]> git.saurik.com Git - redis.git/blob - src/dscache.c
9c842188a9829caec196a309438c28ee9eebcddf
[redis.git] / src / dscache.c
1 #include "redis.h"
2
3 #include <fcntl.h>
4 #include <pthread.h>
5 #include <math.h>
6 #include <signal.h>
7
8 /* dscache.c - Disk store cache for disk store backend.
9 *
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
13 *
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
16 *
17 * This file implements the whole caching subsystem and contains further
18 * documentation. */
19
20 /* TODO:
21 *
22 * WARNING: most of the following todo items and design issues are no
23 * longer relevant with the new design. Here as a checklist to see if
24 * some old ideas still apply.
25 *
26 * - The WATCH helper will be used to signal the cache system
27 * we need to flush a given key/dbid into disk, adding this key/dbid
28 * pair into a server.ds_cache_dirty linked list AND hash table (so that we
29 * don't add the same thing multiple times).
30 *
31 * - cron() checks if there are elements on this list. When there are things
32 * to flush, we create an IO Job for the I/O thread.
33 * NOTE: We disalbe object sharing when server.ds_enabled == 1 so objects
34 * that are referenced an IO job for flushing on disk are marked as
35 * o->storage == REDIS_DS_SAVING.
36 *
37 * - This is what we do on key lookup:
38 * 1) The key already exists in memory. object->storage == REDIS_DS_MEMORY
39 * or it is object->storage == REDIS_DS_DIRTY:
40 * We don't do nothing special, lookup, return value object pointer.
41 * 2) The key is in memory but object->storage == REDIS_DS_SAVING.
42 * When this happens we block waiting for the I/O thread to process
43 * this object. Then continue.
44 * 3) The key is not in memory. We block to load the key from disk.
45 * Of course the key may not be present at all on the disk store as well,
46 * in such case we just detect this condition and continue, returning
47 * NULL from lookup.
48 *
49 * - Preloading of needed keys:
50 * 1) As it was done with VM, also with this new system we try preloading
51 * keys a client is going to use. We block the client, load keys
52 * using the I/O thread, unblock the client. Same code as VM more or less.
53 *
54 * - Reclaiming memory.
55 * In cron() we detect our memory limit was reached. What we
56 * do is deleting keys that are REDIS_DS_MEMORY, using LRU.
57 *
58 * If this is not enough to return again under the memory limits we also
59 * start to flush keys that need to be synched on disk synchronously,
60 * removing it from the memory. We do this blocking as memory limit is a
61 * much "harder" barrirer in the new design.
62 *
63 * - IO thread operations are no longer stopped for sync loading/saving of
64 * things. When a key is found to be in the process of being saved
65 * we simply wait for the IO thread to end its work.
66 *
67 * Otherwise if there is to load a key without any IO thread operation
68 * just started it is blocking-loaded in the lookup function.
69 *
70 * - What happens when an object is destroyed?
71 *
72 * If o->storage == REDIS_DS_MEMORY then we simply destory the object.
73 * If o->storage == REDIS_DS_DIRTY we can still remove the object. It had
74 * changes not flushed on disk, but is being removed so
75 * who cares.
76 * if o->storage == REDIS_DS_SAVING then the object is being saved so
77 * it is impossible that its refcount == 1, must be at
78 * least two. When the object is saved the storage will
79 * be set back to DS_MEMORY.
80 *
81 * - What happens when keys are deleted?
82 *
83 * We simply schedule a key flush operation as usually, but when the
84 * IO thread will be created the object pointer will be set to NULL
85 * so the IO thread will know that the work to do is to delete the key
86 * from the disk store.
87 *
88 * - What happens with MULTI/EXEC?
89 *
90 * Good question.
91 *
92 * - If dsSet() fails on the write thread log the error and reschedule the
93 * key for flush.
94 *
95 * - Check why INCR will not update the LRU info for the object.
96 *
97 * - Fix/Check the following race condition: a key gets a DEL so there is
98 * a write operation scheduled against this key. Later the same key will
99 * be the argument of a GET, but the write operation was still not
100 * completed (to delete the file). If the GET will be for some reason
101 * a blocking loading (via lookup) we can load the old value on memory.
102 *
103 * This problems can be fixed with negative caching. We can use it
104 * to optimize the system, but also when a key is deleted we mark
105 * it as non existing on disk as well (in a way that this cache
106 * entry can't be evicted, setting time to 0), then we avoid looking at
107 * the disk at all if the key can't be there. When an IO Job complete
108 * a deletion, we set the time of the negative caching to a non zero
109 * value so it will be evicted later.
110 *
111 * Are there other patterns like this where we load stale data?
112 *
113 * Also, make sure that key preloading is ONLY done for keys that are
114 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
115 * data from disk that should instead be deleted.
116 *
117 * - dsSet() use rename(2) in order to avoid corruptions.
118 *
119 * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
120 * impossible since anyway the io_keys stuff will work as lock?
121 */
122
123 /* Virtual Memory is composed mainly of two subsystems:
124 * - Blocking Virutal Memory
125 * - Threaded Virtual Memory I/O
126 * The two parts are not fully decoupled, but functions are split among two
127 * different sections of the source code (delimited by comments) in order to
128 * make more clear what functionality is about the blocking VM and what about
129 * the threaded (not blocking) VM.
130 *
131 * Redis VM design:
132 *
133 * Redis VM is a blocking VM (one that blocks reading swapped values from
134 * disk into memory when a value swapped out is needed in memory) that is made
135 * unblocking by trying to examine the command argument vector in order to
136 * load in background values that will likely be needed in order to exec
137 * the command. The command is executed only once all the relevant keys
138 * are loaded into memory.
139 *
140 * This basically is almost as simple of a blocking VM, but almost as parallel
141 * as a fully non-blocking VM.
142 */
143
144 void spawnIOThread(void);
145
146 /* =================== Virtual Memory - Blocking Side ====================== */
147
148 void dsInit(void) {
149 int pipefds[2];
150 size_t stacksize;
151
152 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
153
154 redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path);
155 /* Open Disk Store */
156 if (dsOpen() != REDIS_OK) {
157 redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
158 exit(1);
159 };
160
161 /* Initialize threaded I/O for Object Cache */
162 server.io_newjobs = listCreate();
163 server.io_processing = listCreate();
164 server.io_processed = listCreate();
165 server.io_ready_clients = listCreate();
166 pthread_mutex_init(&server.io_mutex,NULL);
167 pthread_cond_init(&server.io_condvar,NULL);
168 server.io_active_threads = 0;
169 if (pipe(pipefds) == -1) {
170 redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
171 ,strerror(errno));
172 exit(1);
173 }
174 server.io_ready_pipe_read = pipefds[0];
175 server.io_ready_pipe_write = pipefds[1];
176 redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
177 /* LZF requires a lot of stack */
178 pthread_attr_init(&server.io_threads_attr);
179 pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
180
181 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
182 * multiplying it by 2 in the while loop later will not really help ;) */
183 if (!stacksize) stacksize = 1;
184
185 while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
186 pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
187 /* Listen for events in the threaded I/O pipe */
188 if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
189 vmThreadedIOCompletedJob, NULL) == AE_ERR)
190 oom("creating file event");
191
192 /* Spawn our I/O thread */
193 spawnIOThread();
194 }
195
196 /* Compute how good candidate the specified object is for eviction.
197 * An higher number means a better candidate. */
198 double computeObjectSwappability(robj *o) {
199 /* actual age can be >= minage, but not < minage. As we use wrapping
200 * 21 bit clocks with minutes resolution for the LRU. */
201 return (double) estimateObjectIdleTime(o);
202 }
203
204 /* Try to free one entry from the diskstore object cache */
205 int cacheFreeOneEntry(void) {
206 int j, i;
207 struct dictEntry *best = NULL;
208 double best_swappability = 0;
209 redisDb *best_db = NULL;
210 robj *val;
211 sds key;
212
213 for (j = 0; j < server.dbnum; j++) {
214 redisDb *db = server.db+j;
215 /* Why maxtries is set to 100?
216 * Because this way (usually) we'll find 1 object even if just 1% - 2%
217 * are swappable objects */
218 int maxtries = 100;
219
220 if (dictSize(db->dict) == 0) continue;
221 for (i = 0; i < 5; i++) {
222 dictEntry *de;
223 double swappability;
224 robj keyobj;
225 sds keystr;
226
227 if (maxtries) maxtries--;
228 de = dictGetRandomKey(db->dict);
229 keystr = dictGetEntryKey(de);
230 val = dictGetEntryVal(de);
231 initStaticStringObject(keyobj,keystr);
232
233 /* Don't remove objects that are currently target of a
234 * read or write operation. */
235 if (cacheScheduleIOGetFlags(db,&keyobj) != 0) {
236 if (maxtries) i--; /* don't count this try */
237 continue;
238 }
239 swappability = computeObjectSwappability(val);
240 if (!best || swappability > best_swappability) {
241 best = de;
242 best_swappability = swappability;
243 best_db = db;
244 }
245 }
246 }
247 if (best == NULL) {
248 /* FIXME: If there are objects that are in the write queue
249 * so we can't delete them we should block here, at the cost of
250 * slowness as the object cache memory limit is considered
251 * n hard limit. */
252 return REDIS_ERR;
253 }
254 key = dictGetEntryKey(best);
255 val = dictGetEntryVal(best);
256
257 redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
258 key, best_swappability);
259
260 /* Delete this key from memory */
261 {
262 robj *kobj = createStringObject(key,sdslen(key));
263 dbDelete(best_db,kobj);
264 decrRefCount(kobj);
265 }
266 return REDIS_OK;
267 }
268
269 /* Return true if it's safe to swap out objects in a given moment.
270 * Basically we don't want to swap objects out while there is a BGSAVE
271 * or a BGAEOREWRITE running in backgroud. */
272 int dsCanTouchDiskStore(void) {
273 return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1);
274 }
275
276 /* ==================== Disk store negative caching ========================
277 *
278 * When disk store is enabled, we need negative caching, that is, to remember
279 * keys that are for sure *not* on the disk key-value store.
280 *
281 * This is usefuls because without negative caching cache misses will cost us
282 * a disk lookup, even if the same non existing key is accessed again and again.
283 *
284 * With negative caching we remember that the key is not on disk, so if it's
285 * not in memory and we have a negative cache entry, we don't try a disk
286 * access at all.
287 */
288
289 /* Returns true if the specified key may exists on disk, that is, we don't
290 * have an entry in our negative cache for this key */
291 int cacheKeyMayExist(redisDb *db, robj *key) {
292 return dictFind(db->io_negcache,key) == NULL;
293 }
294
295 /* Set the specified key as an entry that may possibily exist on disk, that is,
296 * remove the negative cache entry for this key if any. */
297 void cacheSetKeyMayExist(redisDb *db, robj *key) {
298 dictDelete(db->io_negcache,key);
299 }
300
301 /* Set the specified key as non existing on disk, that is, create a negative
302 * cache entry for this key. */
303 void cacheSetKeyDoesNotExist(redisDb *db, robj *key) {
304 if (dictReplace(db->io_negcache,key,(void*)time(NULL))) {
305 incrRefCount(key);
306 }
307 }
308
309 /* Remove one entry from negative cache using approximated LRU. */
310 int negativeCacheEvictOneEntry(void) {
311 struct dictEntry *de;
312 robj *best = NULL;
313 redisDb *best_db = NULL;
314 time_t time, best_time = 0;
315 int j;
316
317 for (j = 0; j < server.dbnum; j++) {
318 redisDb *db = server.db+j;
319 int i;
320
321 if (dictSize(db->io_negcache) == 0) continue;
322 for (i = 0; i < 3; i++) {
323 de = dictGetRandomKey(db->io_negcache);
324 time = (time_t) dictGetEntryVal(de);
325
326 if (best == NULL || time < best_time) {
327 best = dictGetEntryKey(de);
328 best_db = db;
329 best_time = time;
330 }
331 }
332 }
333 if (best) {
334 dictDelete(best_db->io_negcache,best);
335 return REDIS_OK;
336 } else {
337 return REDIS_ERR;
338 }
339 }
340
341 /* ================== Disk store cache - Threaded I/O ====================== */
342
343 void freeIOJob(iojob *j) {
344 decrRefCount(j->key);
345 /* j->val can be NULL if the job is about deleting the key from disk. */
346 if (j->val) decrRefCount(j->val);
347 zfree(j);
348 }
349
350 /* Every time a thread finished a Job, it writes a byte into the write side
351 * of an unix pipe in order to "awake" the main thread, and this function
352 * is called. */
353 void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
354 int mask)
355 {
356 char buf[1];
357 int retval, processed = 0, toprocess = -1;
358 REDIS_NOTUSED(el);
359 REDIS_NOTUSED(mask);
360 REDIS_NOTUSED(privdata);
361
362 /* For every byte we read in the read side of the pipe, there is one
363 * I/O job completed to process. */
364 while((retval = read(fd,buf,1)) == 1) {
365 iojob *j;
366 listNode *ln;
367
368 redisLog(REDIS_DEBUG,"Processing I/O completed job");
369
370 /* Get the processed element (the oldest one) */
371 lockThreadedIO();
372 redisAssert(listLength(server.io_processed) != 0);
373 if (toprocess == -1) {
374 toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
375 if (toprocess <= 0) toprocess = 1;
376 }
377 ln = listFirst(server.io_processed);
378 j = ln->value;
379 listDelNode(server.io_processed,ln);
380 unlockThreadedIO();
381
382 /* Post process it in the main thread, as there are things we
383 * can do just here to avoid race conditions and/or invasive locks */
384 redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s",
385 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
386 (unsigned char*)j->key->ptr);
387 if (j->type == REDIS_IOJOB_LOAD) {
388 /* Create the key-value pair in the in-memory database */
389 if (j->val != NULL) {
390 /* Note: it's possible that the key is already in memory
391 * due to a blocking load operation. */
392 if (dbAdd(j->db,j->key,j->val) == REDIS_OK) {
393 incrRefCount(j->val);
394 if (j->expire != -1) setExpire(j->db,j->key,j->expire);
395 }
396 }
397 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_LOADINPROG);
398 handleClientsBlockedOnSwappedKey(j->db,j->key);
399 freeIOJob(j);
400 } else if (j->type == REDIS_IOJOB_SAVE) {
401 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_SAVEINPROG);
402 freeIOJob(j);
403 }
404 processed++;
405 if (processed == toprocess) return;
406 }
407 if (retval < 0 && errno != EAGAIN) {
408 redisLog(REDIS_WARNING,
409 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
410 strerror(errno));
411 }
412 }
413
414 void lockThreadedIO(void) {
415 pthread_mutex_lock(&server.io_mutex);
416 }
417
418 void unlockThreadedIO(void) {
419 pthread_mutex_unlock(&server.io_mutex);
420 }
421
422 void *IOThreadEntryPoint(void *arg) {
423 iojob *j;
424 listNode *ln;
425 REDIS_NOTUSED(arg);
426
427 pthread_detach(pthread_self());
428 lockThreadedIO();
429 while(1) {
430 /* Get a new job to process */
431 if (listLength(server.io_newjobs) == 0) {
432 /* Wait for more work to do */
433 pthread_cond_wait(&server.io_condvar,&server.io_mutex);
434 continue;
435 }
436 redisLog(REDIS_DEBUG,"%ld IO jobs to process",
437 listLength(server.io_newjobs));
438 ln = listFirst(server.io_newjobs);
439 j = ln->value;
440 listDelNode(server.io_newjobs,ln);
441 /* Add the job in the processing queue */
442 listAddNodeTail(server.io_processing,j);
443 ln = listLast(server.io_processing); /* We use ln later to remove it */
444 unlockThreadedIO();
445
446 redisLog(REDIS_DEBUG,"Thread %ld: new job type %s: %p about key '%s'",
447 (long) pthread_self(),
448 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
449 (void*)j, (char*)j->key->ptr);
450
451 /* Process the Job */
452 if (j->type == REDIS_IOJOB_LOAD) {
453 time_t expire;
454
455 j->val = dsGet(j->db,j->key,&expire);
456 if (j->val) j->expire = expire;
457 } else if (j->type == REDIS_IOJOB_SAVE) {
458 if (j->val) {
459 dsSet(j->db,j->key,j->val);
460 } else {
461 dsDel(j->db,j->key);
462 }
463 }
464
465 /* Done: insert the job into the processed queue */
466 redisLog(REDIS_DEBUG,"Thread %ld completed the job: %p (key %s)",
467 (long) pthread_self(), (void*)j, (char*)j->key->ptr);
468
469 lockThreadedIO();
470 listDelNode(server.io_processing,ln);
471 listAddNodeTail(server.io_processed,j);
472
473 /* Signal the main thread there is new stuff to process */
474 redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
475 }
476 /* never reached, but that's the full pattern... */
477 unlockThreadedIO();
478 return NULL;
479 }
480
481 void spawnIOThread(void) {
482 pthread_t thread;
483 sigset_t mask, omask;
484 int err;
485
486 sigemptyset(&mask);
487 sigaddset(&mask,SIGCHLD);
488 sigaddset(&mask,SIGHUP);
489 sigaddset(&mask,SIGPIPE);
490 pthread_sigmask(SIG_SETMASK, &mask, &omask);
491 while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
492 redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
493 strerror(err));
494 usleep(1000000);
495 }
496 pthread_sigmask(SIG_SETMASK, &omask, NULL);
497 server.io_active_threads++;
498 }
499
500 /* Wait that all the pending IO Jobs are processed */
501 void waitEmptyIOJobsQueue(void) {
502 while(1) {
503 int io_processed_len;
504
505 lockThreadedIO();
506 if (listLength(server.io_newjobs) == 0 &&
507 listLength(server.io_processing) == 0)
508 {
509 unlockThreadedIO();
510 return;
511 }
512 /* If there are new jobs we need to signal the thread to
513 * process the next one. */
514 redisLog(REDIS_DEBUG,"waitEmptyIOJobsQueue: new %d, processing %d",
515 listLength(server.io_newjobs),
516 listLength(server.io_processing));
517 /*
518 if (listLength(server.io_newjobs)) {
519 pthread_cond_signal(&server.io_condvar);
520 }
521 */
522 /* While waiting for empty jobs queue condition we post-process some
523 * finshed job, as I/O threads may be hanging trying to write against
524 * the io_ready_pipe_write FD but there are so much pending jobs that
525 * it's blocking. */
526 io_processed_len = listLength(server.io_processed);
527 unlockThreadedIO();
528 if (io_processed_len) {
529 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
530 (void*)0xdeadbeef,0);
531 usleep(1000); /* 1 millisecond */
532 } else {
533 usleep(10000); /* 10 milliseconds */
534 }
535 }
536 }
537
538 /* Process all the IO Jobs already completed by threads but still waiting
539 * processing from the main thread. */
540 void processAllPendingIOJobs(void) {
541 while(1) {
542 int io_processed_len;
543
544 lockThreadedIO();
545 io_processed_len = listLength(server.io_processed);
546 unlockThreadedIO();
547 if (io_processed_len == 0) return;
548 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
549 (void*)0xdeadbeef,0);
550 }
551 }
552
553 /* This function must be called while with threaded IO locked */
554 void queueIOJob(iojob *j) {
555 redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
556 (void*)j, j->type, (char*)j->key->ptr);
557 listAddNodeTail(server.io_newjobs,j);
558 if (server.io_active_threads < server.vm_max_threads)
559 spawnIOThread();
560 }
561
562 void dsCreateIOJob(int type, redisDb *db, robj *key, robj *val) {
563 iojob *j;
564
565 j = zmalloc(sizeof(*j));
566 j->type = type;
567 j->db = db;
568 j->key = key;
569 incrRefCount(key);
570 j->val = val;
571 if (val) incrRefCount(val);
572
573 lockThreadedIO();
574 queueIOJob(j);
575 pthread_cond_signal(&server.io_condvar);
576 unlockThreadedIO();
577 }
578
579 /* ============= Disk store cache - Scheduling of IO operations =============
580 *
581 * We use a queue and an hash table to hold the state of IO operations
582 * so that's fast to lookup if there is already an IO operation in queue
583 * for a given key.
584 *
585 * There are two types of IO operations for a given key:
586 * REDIS_IO_LOAD and REDIS_IO_SAVE.
587 *
588 * The function cacheScheduleIO() function pushes the specified IO operation
589 * in the queue, but avoid adding the same key for the same operation
590 * multiple times, thanks to the associated hash table.
591 *
592 * We take a set of flags per every key, so when the scheduled IO operation
593 * gets moved from the scheduled queue to the actual IO Jobs queue that
594 * is processed by the IO thread, we flag it as IO_LOADINPROG or
595 * IO_SAVEINPROG.
596 *
597 * So for every given key we always know if there is some IO operation
598 * scheduled, or in progress, for this key.
599 *
600 * NOTE: all this is very important in order to guarantee correctness of
601 * the Disk Store Cache. Jobs are always queued here. Load jobs are
602 * queued at the head for faster execution only in the case there is not
603 * already a write operation of some kind for this job.
604 *
605 * So we have ordering, but can do exceptions when there are no already
606 * operations for a given key. Also when we need to block load a given
607 * key, for an immediate lookup operation, we can check if the key can
608 * be accessed synchronously without race conditions (no IN PROGRESS
609 * operations for this key), otherwise we blocking wait for completion. */
610
611 #define REDIS_IO_LOAD 1
612 #define REDIS_IO_SAVE 2
613 #define REDIS_IO_LOADINPROG 4
614 #define REDIS_IO_SAVEINPROG 8
615
616 void cacheScheduleIOAddFlag(redisDb *db, robj *key, long flag) {
617 struct dictEntry *de = dictFind(db->io_queued,key);
618
619 if (!de) {
620 dictAdd(db->io_queued,key,(void*)flag);
621 incrRefCount(key);
622 return;
623 } else {
624 long flags = (long) dictGetEntryVal(de);
625
626 if (flags & flag) {
627 redisLog(REDIS_WARNING,"Adding the same flag again: was: %ld, addede: %ld",flags,flag);
628 redisAssert(!(flags & flag));
629 }
630 flags |= flag;
631 dictGetEntryVal(de) = (void*) flags;
632 }
633 }
634
635 void cacheScheduleIODelFlag(redisDb *db, robj *key, long flag) {
636 struct dictEntry *de = dictFind(db->io_queued,key);
637 long flags;
638
639 redisAssert(de != NULL);
640 flags = (long) dictGetEntryVal(de);
641 redisAssert(flags & flag);
642 flags &= ~flag;
643 if (flags == 0) {
644 dictDelete(db->io_queued,key);
645 } else {
646 dictGetEntryVal(de) = (void*) flags;
647 }
648 }
649
650 int cacheScheduleIOGetFlags(redisDb *db, robj *key) {
651 struct dictEntry *de = dictFind(db->io_queued,key);
652
653 return (de == NULL) ? 0 : ((long) dictGetEntryVal(de));
654 }
655
656 void cacheScheduleIO(redisDb *db, robj *key, int type) {
657 ioop *op;
658 long flags;
659
660 if ((flags = cacheScheduleIOGetFlags(db,key)) & type) return;
661
662 redisLog(REDIS_DEBUG,"Scheduling key %s for %s",
663 key->ptr, type == REDIS_IO_LOAD ? "loading" : "saving");
664 cacheScheduleIOAddFlag(db,key,type);
665 op = zmalloc(sizeof(*op));
666 op->type = type;
667 op->db = db;
668 op->key = key;
669 incrRefCount(key);
670 op->ctime = time(NULL);
671
672 /* Give priority to load operations if there are no save already
673 * in queue for the same key. */
674 if (type == REDIS_IO_LOAD && !(flags & REDIS_IO_SAVE)) {
675 listAddNodeHead(server.cache_io_queue, op);
676 } else {
677 /* FIXME: probably when this happens we want to at least move
678 * the write job about this queue on top, and set the creation time
679 * to a value that will force processing ASAP. */
680 listAddNodeTail(server.cache_io_queue, op);
681 }
682 }
683
684 void cacheCron(void) {
685 time_t now = time(NULL);
686 listNode *ln;
687 int jobs, topush = 0;
688
689 /* Sync stuff on disk, but only if we have less than 100 IO jobs */
690 lockThreadedIO();
691 jobs = listLength(server.io_newjobs);
692 unlockThreadedIO();
693
694 topush = 100-jobs;
695 if (topush < 0) topush = 0;
696 if (topush > (signed)listLength(server.cache_io_queue))
697 topush = listLength(server.cache_io_queue);
698
699 while((ln = listFirst(server.cache_io_queue)) != NULL) {
700 ioop *op = ln->value;
701
702 if (!topush) break;
703 topush--;
704
705 if (op->type == REDIS_IO_LOAD ||
706 (now - op->ctime) >= server.cache_flush_delay)
707 {
708 struct dictEntry *de;
709 robj *val;
710
711 /* Don't add a SAVE job in queue if there is already
712 * a save in progress for the same key. */
713 if (op->type == REDIS_IO_SAVE &&
714 cacheScheduleIOGetFlags(op->db,op->key) & REDIS_IO_SAVEINPROG)
715 {
716 /* Move the operation at the end of the list of there
717 * are other operations. Otherwise break, nothing to do
718 * here. */
719 if (listLength(server.cache_io_queue) > 1) {
720 listDelNode(server.cache_io_queue,ln);
721 listAddNodeTail(server.cache_io_queue,op);
722 continue;
723 } else {
724 break;
725 }
726 }
727
728 redisLog(REDIS_DEBUG,"Creating IO %s Job for key %s",
729 op->type == REDIS_IO_LOAD ? "load" : "save", op->key->ptr);
730
731 if (op->type == REDIS_IO_LOAD) {
732 dsCreateIOJob(REDIS_IOJOB_LOAD,op->db,op->key,NULL);
733 } else {
734 /* Lookup the key, in order to put the current value in the IO
735 * Job. Otherwise if the key does not exists we schedule a disk
736 * store delete operation, setting the value to NULL. */
737 de = dictFind(op->db->dict,op->key->ptr);
738 if (de) {
739 val = dictGetEntryVal(de);
740 } else {
741 /* Setting the value to NULL tells the IO thread to delete
742 * the key on disk. */
743 val = NULL;
744 }
745 dsCreateIOJob(REDIS_IOJOB_SAVE,op->db,op->key,val);
746 }
747 /* Mark the operation as in progress. */
748 cacheScheduleIODelFlag(op->db,op->key,op->type);
749 cacheScheduleIOAddFlag(op->db,op->key,
750 (op->type == REDIS_IO_LOAD) ? REDIS_IO_LOADINPROG :
751 REDIS_IO_SAVEINPROG);
752 /* Finally remove the operation from the queue.
753 * But we'll have trace of it in the hash table. */
754 listDelNode(server.cache_io_queue,ln);
755 decrRefCount(op->key);
756 zfree(op);
757 } else {
758 break; /* too early */
759 }
760 }
761
762 /* Reclaim memory from the object cache */
763 while (server.ds_enabled && zmalloc_used_memory() >
764 server.cache_max_memory)
765 {
766 int done = 0;
767
768 if (cacheFreeOneEntry() == REDIS_OK) done++;
769 if (negativeCacheEvictOneEntry() == REDIS_OK) done++;
770 if (done == 0) break; /* nothing more to free */
771 }
772 }
773
774 /* ========== Disk store cache - Blocking clients on missing keys =========== */
775
776 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
777 * If the key is already in memory we don't need to block.
778 *
779 * FIXME: we should try if it's actually better to suspend the client
780 * accessing an object that is being saved, and awake it only when
781 * the saving was completed.
782 *
783 * Otherwise if the key is not in memory, we block the client and start
784 * an IO Job to load it:
785 *
786 * the key is added to the io_keys list in the client structure, and also
787 * in the hash table mapping swapped keys to waiting clients, that is,
788 * server.io_waited_keys. */
789 int waitForSwappedKey(redisClient *c, robj *key) {
790 struct dictEntry *de;
791 list *l;
792
793 /* Return ASAP if the key is in memory */
794 de = dictFind(c->db->dict,key->ptr);
795 if (de != NULL) return 0;
796
797 /* Don't wait for keys we are sure are not on disk either */
798 if (!cacheKeyMayExist(c->db,key)) return 0;
799
800 /* Add the key to the list of keys this client is waiting for.
801 * This maps clients to keys they are waiting for. */
802 listAddNodeTail(c->io_keys,key);
803 incrRefCount(key);
804
805 /* Add the client to the swapped keys => clients waiting map. */
806 de = dictFind(c->db->io_keys,key);
807 if (de == NULL) {
808 int retval;
809
810 /* For every key we take a list of clients blocked for it */
811 l = listCreate();
812 retval = dictAdd(c->db->io_keys,key,l);
813 incrRefCount(key);
814 redisAssert(retval == DICT_OK);
815 } else {
816 l = dictGetEntryVal(de);
817 }
818 listAddNodeTail(l,c);
819
820 /* Are we already loading the key from disk? If not create a job */
821 if (de == NULL)
822 cacheScheduleIO(c->db,key,REDIS_IO_LOAD);
823 return 1;
824 }
825
826 /* Preload keys for any command with first, last and step values for
827 * the command keys prototype, as defined in the command table. */
828 void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
829 int j, last;
830 if (cmd->vm_firstkey == 0) return;
831 last = cmd->vm_lastkey;
832 if (last < 0) last = argc+last;
833 for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) {
834 redisAssert(j < argc);
835 waitForSwappedKey(c,argv[j]);
836 }
837 }
838
839 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
840 * Note that the number of keys to preload is user-defined, so we need to
841 * apply a sanity check against argc. */
842 void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
843 int i, num;
844 REDIS_NOTUSED(cmd);
845
846 num = atoi(argv[2]->ptr);
847 if (num > (argc-3)) return;
848 for (i = 0; i < num; i++) {
849 waitForSwappedKey(c,argv[3+i]);
850 }
851 }
852
853 /* Preload keys needed to execute the entire MULTI/EXEC block.
854 *
855 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
856 * and will block the client when any command requires a swapped out value. */
857 void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
858 int i, margc;
859 struct redisCommand *mcmd;
860 robj **margv;
861 REDIS_NOTUSED(cmd);
862 REDIS_NOTUSED(argc);
863 REDIS_NOTUSED(argv);
864
865 if (!(c->flags & REDIS_MULTI)) return;
866 for (i = 0; i < c->mstate.count; i++) {
867 mcmd = c->mstate.commands[i].cmd;
868 margc = c->mstate.commands[i].argc;
869 margv = c->mstate.commands[i].argv;
870
871 if (mcmd->vm_preload_proc != NULL) {
872 mcmd->vm_preload_proc(c,mcmd,margc,margv);
873 } else {
874 waitForMultipleSwappedKeys(c,mcmd,margc,margv);
875 }
876 }
877 }
878
879 /* Is this client attempting to run a command against swapped keys?
880 * If so, block it ASAP, load the keys in background, then resume it.
881 *
882 * The important idea about this function is that it can fail! If keys will
883 * still be swapped when the client is resumed, this key lookups will
884 * just block loading keys from disk. In practical terms this should only
885 * happen with SORT BY command or if there is a bug in this function.
886 *
887 * Return 1 if the client is marked as blocked, 0 if the client can
888 * continue as the keys it is going to access appear to be in memory. */
889 int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
890 if (cmd->vm_preload_proc != NULL) {
891 cmd->vm_preload_proc(c,cmd,c->argc,c->argv);
892 } else {
893 waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv);
894 }
895
896 /* If the client was blocked for at least one key, mark it as blocked. */
897 if (listLength(c->io_keys)) {
898 c->flags |= REDIS_IO_WAIT;
899 aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
900 server.cache_blocked_clients++;
901 return 1;
902 } else {
903 return 0;
904 }
905 }
906
907 /* Remove the 'key' from the list of blocked keys for a given client.
908 *
909 * The function returns 1 when there are no longer blocking keys after
910 * the current one was removed (and the client can be unblocked). */
911 int dontWaitForSwappedKey(redisClient *c, robj *key) {
912 list *l;
913 listNode *ln;
914 listIter li;
915 struct dictEntry *de;
916
917 /* The key object might be destroyed when deleted from the c->io_keys
918 * list (and the "key" argument is physically the same object as the
919 * object inside the list), so we need to protect it. */
920 incrRefCount(key);
921
922 /* Remove the key from the list of keys this client is waiting for. */
923 listRewind(c->io_keys,&li);
924 while ((ln = listNext(&li)) != NULL) {
925 if (equalStringObjects(ln->value,key)) {
926 listDelNode(c->io_keys,ln);
927 break;
928 }
929 }
930 redisAssert(ln != NULL);
931
932 /* Remove the client form the key => waiting clients map. */
933 de = dictFind(c->db->io_keys,key);
934 redisAssert(de != NULL);
935 l = dictGetEntryVal(de);
936 ln = listSearchKey(l,c);
937 redisAssert(ln != NULL);
938 listDelNode(l,ln);
939 if (listLength(l) == 0)
940 dictDelete(c->db->io_keys,key);
941
942 decrRefCount(key);
943 return listLength(c->io_keys) == 0;
944 }
945
946 /* Every time we now a key was loaded back in memory, we handle clients
947 * waiting for this key if any. */
948 void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
949 struct dictEntry *de;
950 list *l;
951 listNode *ln;
952 int len;
953
954 de = dictFind(db->io_keys,key);
955 if (!de) return;
956
957 l = dictGetEntryVal(de);
958 len = listLength(l);
959 /* Note: we can't use something like while(listLength(l)) as the list
960 * can be freed by the calling function when we remove the last element. */
961 while (len--) {
962 ln = listFirst(l);
963 redisClient *c = ln->value;
964
965 if (dontWaitForSwappedKey(c,key)) {
966 /* Put the client in the list of clients ready to go as we
967 * loaded all the keys about it. */
968 listAddNodeTail(server.io_ready_clients,c);
969 }
970 }
971 }