 _dictStringDup
, /* key dup */
696 _dictStringDup
, /* val dup */
697 _dictStringCopyHTKeyCompare
, /* key compare */
698 _dictStringDestructor
, /* key destructor */
699 _dictStringDestructor
, /* val destructor */