]> git.saurik.com Git - redis.git/blob - src/ziplist.c
8ada7c421fe0da724e3e846a8727231e22ac4e1a
[redis.git] / src / ziplist.c
1 /* The ziplist is a specially encoded dually linked list that is designed
2 * to be very memory efficient. It stores both strings and integer values,
3 * where integers are encoded as actual integers instead of a series of
4 * characters. It allows push and pop operations on either side of the list
5 * in O(1) time. However, because every operation requires a reallocation of
6 * the memory used by the ziplist, the actual complexity is related to the
7 * amount of memory used by the ziplist.
8 *
9 * ----------------------------------------------------------------------------
10 *
11 * ZIPLIST OVERALL LAYOUT:
12 * The general layout of the ziplist is as follows:
13 * <zlbytes><zltail><zllen><entry><entry><zlend>
14 *
15 * <zlbytes> is an unsigned integer to hold the number of bytes that the
16 * ziplist occupies. This value needs to be stored to be able to resize the
17 * entire structure without the need to traverse it first.
18 *
19 * <zltail> is the offset to the last entry in the list. This allows a pop
20 * operation on the far side of the list without the need for full traversal.
21 *
22 * <zllen> is the number of entries.When this value is larger than 2**16-2,
23 * we need to traverse the entire list to know how many items it holds.
24 *
25 * <zlend> is a single byte special value, equal to 255, which indicates the
26 * end of the list.
27 *
28 * ZIPLIST ENTRIES:
29 * Every entry in the ziplist is prefixed by a header that contains two pieces
30 * of information. First, the length of the previous entry is stored to be
31 * able to traverse the list from back to front. Second, the encoding with an
32 * optional string length of the entry itself is stored.
33 *
34 * The length of the previous entry is encoded in the following way:
35 * If this length is smaller than 254 bytes, it will only consume a single
36 * byte that takes the length as value. When the length is greater than or
37 * equal to 254, it will consume 5 bytes. The first byte is set to 254 to
38 * indicate a larger value is following. The remaining 4 bytes take the
39 * length of the previous entry as value.
40 *
41 * The other header field of the entry itself depends on the contents of the
42 * entry. When the entry is a string, the first 2 bits of this header will hold
43 * the type of encoding used to store the length of the string, followed by the
44 * actual length of the string. When the entry is an integer the first 2 bits
45 * are both set to 1. The following 2 bits are used to specify what kind of
46 * integer will be stored after this header. An overview of the different
47 * types and encodings is as follows:
48 *
49 * |00pppppp| - 1 byte
50 * String value with length less than or equal to 63 bytes (6 bits).
51 * |01pppppp|qqqqqqqq| - 2 bytes
52 * String value with length less than or equal to 16383 bytes (14 bits).
53 * |10______|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
54 * String value with length greater than or equal to 16384 bytes.
55 * |11000000| - 1 byte
56 * Integer encoded as int16_t (2 bytes).
57 * |11010000| - 1 byte
58 * Integer encoded as int32_t (4 bytes).
59 * |11100000| - 1 byte
60 * Integer encoded as int64_t (8 bytes).
61 * |11110000| - 1 byte
62 * Integer encoded as 24 bit signed (3 bytes).
63 * |11111110| - 1 byte
64 * Integer encoded as 8 bit signed (1 byte).
65 * |1111xxxx| - (with xxxx between 0000 and 1101) immediate 4 bit integer.
66 * Unsigned integer from 0 to 12. The encoded value is actually from
67 * 1 to 13 because 0000 and 1111 can not be used, so 1 should be
68 * subtracted from the encoded 4 bit value to obtain the right value.
69 * |11111111| - End of ziplist.
70 *
71 * All the integers are represented in little endian byte order.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <string.h>
77 #include <stdint.h>
78 #include <assert.h>
79 #include <limits.h>
80 #include "zmalloc.h"
81 #include "util.h"
82 #include "ziplist.h"
83 #include "endianconv.h"
84
85 #define ZIP_END 255
86 #define ZIP_BIGLEN 254
87
88 /* Different encoding/length possibilities */
89 #define ZIP_STR_MASK 0xc0
90 #define ZIP_INT_MASK 0x30
91 #define ZIP_STR_06B (0 << 6)
92 #define ZIP_STR_14B (1 << 6)
93 #define ZIP_STR_32B (2 << 6)
94 #define ZIP_INT_16B (0xc0 | 0<<4)
95 #define ZIP_INT_32B (0xc0 | 1<<4)
96 #define ZIP_INT_64B (0xc0 | 2<<4)
97 #define ZIP_INT_24B (0xc0 | 3<<4)
98 #define ZIP_INT_8B 0xfe
99 /* 4 bit integer immediate encoding */
100 #define ZIP_INT_IMM_MASK 0x0f
101 #define ZIP_INT_IMM_MIN 0xf1 /* 11110001 */
102 #define ZIP_INT_IMM_MAX 0xfd /* 11111101 */
103 #define ZIP_INT_IMM_VAL(v) (v & ZIP_INT_IMM_MASK)
104
105 #define INT24_MAX 0x7fffff
106 #define INT24_MIN (-INT24_MAX - 1)
107
108 /* Macro to determine type */
109 #define ZIP_IS_STR(enc) (((enc) & ZIP_STR_MASK) < ZIP_STR_MASK)
110
111 /* Utility macros */
112 #define ZIPLIST_BYTES(zl) (*((uint32_t*)(zl)))
113 #define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
114 #define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
115 #define ZIPLIST_HEADER_SIZE (sizeof(uint32_t)*2+sizeof(uint16_t))
116 #define ZIPLIST_ENTRY_HEAD(zl) ((zl)+ZIPLIST_HEADER_SIZE)
117 #define ZIPLIST_ENTRY_TAIL(zl) ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
118 #define ZIPLIST_ENTRY_END(zl) ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)
119
120 /* We know a positive increment can only be 1 because entries can only be
121 * pushed one at a time. */
122 #define ZIPLIST_INCR_LENGTH(zl,incr) { \
123 if (ZIPLIST_LENGTH(zl) < UINT16_MAX) \
124 ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \
125 }
126
127 typedef struct zlentry {
128 unsigned int prevrawlensize, prevrawlen;
129 unsigned int lensize, len;
130 unsigned int headersize;
131 unsigned char encoding;
132 unsigned char *p;
133 } zlentry;
134
135 /* Extract the encoding from the byte pointed by 'ptr' and set it into
136 * 'encoding'. */
137 #define ZIP_ENTRY_ENCODING(ptr, encoding) do { \
138 (encoding) = (ptr[0]); \
139 if ((encoding) < ZIP_STR_MASK) (encoding) &= ZIP_STR_MASK; \
140 } while(0)
141
142 /* Return bytes needed to store integer encoded by 'encoding' */
143 static unsigned int zipIntSize(unsigned char encoding) {
144 switch(encoding) {
145 case ZIP_INT_8B: return 1;
146 case ZIP_INT_16B: return 2;
147 case ZIP_INT_24B: return 3;
148 case ZIP_INT_32B: return 4;
149 case ZIP_INT_64B: return 8;
150 default: return 0; /* 4 bit immediate */
151 }
152 assert(NULL);
153 return 0;
154 }
155
156 /* Encode the length 'l' writing it in 'p'. If p is NULL it just returns
157 * the amount of bytes required to encode such a length. */
158 static unsigned int zipEncodeLength(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
159 unsigned char len = 1, buf[5];
160
161 if (ZIP_IS_STR(encoding)) {
162 /* Although encoding is given it may not be set for strings,
163 * so we determine it here using the raw length. */
164 if (rawlen <= 0x3f) {
165 if (!p) return len;
166 buf[0] = ZIP_STR_06B | rawlen;
167 } else if (rawlen <= 0x3fff) {
168 len += 1;
169 if (!p) return len;
170 buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
171 buf[1] = rawlen & 0xff;
172 } else {
173 len += 4;
174 if (!p) return len;
175 buf[0] = ZIP_STR_32B;
176 buf[1] = (rawlen >> 24) & 0xff;
177 buf[2] = (rawlen >> 16) & 0xff;
178 buf[3] = (rawlen >> 8) & 0xff;
179 buf[4] = rawlen & 0xff;
180 }
181 } else {
182 /* Implies integer encoding, so length is always 1. */
183 if (!p) return len;
184 buf[0] = encoding;
185 }
186
187 /* Store this length at p */
188 memcpy(p,buf,len);
189 return len;
190 }
191
192 /* Decode the length encoded in 'ptr'. The 'encoding' variable will hold the
193 * entries encoding, the 'lensize' variable will hold the number of bytes
194 * required to encode the entries length, and the 'len' variable will hold the
195 * entries length. */
196 #define ZIP_DECODE_LENGTH(ptr, encoding, lensize, len) do { \
197 ZIP_ENTRY_ENCODING((ptr), (encoding)); \
198 if ((encoding) < ZIP_STR_MASK) { \
199 if ((encoding) == ZIP_STR_06B) { \
200 (lensize) = 1; \
201 (len) = (ptr)[0] & 0x3f; \
202 } else if ((encoding) == ZIP_STR_14B) { \
203 (lensize) = 2; \
204 (len) = (((ptr)[0] & 0x3f) << 8) | (ptr)[1]; \
205 } else if (encoding == ZIP_STR_32B) { \
206 (lensize) = 5; \
207 (len) = ((ptr)[1] << 24) | \
208 ((ptr)[2] << 16) | \
209 ((ptr)[3] << 8) | \
210 ((ptr)[4]); \
211 } else { \
212 assert(NULL); \
213 } \
214 } else { \
215 (lensize) = 1; \
216 (len) = zipIntSize(encoding); \
217 } \
218 } while(0);
219
220 /* Encode the length of the previous entry and write it to "p". Return the
221 * number of bytes needed to encode this length if "p" is NULL. */
222 static unsigned int zipPrevEncodeLength(unsigned char *p, unsigned int len) {
223 if (p == NULL) {
224 return (len < ZIP_BIGLEN) ? 1 : sizeof(len)+1;
225 } else {
226 if (len < ZIP_BIGLEN) {
227 p[0] = len;
228 return 1;
229 } else {
230 p[0] = ZIP_BIGLEN;
231 memcpy(p+1,&len,sizeof(len));
232 memrev32ifbe(p+1);
233 return 1+sizeof(len);
234 }
235 }
236 }
237
238 /* Encode the length of the previous entry and write it to "p". This only
239 * uses the larger encoding (required in __ziplistCascadeUpdate). */
240 static void zipPrevEncodeLengthForceLarge(unsigned char *p, unsigned int len) {
241 if (p == NULL) return;
242 p[0] = ZIP_BIGLEN;
243 memcpy(p+1,&len,sizeof(len));
244 memrev32ifbe(p+1);
245 }
246
247 /* Decode the number of bytes required to store the length of the previous
248 * element, from the perspective of the entry pointed to by 'ptr'. */
249 #define ZIP_DECODE_PREVLENSIZE(ptr, prevlensize) do { \
250 if ((ptr)[0] < ZIP_BIGLEN) { \
251 (prevlensize) = 1; \
252 } else { \
253 (prevlensize) = 5; \
254 } \
255 } while(0);
256
257 /* Decode the length of the previous element, from the perspective of the entry
258 * pointed to by 'ptr'. */
259 #define ZIP_DECODE_PREVLEN(ptr, prevlensize, prevlen) do { \
260 ZIP_DECODE_PREVLENSIZE(ptr, prevlensize); \
261 if ((prevlensize) == 1) { \
262 (prevlen) = (ptr)[0]; \
263 } else if ((prevlensize) == 5) { \
264 assert(sizeof((prevlensize)) == 4); \
265 memcpy(&(prevlen), ((char*)(ptr)) + 1, 4); \
266 memrev32ifbe(&prevlen); \
267 } \
268 } while(0);
269
270 /* Return the difference in number of bytes needed to store the length of the
271 * previous element 'len', in the entry pointed to by 'p'. */
272 static int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
273 unsigned int prevlensize;
274 ZIP_DECODE_PREVLENSIZE(p, prevlensize);
275 return zipPrevEncodeLength(NULL, len) - prevlensize;
276 }
277
278 /* Return the total number of bytes used by the entry pointed to by 'p'. */
279 static unsigned int zipRawEntryLength(unsigned char *p) {
280 unsigned int prevlensize, encoding, lensize, len;
281 ZIP_DECODE_PREVLENSIZE(p, prevlensize);
282 ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
283 return prevlensize + lensize + len;
284 }
285
286 /* Check if string pointed to by 'entry' can be encoded as an integer.
287 * Stores the integer value in 'v' and its encoding in 'encoding'. */
288 static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
289 long long value;
290
291 if (entrylen >= 32 || entrylen == 0) return 0;
292 if (string2ll((char*)entry,entrylen,&value)) {
293 /* Great, the string can be encoded. Check what's the smallest
294 * of our encoding types that can hold this value. */
295 if (value >= 0 && value <= 12) {
296 *encoding = ZIP_INT_IMM_MIN+value;
297 } else if (value >= INT8_MIN && value <= INT8_MAX) {
298 *encoding = ZIP_INT_8B;
299 } else if (value >= INT16_MIN && value <= INT16_MAX) {
300 *encoding = ZIP_INT_16B;
301 } else if (value >= INT24_MIN && value <= INT24_MAX) {
302 *encoding = ZIP_INT_24B;
303 } else if (value >= INT32_MIN && value <= INT32_MAX) {
304 *encoding = ZIP_INT_32B;
305 } else {
306 *encoding = ZIP_INT_64B;
307 }
308 *v = value;
309 return 1;
310 }
311 return 0;
312 }
313
314 /* Store integer 'value' at 'p', encoded as 'encoding' */
315 static void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
316 int16_t i16;
317 int32_t i32;
318 int64_t i64;
319 if (encoding == ZIP_INT_8B) {
320 ((int8_t*)p)[0] = (int8_t)value;
321 } else if (encoding == ZIP_INT_16B) {
322 i16 = value;
323 memcpy(p,&i16,sizeof(i16));
324 memrev16ifbe(p);
325 } else if (encoding == ZIP_INT_24B) {
326 i32 = value<<8;
327 memrev32ifbe(&i32);
328 memcpy(p,((uint8_t*)&i32)+1,sizeof(i32)-sizeof(uint8_t));
329 } else if (encoding == ZIP_INT_32B) {
330 i32 = value;
331 memcpy(p,&i32,sizeof(i32));
332 memrev32ifbe(p);
333 } else if (encoding == ZIP_INT_64B) {
334 i64 = value;
335 memcpy(p,&i64,sizeof(i64));
336 memrev64ifbe(p);
337 } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
338 /* Nothing to do, the value is stored in the encoding itself. */
339 } else {
340 assert(NULL);
341 }
342 }
343
344 /* Read integer encoded as 'encoding' from 'p' */
345 static int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
346 int16_t i16;
347 int32_t i32;
348 int64_t i64, ret = 0;
349 if (encoding == ZIP_INT_8B) {
350 ret = ((int8_t*)p)[0];
351 } else if (encoding == ZIP_INT_16B) {
352 memcpy(&i16,p,sizeof(i16));
353 memrev16ifbe(&i16);
354 ret = i16;
355 } else if (encoding == ZIP_INT_32B) {
356 memcpy(&i32,p,sizeof(i32));
357 memrev32ifbe(&i32);
358 ret = i32;
359 } else if (encoding == ZIP_INT_24B) {
360 i32 = 0;
361 memcpy(((uint8_t*)&i32)+1,p,sizeof(i32)-sizeof(uint8_t));
362 memrev32ifbe(&i32);
363 ret = i32>>8;
364 } else if (encoding == ZIP_INT_64B) {
365 memcpy(&i64,p,sizeof(i64));
366 memrev64ifbe(&i64);
367 ret = i64;
368 } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
369 ret = (encoding & ZIP_INT_IMM_MASK)-1;
370 } else {
371 assert(NULL);
372 }
373 return ret;
374 }
375
376 /* Return a struct with all information about an entry. */
377 static zlentry zipEntry(unsigned char *p) {
378 zlentry e;
379
380 ZIP_DECODE_PREVLEN(p, e.prevrawlensize, e.prevrawlen);
381 ZIP_DECODE_LENGTH(p + e.prevrawlensize, e.encoding, e.lensize, e.len);
382 e.headersize = e.prevrawlensize + e.lensize;
383 e.p = p;
384 return e;
385 }
386
387 /* Create a new empty ziplist. */
388 unsigned char *ziplistNew(void) {
389 unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
390 unsigned char *zl = zmalloc(bytes);
391 ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
392 ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
393 ZIPLIST_LENGTH(zl) = 0;
394 zl[bytes-1] = ZIP_END;
395 return zl;
396 }
397
398 /* Resize the ziplist. */
399 static unsigned char *ziplistResize(unsigned char *zl, unsigned int len) {
400 zl = zrealloc(zl,len);
401 ZIPLIST_BYTES(zl) = intrev32ifbe(len);
402 zl[len-1] = ZIP_END;
403 return zl;
404 }
405
406 /* When an entry is inserted, we need to set the prevlen field of the next
407 * entry to equal the length of the inserted entry. It can occur that this
408 * length cannot be encoded in 1 byte and the next entry needs to be grow
409 * a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
410 * because this only happens when an entry is already being inserted (which
411 * causes a realloc and memmove). However, encoding the prevlen may require
412 * that this entry is grown as well. This effect may cascade throughout
413 * the ziplist when there are consecutive entries with a size close to
414 * ZIP_BIGLEN, so we need to check that the prevlen can be encoded in every
415 * consecutive entry.
416 *
417 * Note that this effect can also happen in reverse, where the bytes required
418 * to encode the prevlen field can shrink. This effect is deliberately ignored,
419 * because it can cause a "flapping" effect where a chain prevlen fields is
420 * first grown and then shrunk again after consecutive inserts. Rather, the
421 * field is allowed to stay larger than necessary, because a large prevlen
422 * field implies the ziplist is holding large entries anyway.
423 *
424 * The pointer "p" points to the first entry that does NOT need to be
425 * updated, i.e. consecutive fields MAY need an update. */
426 static unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
427 size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), rawlen, rawlensize;
428 size_t offset, noffset, extra;
429 unsigned char *np;
430 zlentry cur, next;
431
432 while (p[0] != ZIP_END) {
433 cur = zipEntry(p);
434 rawlen = cur.headersize + cur.len;
435 rawlensize = zipPrevEncodeLength(NULL,rawlen);
436
437 /* Abort if there is no next entry. */
438 if (p[rawlen] == ZIP_END) break;
439 next = zipEntry(p+rawlen);
440
441 /* Abort when "prevlen" has not changed. */
442 if (next.prevrawlen == rawlen) break;
443
444 if (next.prevrawlensize < rawlensize) {
445 /* The "prevlen" field of "next" needs more bytes to hold
446 * the raw length of "cur". */
447 offset = p-zl;
448 extra = rawlensize-next.prevrawlensize;
449 zl = ziplistResize(zl,curlen+extra);
450 p = zl+offset;
451
452 /* Current pointer and offset for next element. */
453 np = p+rawlen;
454 noffset = np-zl;
455
456 /* Update tail offset when next element is not the tail element. */
457 if ((zl+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) != np) {
458 ZIPLIST_TAIL_OFFSET(zl) =
459 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra);
460 }
461
462 /* Move the tail to the back. */
463 memmove(np+rawlensize,
464 np+next.prevrawlensize,
465 curlen-noffset-next.prevrawlensize-1);
466 zipPrevEncodeLength(np,rawlen);
467
468 /* Advance the cursor */
469 p += rawlen;
470 curlen += extra;
471 } else {
472 if (next.prevrawlensize > rawlensize) {
473 /* This would result in shrinking, which we want to avoid.
474 * So, set "rawlen" in the available bytes. */
475 zipPrevEncodeLengthForceLarge(p+rawlen,rawlen);
476 } else {
477 zipPrevEncodeLength(p+rawlen,rawlen);
478 }
479
480 /* Stop here, as the raw length of "next" has not changed. */
481 break;
482 }
483 }
484 return zl;
485 }
486
487 /* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */
488 static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
489 unsigned int i, totlen, deleted = 0;
490 size_t offset;
491 int nextdiff = 0;
492 zlentry first, tail;
493
494 first = zipEntry(p);
495 for (i = 0; p[0] != ZIP_END && i < num; i++) {
496 p += zipRawEntryLength(p);
497 deleted++;
498 }
499
500 totlen = p-first.p;
501 if (totlen > 0) {
502 if (p[0] != ZIP_END) {
503 /* Tricky: storing the prevlen in this entry might reduce or
504 * increase the number of bytes needed, compared to the current
505 * prevlen. Note that we can always store this length because
506 * it was previously stored by an entry that is being deleted. */
507 nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
508 zipPrevEncodeLength(p-nextdiff,first.prevrawlen);
509
510 /* Update offset for tail */
511 ZIPLIST_TAIL_OFFSET(zl) =
512 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);
513
514 /* When the tail contains more than one entry, we need to take
515 * "nextdiff" in account as well. Otherwise, a change in the
516 * size of prevlen doesn't have an effect on the *tail* offset. */
517 tail = zipEntry(p);
518 if (p[tail.headersize+tail.len] != ZIP_END) {
519 ZIPLIST_TAIL_OFFSET(zl) =
520 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
521 }
522
523 /* Move tail to the front of the ziplist */
524 memmove(first.p,p-nextdiff,
525 intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1+nextdiff);
526 } else {
527 /* The entire tail was deleted. No need to move memory. */
528 ZIPLIST_TAIL_OFFSET(zl) =
529 intrev32ifbe((first.p-zl)-first.prevrawlen);
530 }
531
532 /* Resize and update length */
533 offset = first.p-zl;
534 zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
535 ZIPLIST_INCR_LENGTH(zl,-deleted);
536 p = zl+offset;
537
538 /* When nextdiff != 0, the raw length of the next entry has changed, so
539 * we need to cascade the update throughout the ziplist */
540 if (nextdiff != 0)
541 zl = __ziplistCascadeUpdate(zl,p);
542 }
543 return zl;
544 }
545
546 /* Insert item at "p". */
547 static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
548 size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen, prevlen = 0;
549 size_t offset;
550 int nextdiff = 0;
551 unsigned char encoding = 0;
552 long long value = 123456789; /* initialized to avoid warning. Using a value
553 that is easy to see if for some reason
554 we use it uninitialized. */
555 zlentry entry, tail;
556
557 /* Find out prevlen for the entry that is inserted. */
558 if (p[0] != ZIP_END) {
559 entry = zipEntry(p);
560 prevlen = entry.prevrawlen;
561 } else {
562 unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
563 if (ptail[0] != ZIP_END) {
564 prevlen = zipRawEntryLength(ptail);
565 }
566 }
567
568 /* See if the entry can be encoded */
569 if (zipTryEncoding(s,slen,&value,&encoding)) {
570 /* 'encoding' is set to the appropriate integer encoding */
571 reqlen = zipIntSize(encoding);
572 } else {
573 /* 'encoding' is untouched, however zipEncodeLength will use the
574 * string length to figure out how to encode it. */
575 reqlen = slen;
576 }
577 /* We need space for both the length of the previous entry and
578 * the length of the payload. */
579 reqlen += zipPrevEncodeLength(NULL,prevlen);
580 reqlen += zipEncodeLength(NULL,encoding,slen);
581
582 /* When the insert position is not equal to the tail, we need to
583 * make sure that the next entry can hold this entry's length in
584 * its prevlen field. */
585 nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
586
587 /* Store offset because a realloc may change the address of zl. */
588 offset = p-zl;
589 zl = ziplistResize(zl,curlen+reqlen+nextdiff);
590 p = zl+offset;
591
592 /* Apply memory move when necessary and update tail offset. */
593 if (p[0] != ZIP_END) {
594 /* Subtract one because of the ZIP_END bytes */
595 memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
596
597 /* Encode this entry's raw length in the next entry. */
598 zipPrevEncodeLength(p+reqlen,reqlen);
599
600 /* Update offset for tail */
601 ZIPLIST_TAIL_OFFSET(zl) =
602 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
603
604 /* When the tail contains more than one entry, we need to take
605 * "nextdiff" in account as well. Otherwise, a change in the
606 * size of prevlen doesn't have an effect on the *tail* offset. */
607 tail = zipEntry(p+reqlen);
608 if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
609 ZIPLIST_TAIL_OFFSET(zl) =
610 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
611 }
612 } else {
613 /* This element will be the new tail. */
614 ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
615 }
616
617 /* When nextdiff != 0, the raw length of the next entry has changed, so
618 * we need to cascade the update throughout the ziplist */
619 if (nextdiff != 0) {
620 offset = p-zl;
621 zl = __ziplistCascadeUpdate(zl,p+reqlen);
622 p = zl+offset;
623 }
624
625 /* Write the entry */
626 p += zipPrevEncodeLength(p,prevlen);
627 p += zipEncodeLength(p,encoding,slen);
628 if (ZIP_IS_STR(encoding)) {
629 memcpy(p,s,slen);
630 } else {
631 zipSaveInteger(p,value,encoding);
632 }
633 ZIPLIST_INCR_LENGTH(zl,1);
634 return zl;
635 }
636
637 unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
638 unsigned char *p;
639 p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
640 return __ziplistInsert(zl,p,s,slen);
641 }
642
643 /* Returns an offset to use for iterating with ziplistNext. When the given
644 * index is negative, the list is traversed back to front. When the list
645 * doesn't contain an element at the provided index, NULL is returned. */
646 unsigned char *ziplistIndex(unsigned char *zl, int index) {
647 unsigned char *p;
648 zlentry entry;
649 if (index < 0) {
650 index = (-index)-1;
651 p = ZIPLIST_ENTRY_TAIL(zl);
652 if (p[0] != ZIP_END) {
653 entry = zipEntry(p);
654 while (entry.prevrawlen > 0 && index--) {
655 p -= entry.prevrawlen;
656 entry = zipEntry(p);
657 }
658 }
659 } else {
660 p = ZIPLIST_ENTRY_HEAD(zl);
661 while (p[0] != ZIP_END && index--) {
662 p += zipRawEntryLength(p);
663 }
664 }
665 return (p[0] == ZIP_END || index > 0) ? NULL : p;
666 }
667
668 /* Return pointer to next entry in ziplist.
669 *
670 * zl is the pointer to the ziplist
671 * p is the pointer to the current element
672 *
673 * The element after 'p' is returned, otherwise NULL if we are at the end. */
674 unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
675 ((void) zl);
676
677 /* "p" could be equal to ZIP_END, caused by ziplistDelete,
678 * and we should return NULL. Otherwise, we should return NULL
679 * when the *next* element is ZIP_END (there is no next entry). */
680 if (p[0] == ZIP_END) {
681 return NULL;
682 }
683
684 p += zipRawEntryLength(p);
685 if (p[0] == ZIP_END) {
686 return NULL;
687 }
688
689 return p;
690 }
691
692 /* Return pointer to previous entry in ziplist. */
693 unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
694 zlentry entry;
695
696 /* Iterating backwards from ZIP_END should return the tail. When "p" is
697 * equal to the first element of the list, we're already at the head,
698 * and should return NULL. */
699 if (p[0] == ZIP_END) {
700 p = ZIPLIST_ENTRY_TAIL(zl);
701 return (p[0] == ZIP_END) ? NULL : p;
702 } else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
703 return NULL;
704 } else {
705 entry = zipEntry(p);
706 assert(entry.prevrawlen > 0);
707 return p-entry.prevrawlen;
708 }
709 }
710
711 /* Get entry pointer to by 'p' and store in either 'e' or 'v' depending
712 * on the encoding of the entry. 'e' is always set to NULL to be able
713 * to find out whether the string pointer or the integer value was set.
714 * Return 0 if 'p' points to the end of the zipmap, 1 otherwise. */
715 unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
716 zlentry entry;
717 if (p == NULL || p[0] == ZIP_END) return 0;
718 if (sstr) *sstr = NULL;
719
720 entry = zipEntry(p);
721 if (ZIP_IS_STR(entry.encoding)) {
722 if (sstr) {
723 *slen = entry.len;
724 *sstr = p+entry.headersize;
725 }
726 } else {
727 if (sval) {
728 *sval = zipLoadInteger(p+entry.headersize,entry.encoding);
729 }
730 }
731 return 1;
732 }
733
734 /* Insert an entry at "p". */
735 unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
736 return __ziplistInsert(zl,p,s,slen);
737 }
738
739 /* Delete a single entry from the ziplist, pointed to by *p.
740 * Also update *p in place, to be able to iterate over the
741 * ziplist, while deleting entries. */
742 unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
743 size_t offset = *p-zl;
744 zl = __ziplistDelete(zl,*p,1);
745
746 /* Store pointer to current element in p, because ziplistDelete will
747 * do a realloc which might result in a different "zl"-pointer.
748 * When the delete direction is back to front, we might delete the last
749 * entry and end up with "p" pointing to ZIP_END, so check this. */
750 *p = zl+offset;
751 return zl;
752 }
753
754 /* Delete a range of entries from the ziplist. */
755 unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num) {
756 unsigned char *p = ziplistIndex(zl,index);
757 return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
758 }
759
760 /* Compare entry pointer to by 'p' with 'entry'. Return 1 if equal. */
761 unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
762 zlentry entry;
763 unsigned char sencoding;
764 long long zval, sval;
765 if (p[0] == ZIP_END) return 0;
766
767 entry = zipEntry(p);
768 if (ZIP_IS_STR(entry.encoding)) {
769 /* Raw compare */
770 if (entry.len == slen) {
771 return memcmp(p+entry.headersize,sstr,slen) == 0;
772 } else {
773 return 0;
774 }
775 } else {
776 /* Try to compare encoded values. Don't compare encoding because
777 * different implementations may encoded integers differently. */
778 if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
779 zval = zipLoadInteger(p+entry.headersize,entry.encoding);
780 return zval == sval;
781 }
782 }
783 return 0;
784 }
785
786 /* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
787 * between every comparison. Returns NULL when the field could not be found. */
788 unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
789 int skipcnt = 0;
790 unsigned char vencoding = 0;
791 long long vll = 0;
792
793 while (p[0] != ZIP_END) {
794 unsigned int prevlensize, encoding, lensize, len;
795 unsigned char *q;
796
797 ZIP_DECODE_PREVLENSIZE(p, prevlensize);
798 ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
799 q = p + prevlensize + lensize;
800
801 if (skipcnt == 0) {
802 /* Compare current entry with specified entry */
803 if (ZIP_IS_STR(encoding)) {
804 if (len == vlen && memcmp(q, vstr, vlen) == 0) {
805 return p;
806 }
807 } else {
808 /* Find out if the searched field can be encoded. Note that
809 * we do it only the first time, once done vencoding is set
810 * to non-zero and vll is set to the integer value. */
811 if (vencoding == 0) {
812 if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
813 /* If the entry can't be encoded we set it to
814 * UCHAR_MAX so that we don't retry again the next
815 * time. */
816 vencoding = UCHAR_MAX;
817 }
818 /* Must be non-zero by now */
819 assert(vencoding);
820 }
821
822 /* Compare current entry with specified entry, do it only
823 * if vencoding != UCHAR_MAX because if there is no encoding
824 * possible for the field it can't be a valid integer. */
825 if (vencoding != UCHAR_MAX) {
826 long long ll = zipLoadInteger(q, encoding);
827 if (ll == vll) {
828 return p;
829 }
830 }
831 }
832
833 /* Reset skip count */
834 skipcnt = skip;
835 } else {
836 /* Skip entry */
837 skipcnt--;
838 }
839
840 /* Move to next entry */
841 p = q + len;
842 }
843
844 return NULL;
845 }
846
847 /* Return length of ziplist. */
848 unsigned int ziplistLen(unsigned char *zl) {
849 unsigned int len = 0;
850 if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) {
851 len = intrev16ifbe(ZIPLIST_LENGTH(zl));
852 } else {
853 unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
854 while (*p != ZIP_END) {
855 p += zipRawEntryLength(p);
856 len++;
857 }
858
859 /* Re-store length if small enough */
860 if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = intrev16ifbe(len);
861 }
862 return len;
863 }
864
865 /* Return ziplist blob size in bytes. */
866 size_t ziplistBlobLen(unsigned char *zl) {
867 return intrev32ifbe(ZIPLIST_BYTES(zl));
868 }
869
870 void ziplistRepr(unsigned char *zl) {
871 unsigned char *p;
872 int index = 0;
873 zlentry entry;
874
875 printf(
876 "{total bytes %d} "
877 "{length %u}\n"
878 "{tail offset %u}\n",
879 intrev32ifbe(ZIPLIST_BYTES(zl)),
880 intrev16ifbe(ZIPLIST_LENGTH(zl)),
881 intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)));
882 p = ZIPLIST_ENTRY_HEAD(zl);
883 while(*p != ZIP_END) {
884 entry = zipEntry(p);
885 printf(
886 "{"
887 "addr 0x%08lx, "
888 "index %2d, "
889 "offset %5ld, "
890 "rl: %5u, "
891 "hs %2u, "
892 "pl: %5u, "
893 "pls: %2u, "
894 "payload %5u"
895 "} ",
896 (long unsigned)p,
897 index,
898 (unsigned long) (p-zl),
899 entry.headersize+entry.len,
900 entry.headersize,
901 entry.prevrawlen,
902 entry.prevrawlensize,
903 entry.len);
904 p += entry.headersize;
905 if (ZIP_IS_STR(entry.encoding)) {
906 if (entry.len > 40) {
907 if (fwrite(p,40,1,stdout) == 0) perror("fwrite");
908 printf("...");
909 } else {
910 if (entry.len &&
911 fwrite(p,entry.len,1,stdout) == 0) perror("fwrite");
912 }
913 } else {
914 printf("%lld", (long long) zipLoadInteger(p,entry.encoding));
915 }
916 printf("\n");
917 p += entry.len;
918 index++;
919 }
920 printf("{end}\n\n");
921 }
922
923 #ifdef ZIPLIST_TEST_MAIN
924 #include <sys/time.h>
925 #include "adlist.h"
926 #include "sds.h"
927
928 #define debug(f, ...) { if (DEBUG) printf(f, __VA_ARGS__); }
929
930 unsigned char *createList() {
931 unsigned char *zl = ziplistNew();
932 zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
933 zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL);
934 zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
935 zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL);
936 return zl;
937 }
938
939 unsigned char *createIntList() {
940 unsigned char *zl = ziplistNew();
941 char buf[32];
942
943 sprintf(buf, "100");
944 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
945 sprintf(buf, "128000");
946 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
947 sprintf(buf, "-100");
948 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
949 sprintf(buf, "4294967296");
950 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
951 sprintf(buf, "non integer");
952 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
953 sprintf(buf, "much much longer non integer");
954 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
955 return zl;
956 }
957
958 long long usec(void) {
959 struct timeval tv;
960 gettimeofday(&tv,NULL);
961 return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
962 }
963
964 void stress(int pos, int num, int maxsize, int dnum) {
965 int i,j,k;
966 unsigned char *zl;
967 char posstr[2][5] = { "HEAD", "TAIL" };
968 long long start;
969 for (i = 0; i < maxsize; i+=dnum) {
970 zl = ziplistNew();
971 for (j = 0; j < i; j++) {
972 zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL);
973 }
974
975 /* Do num times a push+pop from pos */
976 start = usec();
977 for (k = 0; k < num; k++) {
978 zl = ziplistPush(zl,(unsigned char*)"quux",4,pos);
979 zl = ziplistDeleteRange(zl,0,1);
980 }
981 printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n",
982 i,intrev32ifbe(ZIPLIST_BYTES(zl)),num,posstr[pos],usec()-start);
983 zfree(zl);
984 }
985 }
986
987 void pop(unsigned char *zl, int where) {
988 unsigned char *p, *vstr;
989 unsigned int vlen;
990 long long vlong;
991
992 p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1);
993 if (ziplistGet(p,&vstr,&vlen,&vlong)) {
994 if (where == ZIPLIST_HEAD)
995 printf("Pop head: ");
996 else
997 printf("Pop tail: ");
998
999 if (vstr)
1000 if (vlen && fwrite(vstr,vlen,1,stdout) == 0) perror("fwrite");
1001 else
1002 printf("%lld", vlong);
1003
1004 printf("\n");
1005 ziplistDeleteRange(zl,-1,1);
1006 } else {
1007 printf("ERROR: Could not pop\n");
1008 exit(1);
1009 }
1010 }
1011
1012 int randstring(char *target, unsigned int min, unsigned int max) {
1013 int p, len = min+rand()%(max-min+1);
1014 int minval, maxval;
1015 switch(rand() % 3) {
1016 case 0:
1017 minval = 0;
1018 maxval = 255;
1019 break;
1020 case 1:
1021 minval = 48;
1022 maxval = 122;
1023 break;
1024 case 2:
1025 minval = 48;
1026 maxval = 52;
1027 break;
1028 default:
1029 assert(NULL);
1030 }
1031
1032 while(p < len)
1033 target[p++] = minval+rand()%(maxval-minval+1);
1034 return len;
1035 }
1036
1037 void verify(unsigned char *zl, zlentry *e) {
1038 int i;
1039 int len = ziplistLen(zl);
1040 zlentry _e;
1041
1042 for (i = 0; i < len; i++) {
1043 memset(&e[i], 0, sizeof(zlentry));
1044 e[i] = zipEntry(ziplistIndex(zl, i));
1045
1046 memset(&_e, 0, sizeof(zlentry));
1047 _e = zipEntry(ziplistIndex(zl, -len+i));
1048
1049 assert(memcmp(&e[i], &_e, sizeof(zlentry)) == 0);
1050 }
1051 }
1052
1053 int main(int argc, char **argv) {
1054 unsigned char *zl, *p;
1055 unsigned char *entry;
1056 unsigned int elen;
1057 long long value;
1058
1059 /* If an argument is given, use it as the random seed. */
1060 if (argc == 2)
1061 srand(atoi(argv[1]));
1062
1063 zl = createIntList();
1064 ziplistRepr(zl);
1065
1066 zl = createList();
1067 ziplistRepr(zl);
1068
1069 pop(zl,ZIPLIST_TAIL);
1070 ziplistRepr(zl);
1071
1072 pop(zl,ZIPLIST_HEAD);
1073 ziplistRepr(zl);
1074
1075 pop(zl,ZIPLIST_TAIL);
1076 ziplistRepr(zl);
1077
1078 pop(zl,ZIPLIST_TAIL);
1079 ziplistRepr(zl);
1080
1081 printf("Get element at index 3:\n");
1082 {
1083 zl = createList();
1084 p = ziplistIndex(zl, 3);
1085 if (!ziplistGet(p, &entry, &elen, &value)) {
1086 printf("ERROR: Could not access index 3\n");
1087 return 1;
1088 }
1089 if (entry) {
1090 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1091 printf("\n");
1092 } else {
1093 printf("%lld\n", value);
1094 }
1095 printf("\n");
1096 }
1097
1098 printf("Get element at index 4 (out of range):\n");
1099 {
1100 zl = createList();
1101 p = ziplistIndex(zl, 4);
1102 if (p == NULL) {
1103 printf("No entry\n");
1104 } else {
1105 printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1106 return 1;
1107 }
1108 printf("\n");
1109 }
1110
1111 printf("Get element at index -1 (last element):\n");
1112 {
1113 zl = createList();
1114 p = ziplistIndex(zl, -1);
1115 if (!ziplistGet(p, &entry, &elen, &value)) {
1116 printf("ERROR: Could not access index -1\n");
1117 return 1;
1118 }
1119 if (entry) {
1120 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1121 printf("\n");
1122 } else {
1123 printf("%lld\n", value);
1124 }
1125 printf("\n");
1126 }
1127
1128 printf("Get element at index -4 (first element):\n");
1129 {
1130 zl = createList();
1131 p = ziplistIndex(zl, -4);
1132 if (!ziplistGet(p, &entry, &elen, &value)) {
1133 printf("ERROR: Could not access index -4\n");
1134 return 1;
1135 }
1136 if (entry) {
1137 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1138 printf("\n");
1139 } else {
1140 printf("%lld\n", value);
1141 }
1142 printf("\n");
1143 }
1144
1145 printf("Get element at index -5 (reverse out of range):\n");
1146 {
1147 zl = createList();
1148 p = ziplistIndex(zl, -5);
1149 if (p == NULL) {
1150 printf("No entry\n");
1151 } else {
1152 printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1153 return 1;
1154 }
1155 printf("\n");
1156 }
1157
1158 printf("Iterate list from 0 to end:\n");
1159 {
1160 zl = createList();
1161 p = ziplistIndex(zl, 0);
1162 while (ziplistGet(p, &entry, &elen, &value)) {
1163 printf("Entry: ");
1164 if (entry) {
1165 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1166 } else {
1167 printf("%lld", value);
1168 }
1169 p = ziplistNext(zl,p);
1170 printf("\n");
1171 }
1172 printf("\n");
1173 }
1174
1175 printf("Iterate list from 1 to end:\n");
1176 {
1177 zl = createList();
1178 p = ziplistIndex(zl, 1);
1179 while (ziplistGet(p, &entry, &elen, &value)) {
1180 printf("Entry: ");
1181 if (entry) {
1182 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1183 } else {
1184 printf("%lld", value);
1185 }
1186 p = ziplistNext(zl,p);
1187 printf("\n");
1188 }
1189 printf("\n");
1190 }
1191
1192 printf("Iterate list from 2 to end:\n");
1193 {
1194 zl = createList();
1195 p = ziplistIndex(zl, 2);
1196 while (ziplistGet(p, &entry, &elen, &value)) {
1197 printf("Entry: ");
1198 if (entry) {
1199 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1200 } else {
1201 printf("%lld", value);
1202 }
1203 p = ziplistNext(zl,p);
1204 printf("\n");
1205 }
1206 printf("\n");
1207 }
1208
1209 printf("Iterate starting out of range:\n");
1210 {
1211 zl = createList();
1212 p = ziplistIndex(zl, 4);
1213 if (!ziplistGet(p, &entry, &elen, &value)) {
1214 printf("No entry\n");
1215 } else {
1216 printf("ERROR\n");
1217 }
1218 printf("\n");
1219 }
1220
1221 printf("Iterate from back to front:\n");
1222 {
1223 zl = createList();
1224 p = ziplistIndex(zl, -1);
1225 while (ziplistGet(p, &entry, &elen, &value)) {
1226 printf("Entry: ");
1227 if (entry) {
1228 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1229 } else {
1230 printf("%lld", value);
1231 }
1232 p = ziplistPrev(zl,p);
1233 printf("\n");
1234 }
1235 printf("\n");
1236 }
1237
1238 printf("Iterate from back to front, deleting all items:\n");
1239 {
1240 zl = createList();
1241 p = ziplistIndex(zl, -1);
1242 while (ziplistGet(p, &entry, &elen, &value)) {
1243 printf("Entry: ");
1244 if (entry) {
1245 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1246 } else {
1247 printf("%lld", value);
1248 }
1249 zl = ziplistDelete(zl,&p);
1250 p = ziplistPrev(zl,p);
1251 printf("\n");
1252 }
1253 printf("\n");
1254 }
1255
1256 printf("Delete inclusive range 0,0:\n");
1257 {
1258 zl = createList();
1259 zl = ziplistDeleteRange(zl, 0, 1);
1260 ziplistRepr(zl);
1261 }
1262
1263 printf("Delete inclusive range 0,1:\n");
1264 {
1265 zl = createList();
1266 zl = ziplistDeleteRange(zl, 0, 2);
1267 ziplistRepr(zl);
1268 }
1269
1270 printf("Delete inclusive range 1,2:\n");
1271 {
1272 zl = createList();
1273 zl = ziplistDeleteRange(zl, 1, 2);
1274 ziplistRepr(zl);
1275 }
1276
1277 printf("Delete with start index out of range:\n");
1278 {
1279 zl = createList();
1280 zl = ziplistDeleteRange(zl, 5, 1);
1281 ziplistRepr(zl);
1282 }
1283
1284 printf("Delete with num overflow:\n");
1285 {
1286 zl = createList();
1287 zl = ziplistDeleteRange(zl, 1, 5);
1288 ziplistRepr(zl);
1289 }
1290
1291 printf("Delete foo while iterating:\n");
1292 {
1293 zl = createList();
1294 p = ziplistIndex(zl,0);
1295 while (ziplistGet(p,&entry,&elen,&value)) {
1296 if (entry && strncmp("foo",(char*)entry,elen) == 0) {
1297 printf("Delete foo\n");
1298 zl = ziplistDelete(zl,&p);
1299 } else {
1300 printf("Entry: ");
1301 if (entry) {
1302 if (elen && fwrite(entry,elen,1,stdout) == 0)
1303 perror("fwrite");
1304 } else {
1305 printf("%lld",value);
1306 }
1307 p = ziplistNext(zl,p);
1308 printf("\n");
1309 }
1310 }
1311 printf("\n");
1312 ziplistRepr(zl);
1313 }
1314
1315 printf("Regression test for >255 byte strings:\n");
1316 {
1317 char v1[257],v2[257];
1318 memset(v1,'x',256);
1319 memset(v2,'y',256);
1320 zl = ziplistNew();
1321 zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL);
1322 zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL);
1323
1324 /* Pop values again and compare their value. */
1325 p = ziplistIndex(zl,0);
1326 assert(ziplistGet(p,&entry,&elen,&value));
1327 assert(strncmp(v1,(char*)entry,elen) == 0);
1328 p = ziplistIndex(zl,1);
1329 assert(ziplistGet(p,&entry,&elen,&value));
1330 assert(strncmp(v2,(char*)entry,elen) == 0);
1331 printf("SUCCESS\n\n");
1332 }
1333
1334 printf("Regression test deleting next to last entries:\n");
1335 {
1336 char v[3][257];
1337 zlentry e[3];
1338 int i;
1339
1340 for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
1341 memset(v[i], 'a' + i, sizeof(v[0]));
1342 }
1343
1344 v[0][256] = '\0';
1345 v[1][ 1] = '\0';
1346 v[2][256] = '\0';
1347
1348 zl = ziplistNew();
1349 for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
1350 zl = ziplistPush(zl, (unsigned char *) v[i], strlen(v[i]), ZIPLIST_TAIL);
1351 }
1352
1353 verify(zl, e);
1354
1355 assert(e[0].prevrawlensize == 1);
1356 assert(e[1].prevrawlensize == 5);
1357 assert(e[2].prevrawlensize == 1);
1358
1359 /* Deleting entry 1 will increase `prevrawlensize` for entry 2 */
1360 unsigned char *p = e[1].p;
1361 zl = ziplistDelete(zl, &p);
1362
1363 verify(zl, e);
1364
1365 assert(e[0].prevrawlensize == 1);
1366 assert(e[1].prevrawlensize == 5);
1367
1368 printf("SUCCESS\n\n");
1369 }
1370
1371 printf("Create long list and check indices:\n");
1372 {
1373 zl = ziplistNew();
1374 char buf[32];
1375 int i,len;
1376 for (i = 0; i < 1000; i++) {
1377 len = sprintf(buf,"%d",i);
1378 zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL);
1379 }
1380 for (i = 0; i < 1000; i++) {
1381 p = ziplistIndex(zl,i);
1382 assert(ziplistGet(p,NULL,NULL,&value));
1383 assert(i == value);
1384
1385 p = ziplistIndex(zl,-i-1);
1386 assert(ziplistGet(p,NULL,NULL,&value));
1387 assert(999-i == value);
1388 }
1389 printf("SUCCESS\n\n");
1390 }
1391
1392 printf("Compare strings with ziplist entries:\n");
1393 {
1394 zl = createList();
1395 p = ziplistIndex(zl,0);
1396 if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1397 printf("ERROR: not \"hello\"\n");
1398 return 1;
1399 }
1400 if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1401 printf("ERROR: \"hella\"\n");
1402 return 1;
1403 }
1404
1405 p = ziplistIndex(zl,3);
1406 if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1407 printf("ERROR: not \"1024\"\n");
1408 return 1;
1409 }
1410 if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1411 printf("ERROR: \"1025\"\n");
1412 return 1;
1413 }
1414 printf("SUCCESS\n\n");
1415 }
1416
1417 printf("Stress with random payloads of different encoding:\n");
1418 {
1419 int i,j,len,where;
1420 unsigned char *p;
1421 char buf[1024];
1422 int buflen;
1423 list *ref;
1424 listNode *refnode;
1425
1426 /* Hold temp vars from ziplist */
1427 unsigned char *sstr;
1428 unsigned int slen;
1429 long long sval;
1430
1431 for (i = 0; i < 20000; i++) {
1432 zl = ziplistNew();
1433 ref = listCreate();
1434 listSetFreeMethod(ref,sdsfree);
1435 len = rand() % 256;
1436
1437 /* Create lists */
1438 for (j = 0; j < len; j++) {
1439 where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL;
1440 if (rand() % 2) {
1441 buflen = randstring(buf,1,sizeof(buf)-1);
1442 } else {
1443 switch(rand() % 3) {
1444 case 0:
1445 buflen = sprintf(buf,"%lld",(0LL + rand()) >> 20);
1446 break;
1447 case 1:
1448 buflen = sprintf(buf,"%lld",(0LL + rand()));
1449 break;
1450 case 2:
1451 buflen = sprintf(buf,"%lld",(0LL + rand()) << 20);
1452 break;
1453 default:
1454 assert(NULL);
1455 }
1456 }
1457
1458 /* Add to ziplist */
1459 zl = ziplistPush(zl, (unsigned char*)buf, buflen, where);
1460
1461 /* Add to reference list */
1462 if (where == ZIPLIST_HEAD) {
1463 listAddNodeHead(ref,sdsnewlen(buf, buflen));
1464 } else if (where == ZIPLIST_TAIL) {
1465 listAddNodeTail(ref,sdsnewlen(buf, buflen));
1466 } else {
1467 assert(NULL);
1468 }
1469 }
1470
1471 assert(listLength(ref) == ziplistLen(zl));
1472 for (j = 0; j < len; j++) {
1473 /* Naive way to get elements, but similar to the stresser
1474 * executed from the Tcl test suite. */
1475 p = ziplistIndex(zl,j);
1476 refnode = listIndex(ref,j);
1477
1478 assert(ziplistGet(p,&sstr,&slen,&sval));
1479 if (sstr == NULL) {
1480 buflen = sprintf(buf,"%lld",sval);
1481 } else {
1482 buflen = slen;
1483 memcpy(buf,sstr,buflen);
1484 buf[buflen] = '\0';
1485 }
1486 assert(memcmp(buf,listNodeValue(refnode),buflen) == 0);
1487 }
1488 zfree(zl);
1489 listRelease(ref);
1490 }
1491 printf("SUCCESS\n\n");
1492 }
1493
1494 printf("Stress with variable ziplist size:\n");
1495 {
1496 stress(ZIPLIST_HEAD,100000,16384,256);
1497 stress(ZIPLIST_TAIL,100000,16384,256);
1498 }
1499
1500 return 0;
1501 }
1502
1503 #endif