8 /* dscache.c - Disk store cache for disk store backend.
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
17 * This file implements the whole caching subsystem and contains further
22 * WARNING: most of the following todo items and design issues are no
23 * longer relevant with the new design. Here as a checklist to see if
24 * some old ideas still apply.
26 * - What happens when an object is destroyed?
28 * If the object is destroyed since semantically it was deleted or
29 * replaced with something new, we don't care if there was a SAVE
30 * job pending for it. Anyway when the IO JOb will be created we'll get
31 * the pointer of the current value.
33 * If the object is already a REDIS_IO_SAVEINPROG object, then it is
34 * impossible that we get a decrRefCount() that will reach refcount of zero
35 * since the object is both in the dataset and in the io job entry.
37 * - What happens with MULTI/EXEC?
39 * Good question. Without some kind of versioning with a global counter
40 * it is not possible to have trasactions on disk, but they are still
41 * useful since from the point of view of memory and client bugs it is
42 * a protection anyway. Also it's useful for WATCH.
44 * Btw there is to check what happens when WATCH gets combined to keys
45 * that gets removed from the object cache. Should be save but better
48 * - Check if/why INCR will not update the LRU info for the object.
50 * - Fix/Check the following race condition: a key gets a DEL so there is
51 * a write operation scheduled against this key. Later the same key will
52 * be the argument of a GET, but the write operation was still not
53 * completed (to delete the file). If the GET will be for some reason
54 * a blocking loading (via lookup) we can load the old value on memory.
56 * This problems can be fixed with negative caching. We can use it
57 * to optimize the system, but also when a key is deleted we mark
58 * it as non existing on disk as well (in a way that this cache
59 * entry can't be evicted, setting time to 0), then we avoid looking at
60 * the disk at all if the key can't be there. When an IO Job complete
61 * a deletion, we set the time of the negative caching to a non zero
62 * value so it will be evicted later.
64 * Are there other patterns like this where we load stale data?
66 * Also, make sure that key preloading is ONLY done for keys that are
67 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
68 * data from disk that should instead be deleted.
70 * - dsSet() should use rename(2) in order to avoid corruptions.
72 * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
73 * impossible since anyway the io_keys stuff will work as lock?
75 * - Serialize special encoded things in a raw form.
77 * - When putting IO read operations on top of the queue, do this only if
78 * the already-on-top operation is not a save or if it is a save that
79 * is scheduled for later execution. If there is a save that is ready to
80 * fire, let's insert the load operation just before the first save that
81 * is scheduled for later exection for instance.
83 * - Support MULTI/EXEC transactions via a journal file, that is played on
84 * startup to check if there is cleanup to do. This way we can implement
85 * transactions with our simple file based KV store.
88 /* Virtual Memory is composed mainly of two subsystems:
89 * - Blocking Virutal Memory
90 * - Threaded Virtual Memory I/O
91 * The two parts are not fully decoupled, but functions are split among two
92 * different sections of the source code (delimited by comments) in order to
93 * make more clear what functionality is about the blocking VM and what about
94 * the threaded (not blocking) VM.
98 * Redis VM is a blocking VM (one that blocks reading swapped values from
99 * disk into memory when a value swapped out is needed in memory) that is made
100 * unblocking by trying to examine the command argument vector in order to
101 * load in background values that will likely be needed in order to exec
102 * the command. The command is executed only once all the relevant keys
103 * are loaded into memory.
105 * This basically is almost as simple of a blocking VM, but almost as parallel
106 * as a fully non-blocking VM.
109 void spawnIOThread(void);
110 int cacheScheduleIOPushJobs(int onlyloads
);
112 /* =================== Virtual Memory - Blocking Side ====================== */
118 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
120 redisLog(REDIS_NOTICE
,"Opening Disk Store: %s", server
.ds_path
);
121 /* Open Disk Store */
122 if (dsOpen() != REDIS_OK
) {
123 redisLog(REDIS_WARNING
,"Fatal error opening disk store. Exiting.");
127 /* Initialize threaded I/O for Object Cache */
128 server
.io_newjobs
= listCreate();
129 server
.io_processing
= listCreate();
130 server
.io_processed
= listCreate();
131 server
.io_ready_clients
= listCreate();
132 pthread_mutex_init(&server
.io_mutex
,NULL
);
133 pthread_cond_init(&server
.io_condvar
,NULL
);
134 server
.io_active_threads
= 0;
135 if (pipe(pipefds
) == -1) {
136 redisLog(REDIS_WARNING
,"Unable to intialized DS: pipe(2): %s. Exiting."
140 server
.io_ready_pipe_read
= pipefds
[0];
141 server
.io_ready_pipe_write
= pipefds
[1];
142 redisAssert(anetNonBlock(NULL
,server
.io_ready_pipe_read
) != ANET_ERR
);
143 /* LZF requires a lot of stack */
144 pthread_attr_init(&server
.io_threads_attr
);
145 pthread_attr_getstacksize(&server
.io_threads_attr
, &stacksize
);
147 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
148 * multiplying it by 2 in the while loop later will not really help ;) */
149 if (!stacksize
) stacksize
= 1;
151 while (stacksize
< REDIS_THREAD_STACK_SIZE
) stacksize
*= 2;
152 pthread_attr_setstacksize(&server
.io_threads_attr
, stacksize
);
153 /* Listen for events in the threaded I/O pipe */
154 if (aeCreateFileEvent(server
.el
, server
.io_ready_pipe_read
, AE_READABLE
,
155 vmThreadedIOCompletedJob
, NULL
) == AE_ERR
)
156 oom("creating file event");
158 /* Spawn our I/O thread */
162 /* Compute how good candidate the specified object is for eviction.
163 * An higher number means a better candidate. */
164 double computeObjectSwappability(robj
*o
) {
165 /* actual age can be >= minage, but not < minage. As we use wrapping
166 * 21 bit clocks with minutes resolution for the LRU. */
167 return (double) estimateObjectIdleTime(o
);
170 /* Try to free one entry from the diskstore object cache */
171 int cacheFreeOneEntry(void) {
173 struct dictEntry
*best
= NULL
;
174 double best_swappability
= 0;
175 redisDb
*best_db
= NULL
;
179 for (j
= 0; j
< server
.dbnum
; j
++) {
180 redisDb
*db
= server
.db
+j
;
181 /* Why maxtries is set to 100?
182 * Because this way (usually) we'll find 1 object even if just 1% - 2%
183 * are swappable objects */
186 if (dictSize(db
->dict
) == 0) continue;
187 for (i
= 0; i
< 5; i
++) {
193 if (maxtries
) maxtries
--;
194 de
= dictGetRandomKey(db
->dict
);
195 keystr
= dictGetEntryKey(de
);
196 val
= dictGetEntryVal(de
);
197 initStaticStringObject(keyobj
,keystr
);
199 /* Don't remove objects that are currently target of a
200 * read or write operation. */
201 if (cacheScheduleIOGetFlags(db
,&keyobj
) != 0) {
202 if (maxtries
) i
--; /* don't count this try */
205 swappability
= computeObjectSwappability(val
);
206 if (!best
|| swappability
> best_swappability
) {
208 best_swappability
= swappability
;
214 /* Was not able to fix a single object... we should check if our
215 * IO queues have stuff in queue, and try to consume the queue
216 * otherwise we'll use an infinite amount of memory if changes to
217 * the dataset are faster than I/O */
218 if (listLength(server
.cache_io_queue
) > 0) {
219 cacheScheduleIOPushJobs(0);
220 waitEmptyIOJobsQueue();
221 processAllPendingIOJobs();
224 /* Nothing to free at all... */
227 key
= dictGetEntryKey(best
);
228 val
= dictGetEntryVal(best
);
230 redisLog(REDIS_DEBUG
,"Key selected for cache eviction: %s swappability:%f",
231 key
, best_swappability
);
233 /* Delete this key from memory */
235 robj
*kobj
= createStringObject(key
,sdslen(key
));
236 dbDelete(best_db
,kobj
);
242 /* Return true if it's safe to swap out objects in a given moment.
243 * Basically we don't want to swap objects out while there is a BGSAVE
244 * or a BGAEOREWRITE running in backgroud. */
245 int dsCanTouchDiskStore(void) {
246 return (server
.bgsavechildpid
== -1 && server
.bgrewritechildpid
== -1);
249 /* ==================== Disk store negative caching ========================
251 * When disk store is enabled, we need negative caching, that is, to remember
252 * keys that are for sure *not* on the disk key-value store.
254 * This is usefuls because without negative caching cache misses will cost us
255 * a disk lookup, even if the same non existing key is accessed again and again.
257 * With negative caching we remember that the key is not on disk, so if it's
258 * not in memory and we have a negative cache entry, we don't try a disk
262 /* Returns true if the specified key may exists on disk, that is, we don't
263 * have an entry in our negative cache for this key */
264 int cacheKeyMayExist(redisDb
*db
, robj
*key
) {
265 return dictFind(db
->io_negcache
,key
) == NULL
;
268 /* Set the specified key as an entry that may possibily exist on disk, that is,
269 * remove the negative cache entry for this key if any. */
270 void cacheSetKeyMayExist(redisDb
*db
, robj
*key
) {
271 dictDelete(db
->io_negcache
,key
);
274 /* Set the specified key as non existing on disk, that is, create a negative
275 * cache entry for this key. */
276 void cacheSetKeyDoesNotExist(redisDb
*db
, robj
*key
) {
277 if (dictReplace(db
->io_negcache
,key
,(void*)time(NULL
))) {
282 /* Remove one entry from negative cache using approximated LRU. */
283 int negativeCacheEvictOneEntry(void) {
284 struct dictEntry
*de
;
286 redisDb
*best_db
= NULL
;
287 time_t time
, best_time
= 0;
290 for (j
= 0; j
< server
.dbnum
; j
++) {
291 redisDb
*db
= server
.db
+j
;
294 if (dictSize(db
->io_negcache
) == 0) continue;
295 for (i
= 0; i
< 3; i
++) {
296 de
= dictGetRandomKey(db
->io_negcache
);
297 time
= (time_t) dictGetEntryVal(de
);
299 if (best
== NULL
|| time
< best_time
) {
300 best
= dictGetEntryKey(de
);
307 dictDelete(best_db
->io_negcache
,best
);
314 /* ================== Disk store cache - Threaded I/O ====================== */
316 void freeIOJob(iojob
*j
) {
317 decrRefCount(j
->key
);
318 /* j->val can be NULL if the job is about deleting the key from disk. */
319 if (j
->val
) decrRefCount(j
->val
);
323 /* Every time a thread finished a Job, it writes a byte into the write side
324 * of an unix pipe in order to "awake" the main thread, and this function
326 void vmThreadedIOCompletedJob(aeEventLoop
*el
, int fd
, void *privdata
,
330 int retval
, processed
= 0, toprocess
= -1;
333 REDIS_NOTUSED(privdata
);
335 /* For every byte we read in the read side of the pipe, there is one
336 * I/O job completed to process. */
337 while((retval
= read(fd
,buf
,1)) == 1) {
341 redisLog(REDIS_DEBUG
,"Processing I/O completed job");
343 /* Get the processed element (the oldest one) */
345 redisAssert(listLength(server
.io_processed
) != 0);
346 if (toprocess
== -1) {
347 toprocess
= (listLength(server
.io_processed
)*REDIS_MAX_COMPLETED_JOBS_PROCESSED
)/100;
348 if (toprocess
<= 0) toprocess
= 1;
350 ln
= listFirst(server
.io_processed
);
352 listDelNode(server
.io_processed
,ln
);
355 /* Post process it in the main thread, as there are things we
356 * can do just here to avoid race conditions and/or invasive locks */
357 redisLog(REDIS_DEBUG
,"COMPLETED Job type %s, key: %s",
358 (j
->type
== REDIS_IOJOB_LOAD
) ? "load" : "save",
359 (unsigned char*)j
->key
->ptr
);
360 if (j
->type
== REDIS_IOJOB_LOAD
) {
361 /* Create the key-value pair in the in-memory database */
362 if (j
->val
!= NULL
) {
363 /* Note: it's possible that the key is already in memory
364 * due to a blocking load operation. */
365 if (dbAdd(j
->db
,j
->key
,j
->val
) == REDIS_OK
) {
366 incrRefCount(j
->val
);
367 if (j
->expire
!= -1) setExpire(j
->db
,j
->key
,j
->expire
);
370 /* Key not found on disk. If it is also not in memory
371 * as a cached object, nor there is a job writing it
372 * in background, we are sure the key does not exist
375 * So we set a negative cache entry avoiding that the
376 * resumed client will block load what does not exist... */
377 if (dictFind(j
->db
->dict
,j
->key
->ptr
) == NULL
&&
378 (cacheScheduleIOGetFlags(j
->db
,j
->key
) &
379 (REDIS_IO_SAVE
|REDIS_IO_SAVEINPROG
)) == 0)
381 cacheSetKeyDoesNotExist(j
->db
,j
->key
);
384 cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_LOADINPROG
);
385 handleClientsBlockedOnSwappedKey(j
->db
,j
->key
);
387 } else if (j
->type
== REDIS_IOJOB_SAVE
) {
388 cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_SAVEINPROG
);
392 if (processed
== toprocess
) return;
394 if (retval
< 0 && errno
!= EAGAIN
) {
395 redisLog(REDIS_WARNING
,
396 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
401 void lockThreadedIO(void) {
402 pthread_mutex_lock(&server
.io_mutex
);
405 void unlockThreadedIO(void) {
406 pthread_mutex_unlock(&server
.io_mutex
);
409 void *IOThreadEntryPoint(void *arg
) {
414 pthread_detach(pthread_self());
417 /* Get a new job to process */
418 if (listLength(server
.io_newjobs
) == 0) {
419 /* Wait for more work to do */
420 pthread_cond_wait(&server
.io_condvar
,&server
.io_mutex
);
423 redisLog(REDIS_DEBUG
,"%ld IO jobs to process",
424 listLength(server
.io_newjobs
));
425 ln
= listFirst(server
.io_newjobs
);
427 listDelNode(server
.io_newjobs
,ln
);
428 /* Add the job in the processing queue */
429 listAddNodeTail(server
.io_processing
,j
);
430 ln
= listLast(server
.io_processing
); /* We use ln later to remove it */
433 redisLog(REDIS_DEBUG
,"Thread %ld: new job type %s: %p about key '%s'",
434 (long) pthread_self(),
435 (j
->type
== REDIS_IOJOB_LOAD
) ? "load" : "save",
436 (void*)j
, (char*)j
->key
->ptr
);
438 /* Process the Job */
439 if (j
->type
== REDIS_IOJOB_LOAD
) {
442 j
->val
= dsGet(j
->db
,j
->key
,&expire
);
443 if (j
->val
) j
->expire
= expire
;
444 } else if (j
->type
== REDIS_IOJOB_SAVE
) {
446 dsSet(j
->db
,j
->key
,j
->val
);
452 /* Done: insert the job into the processed queue */
453 redisLog(REDIS_DEBUG
,"Thread %ld completed the job: %p (key %s)",
454 (long) pthread_self(), (void*)j
, (char*)j
->key
->ptr
);
457 listDelNode(server
.io_processing
,ln
);
458 listAddNodeTail(server
.io_processed
,j
);
460 /* Signal the main thread there is new stuff to process */
461 redisAssert(write(server
.io_ready_pipe_write
,"x",1) == 1);
463 /* never reached, but that's the full pattern... */
468 void spawnIOThread(void) {
470 sigset_t mask
, omask
;
474 sigaddset(&mask
,SIGCHLD
);
475 sigaddset(&mask
,SIGHUP
);
476 sigaddset(&mask
,SIGPIPE
);
477 pthread_sigmask(SIG_SETMASK
, &mask
, &omask
);
478 while ((err
= pthread_create(&thread
,&server
.io_threads_attr
,IOThreadEntryPoint
,NULL
)) != 0) {
479 redisLog(REDIS_WARNING
,"Unable to spawn an I/O thread: %s",
483 pthread_sigmask(SIG_SETMASK
, &omask
, NULL
);
484 server
.io_active_threads
++;
487 /* Wait that all the pending IO Jobs are processed */
488 void waitEmptyIOJobsQueue(void) {
490 int io_processed_len
;
493 if (listLength(server
.io_newjobs
) == 0 &&
494 listLength(server
.io_processing
) == 0)
499 /* If there are new jobs we need to signal the thread to
500 * process the next one. */
501 redisLog(REDIS_DEBUG
,"waitEmptyIOJobsQueue: new %d, processing %d",
502 listLength(server
.io_newjobs
),
503 listLength(server
.io_processing
));
505 /* FIXME: signal or not?
506 if (listLength(server.io_newjobs)) {
507 pthread_cond_signal(&server.io_condvar);
510 /* While waiting for empty jobs queue condition we post-process some
511 * finshed job, as I/O threads may be hanging trying to write against
512 * the io_ready_pipe_write FD but there are so much pending jobs that
514 io_processed_len
= listLength(server
.io_processed
);
516 if (io_processed_len
) {
517 vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
,
518 (void*)0xdeadbeef,0);
519 /* FIXME: probably wiser to drop this sleeps. Anyway
520 * the contention on the IO thread will avoid we to loop
522 usleep(1000); /* 1 millisecond */
524 /* FIXME: same as fixme above. */
525 usleep(10000); /* 10 milliseconds */
530 /* Process all the IO Jobs already completed by threads but still waiting
531 * processing from the main thread. */
532 void processAllPendingIOJobs(void) {
534 int io_processed_len
;
537 io_processed_len
= listLength(server
.io_processed
);
539 if (io_processed_len
== 0) return;
540 vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
,
541 (void*)0xdeadbeef,0);
545 /* This function must be called while with threaded IO locked */
546 void queueIOJob(iojob
*j
) {
547 redisLog(REDIS_DEBUG
,"Queued IO Job %p type %d about key '%s'\n",
548 (void*)j
, j
->type
, (char*)j
->key
->ptr
);
549 listAddNodeTail(server
.io_newjobs
,j
);
550 if (server
.io_active_threads
< server
.vm_max_threads
)
554 void dsCreateIOJob(int type
, redisDb
*db
, robj
*key
, robj
*val
) {
557 j
= zmalloc(sizeof(*j
));
563 if (val
) incrRefCount(val
);
567 pthread_cond_signal(&server
.io_condvar
);
571 /* ============= Disk store cache - Scheduling of IO operations =============
573 * We use a queue and an hash table to hold the state of IO operations
574 * so that's fast to lookup if there is already an IO operation in queue
577 * There are two types of IO operations for a given key:
578 * REDIS_IO_LOAD and REDIS_IO_SAVE.
580 * The function cacheScheduleIO() function pushes the specified IO operation
581 * in the queue, but avoid adding the same key for the same operation
582 * multiple times, thanks to the associated hash table.
584 * We take a set of flags per every key, so when the scheduled IO operation
585 * gets moved from the scheduled queue to the actual IO Jobs queue that
586 * is processed by the IO thread, we flag it as IO_LOADINPROG or
589 * So for every given key we always know if there is some IO operation
590 * scheduled, or in progress, for this key.
592 * NOTE: all this is very important in order to guarantee correctness of
593 * the Disk Store Cache. Jobs are always queued here. Load jobs are
594 * queued at the head for faster execution only in the case there is not
595 * already a write operation of some kind for this job.
597 * So we have ordering, but can do exceptions when there are no already
598 * operations for a given key. Also when we need to block load a given
599 * key, for an immediate lookup operation, we can check if the key can
600 * be accessed synchronously without race conditions (no IN PROGRESS
601 * operations for this key), otherwise we blocking wait for completion. */
603 #define REDIS_IO_LOAD 1
604 #define REDIS_IO_SAVE 2
605 #define REDIS_IO_LOADINPROG 4
606 #define REDIS_IO_SAVEINPROG 8
608 void cacheScheduleIOAddFlag(redisDb
*db
, robj
*key
, long flag
) {
609 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
612 dictAdd(db
->io_queued
,key
,(void*)flag
);
616 long flags
= (long) dictGetEntryVal(de
);
619 redisLog(REDIS_WARNING
,"Adding the same flag again: was: %ld, addede: %ld",flags
,flag
);
620 redisAssert(!(flags
& flag
));
623 dictGetEntryVal(de
) = (void*) flags
;
627 void cacheScheduleIODelFlag(redisDb
*db
, robj
*key
, long flag
) {
628 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
631 redisAssert(de
!= NULL
);
632 flags
= (long) dictGetEntryVal(de
);
633 redisAssert(flags
& flag
);
636 dictDelete(db
->io_queued
,key
);
638 dictGetEntryVal(de
) = (void*) flags
;
642 int cacheScheduleIOGetFlags(redisDb
*db
, robj
*key
) {
643 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
645 return (de
== NULL
) ? 0 : ((long) dictGetEntryVal(de
));
648 void cacheScheduleIO(redisDb
*db
, robj
*key
, int type
) {
652 if ((flags
= cacheScheduleIOGetFlags(db
,key
)) & type
) return;
654 redisLog(REDIS_DEBUG
,"Scheduling key %s for %s",
655 key
->ptr
, type
== REDIS_IO_LOAD
? "loading" : "saving");
656 cacheScheduleIOAddFlag(db
,key
,type
);
657 op
= zmalloc(sizeof(*op
));
662 op
->ctime
= time(NULL
);
664 /* Give priority to load operations if there are no save already
665 * in queue for the same key. */
666 if (type
== REDIS_IO_LOAD
&& !(flags
& REDIS_IO_SAVE
)) {
667 listAddNodeHead(server
.cache_io_queue
, op
);
668 cacheScheduleIOPushJobs(1);
670 /* FIXME: probably when this happens we want to at least move
671 * the write job about this queue on top, and set the creation time
672 * to a value that will force processing ASAP. */
673 listAddNodeTail(server
.cache_io_queue
, op
);
677 /* Push scheduled IO operations into IO Jobs that the IO thread can process.
678 * If 'onlyloads' is true only IO_LOAD jobs are processed: this is useful
679 * since it's save to push LOAD IO jobs from any place of the code, while
680 * SAVE io jobs should never be pushed while we are processing a command
681 * (not protected by lookupKey() that will block on keys in IO_SAVEINPROG
683 #define MAX_IO_JOBS_QUEUE 100
684 int cacheScheduleIOPushJobs(int onlyloads
) {
685 time_t now
= time(NULL
);
687 int jobs
, topush
= 0, pushed
= 0;
689 /* Sync stuff on disk, but only if we have less
690 * than MAX_IO_JOBS_QUEUE IO jobs. */
692 jobs
= listLength(server
.io_newjobs
);
695 topush
= MAX_IO_JOBS_QUEUE
-jobs
;
696 if (topush
< 0) topush
= 0;
697 if (topush
> (signed)listLength(server
.cache_io_queue
))
698 topush
= listLength(server
.cache_io_queue
);
700 while((ln
= listFirst(server
.cache_io_queue
)) != NULL
) {
701 ioop
*op
= ln
->value
;
706 if (op
->type
== REDIS_IO_LOAD
||
707 (!onlyloads
&& (now
- op
->ctime
) >= server
.cache_flush_delay
))
709 struct dictEntry
*de
;
712 /* Don't add a SAVE job in queue if there is already
713 * a save in progress for the same key. */
714 if (op
->type
== REDIS_IO_SAVE
&&
715 cacheScheduleIOGetFlags(op
->db
,op
->key
) & REDIS_IO_SAVEINPROG
)
717 /* Move the operation at the end of the list of there
718 * are other operations. Otherwise break, nothing to do
720 if (listLength(server
.cache_io_queue
) > 1) {
721 listDelNode(server
.cache_io_queue
,ln
);
722 listAddNodeTail(server
.cache_io_queue
,op
);
729 redisLog(REDIS_DEBUG
,"Creating IO %s Job for key %s",
730 op
->type
== REDIS_IO_LOAD
? "load" : "save", op
->key
->ptr
);
732 if (op
->type
== REDIS_IO_LOAD
) {
733 dsCreateIOJob(REDIS_IOJOB_LOAD
,op
->db
,op
->key
,NULL
);
735 /* Lookup the key, in order to put the current value in the IO
736 * Job. Otherwise if the key does not exists we schedule a disk
737 * store delete operation, setting the value to NULL. */
738 de
= dictFind(op
->db
->dict
,op
->key
->ptr
);
740 val
= dictGetEntryVal(de
);
742 /* Setting the value to NULL tells the IO thread to delete
743 * the key on disk. */
746 dsCreateIOJob(REDIS_IOJOB_SAVE
,op
->db
,op
->key
,val
);
748 /* Mark the operation as in progress. */
749 cacheScheduleIODelFlag(op
->db
,op
->key
,op
->type
);
750 cacheScheduleIOAddFlag(op
->db
,op
->key
,
751 (op
->type
== REDIS_IO_LOAD
) ? REDIS_IO_LOADINPROG
:
752 REDIS_IO_SAVEINPROG
);
753 /* Finally remove the operation from the queue.
754 * But we'll have trace of it in the hash table. */
755 listDelNode(server
.cache_io_queue
,ln
);
756 decrRefCount(op
->key
);
760 break; /* too early */
766 void cacheCron(void) {
768 cacheScheduleIOPushJobs(0);
770 /* Reclaim memory from the object cache */
771 while (server
.ds_enabled
&& zmalloc_used_memory() >
772 server
.cache_max_memory
)
776 if (cacheFreeOneEntry() == REDIS_OK
) done
++;
777 if (negativeCacheEvictOneEntry() == REDIS_OK
) done
++;
778 if (done
== 0) break; /* nothing more to free */
782 /* ========== Disk store cache - Blocking clients on missing keys =========== */
784 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
785 * If the key is already in memory we don't need to block.
787 * FIXME: we should try if it's actually better to suspend the client
788 * accessing an object that is being saved, and awake it only when
789 * the saving was completed.
791 * Otherwise if the key is not in memory, we block the client and start
792 * an IO Job to load it:
794 * the key is added to the io_keys list in the client structure, and also
795 * in the hash table mapping swapped keys to waiting clients, that is,
796 * server.io_waited_keys. */
797 int waitForSwappedKey(redisClient
*c
, robj
*key
) {
798 struct dictEntry
*de
;
801 /* Return ASAP if the key is in memory */
802 de
= dictFind(c
->db
->dict
,key
->ptr
);
803 if (de
!= NULL
) return 0;
805 /* Don't wait for keys we are sure are not on disk either */
806 if (!cacheKeyMayExist(c
->db
,key
)) return 0;
808 /* Add the key to the list of keys this client is waiting for.
809 * This maps clients to keys they are waiting for. */
810 listAddNodeTail(c
->io_keys
,key
);
813 /* Add the client to the swapped keys => clients waiting map. */
814 de
= dictFind(c
->db
->io_keys
,key
);
818 /* For every key we take a list of clients blocked for it */
820 retval
= dictAdd(c
->db
->io_keys
,key
,l
);
822 redisAssert(retval
== DICT_OK
);
824 l
= dictGetEntryVal(de
);
826 listAddNodeTail(l
,c
);
828 /* Are we already loading the key from disk? If not create a job */
830 cacheScheduleIO(c
->db
,key
,REDIS_IO_LOAD
);
834 /* Preload keys for any command with first, last and step values for
835 * the command keys prototype, as defined in the command table. */
836 void waitForMultipleSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
838 if (cmd
->vm_firstkey
== 0) return;
839 last
= cmd
->vm_lastkey
;
840 if (last
< 0) last
= argc
+last
;
841 for (j
= cmd
->vm_firstkey
; j
<= last
; j
+= cmd
->vm_keystep
) {
842 redisAssert(j
< argc
);
843 waitForSwappedKey(c
,argv
[j
]);
847 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
848 * Note that the number of keys to preload is user-defined, so we need to
849 * apply a sanity check against argc. */
850 void zunionInterBlockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
854 num
= atoi(argv
[2]->ptr
);
855 if (num
> (argc
-3)) return;
856 for (i
= 0; i
< num
; i
++) {
857 waitForSwappedKey(c
,argv
[3+i
]);
861 /* Preload keys needed to execute the entire MULTI/EXEC block.
863 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
864 * and will block the client when any command requires a swapped out value. */
865 void execBlockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
867 struct redisCommand
*mcmd
;
873 if (!(c
->flags
& REDIS_MULTI
)) return;
874 for (i
= 0; i
< c
->mstate
.count
; i
++) {
875 mcmd
= c
->mstate
.commands
[i
].cmd
;
876 margc
= c
->mstate
.commands
[i
].argc
;
877 margv
= c
->mstate
.commands
[i
].argv
;
879 if (mcmd
->vm_preload_proc
!= NULL
) {
880 mcmd
->vm_preload_proc(c
,mcmd
,margc
,margv
);
882 waitForMultipleSwappedKeys(c
,mcmd
,margc
,margv
);
887 /* Is this client attempting to run a command against swapped keys?
888 * If so, block it ASAP, load the keys in background, then resume it.
890 * The important idea about this function is that it can fail! If keys will
891 * still be swapped when the client is resumed, this key lookups will
892 * just block loading keys from disk. In practical terms this should only
893 * happen with SORT BY command or if there is a bug in this function.
895 * Return 1 if the client is marked as blocked, 0 if the client can
896 * continue as the keys it is going to access appear to be in memory. */
897 int blockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
) {
898 if (cmd
->vm_preload_proc
!= NULL
) {
899 cmd
->vm_preload_proc(c
,cmd
,c
->argc
,c
->argv
);
901 waitForMultipleSwappedKeys(c
,cmd
,c
->argc
,c
->argv
);
904 /* If the client was blocked for at least one key, mark it as blocked. */
905 if (listLength(c
->io_keys
)) {
906 c
->flags
|= REDIS_IO_WAIT
;
907 aeDeleteFileEvent(server
.el
,c
->fd
,AE_READABLE
);
908 server
.cache_blocked_clients
++;
915 /* Remove the 'key' from the list of blocked keys for a given client.
917 * The function returns 1 when there are no longer blocking keys after
918 * the current one was removed (and the client can be unblocked). */
919 int dontWaitForSwappedKey(redisClient
*c
, robj
*key
) {
923 struct dictEntry
*de
;
925 /* The key object might be destroyed when deleted from the c->io_keys
926 * list (and the "key" argument is physically the same object as the
927 * object inside the list), so we need to protect it. */
930 /* Remove the key from the list of keys this client is waiting for. */
931 listRewind(c
->io_keys
,&li
);
932 while ((ln
= listNext(&li
)) != NULL
) {
933 if (equalStringObjects(ln
->value
,key
)) {
934 listDelNode(c
->io_keys
,ln
);
938 redisAssert(ln
!= NULL
);
940 /* Remove the client form the key => waiting clients map. */
941 de
= dictFind(c
->db
->io_keys
,key
);
942 redisAssert(de
!= NULL
);
943 l
= dictGetEntryVal(de
);
944 ln
= listSearchKey(l
,c
);
945 redisAssert(ln
!= NULL
);
947 if (listLength(l
) == 0)
948 dictDelete(c
->db
->io_keys
,key
);
951 return listLength(c
->io_keys
) == 0;
954 /* Every time we now a key was loaded back in memory, we handle clients
955 * waiting for this key if any. */
956 void handleClientsBlockedOnSwappedKey(redisDb
*db
, robj
*key
) {
957 struct dictEntry
*de
;
962 de
= dictFind(db
->io_keys
,key
);
965 l
= dictGetEntryVal(de
);
967 /* Note: we can't use something like while(listLength(l)) as the list
968 * can be freed by the calling function when we remove the last element. */
971 redisClient
*c
= ln
->value
;
973 if (dontWaitForSwappedKey(c
,key
)) {
974 /* Put the client in the list of clients ready to go as we
975 * loaded all the keys about it. */
976 listAddNodeTail(server
.io_ready_clients
,c
);