8 /* dscache.c - Disk store cache for disk store backend. 
  10  * When Redis is configured for using disk as backend instead of memory, the 
  11  * memory is used as a cache, so that recently accessed keys are taken in 
  12  * memory for fast read and write operations. 
  14  * Modified keys are marked to be flushed on disk, and will be flushed 
  15  * as long as the maxium configured flush time elapsed. 
  17  * This file implements the whole caching subsystem and contains further 
  22  * WARNING: most of the following todo items and design issues are no 
  23  * longer relevant with the new design. Here as a checklist to see if 
  24  * some old ideas still apply. 
  26  * - What happens when an object is destroyed? 
  28  *   If the object is destroyed since semantically it was deleted or 
  29  *   replaced with something new, we don't care if there was a SAVE 
  30  *   job pending for it. Anyway when the IO JOb will be created we'll get 
  31  *   the pointer of the current value. 
  33  *   If the object is already a REDIS_IO_SAVEINPROG object, then it is 
  34  *   impossible that we get a decrRefCount() that will reach refcount of zero 
  35  *   since the object is both in the dataset and in the io job entry. 
  37  * - What happens with MULTI/EXEC? 
  39  *   Good question. Without some kind of versioning with a global counter 
  40  *   it is not possible to have trasactions on disk, but they are still 
  41  *   useful since from the point of view of memory and client bugs it is 
  42  *   a protection anyway. Also it's useful for WATCH. 
  44  *   Btw there is to check what happens when WATCH gets combined to keys 
  45  *   that gets removed from the object cache. Should be save but better 
  48  * - Check if/why INCR will not update the LRU info for the object. 
  50  * - Fix/Check the following race condition: a key gets a DEL so there is 
  51  *   a write operation scheduled against this key. Later the same key will 
  52  *   be the argument of a GET, but the write operation was still not 
  53  *   completed (to delete the file). If the GET will be for some reason 
  54  *   a blocking loading (via lookup) we can load the old value on memory. 
  56  *   This problems can be fixed with negative caching. We can use it 
  57  *   to optimize the system, but also when a key is deleted we mark 
  58  *   it as non existing on disk as well (in a way that this cache 
  59  *   entry can't be evicted, setting time to 0), then we avoid looking at 
  60  *   the disk at all if the key can't be there. When an IO Job complete 
  61  *   a deletion, we set the time of the negative caching to a non zero 
  62  *   value so it will be evicted later. 
  64  *   Are there other patterns like this where we load stale data? 
  66  *   Also, make sure that key preloading is ONLY done for keys that are 
  67  *   not marked as cacheKeyDoesNotExist(), otherwise, again, we can load 
  68  *   data from disk that should instead be deleted. 
  70  * - dsSet() should use rename(2) in order to avoid corruptions. 
  72  * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this 
  73  *   impossible since anyway the io_keys stuff will work as lock? 
  75  * - Serialize special encoded things in a raw form. 
  78 /* Virtual Memory is composed mainly of two subsystems: 
  79  * - Blocking Virutal Memory 
  80  * - Threaded Virtual Memory I/O 
  81  * The two parts are not fully decoupled, but functions are split among two 
  82  * different sections of the source code (delimited by comments) in order to 
  83  * make more clear what functionality is about the blocking VM and what about 
  84  * the threaded (not blocking) VM. 
  88  * Redis VM is a blocking VM (one that blocks reading swapped values from 
  89  * disk into memory when a value swapped out is needed in memory) that is made 
  90  * unblocking by trying to examine the command argument vector in order to 
  91  * load in background values that will likely be needed in order to exec 
  92  * the command. The command is executed only once all the relevant keys 
  93  * are loaded into memory. 
  95  * This basically is almost as simple of a blocking VM, but almost as parallel 
  96  * as a fully non-blocking VM. 
  99 void spawnIOThread(void); 
 101 /* =================== Virtual Memory - Blocking Side  ====================== */ 
 107     zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */ 
 109     redisLog(REDIS_NOTICE
,"Opening Disk Store: %s", server
.ds_path
); 
 110     /* Open Disk Store */ 
 111     if (dsOpen() != REDIS_OK
) { 
 112         redisLog(REDIS_WARNING
,"Fatal error opening disk store. Exiting."); 
 116     /* Initialize threaded I/O for Object Cache */ 
 117     server
.io_newjobs 
= listCreate(); 
 118     server
.io_processing 
= listCreate(); 
 119     server
.io_processed 
= listCreate(); 
 120     server
.io_ready_clients 
= listCreate(); 
 121     pthread_mutex_init(&server
.io_mutex
,NULL
); 
 122     pthread_cond_init(&server
.io_condvar
,NULL
); 
 123     server
.io_active_threads 
= 0; 
 124     if (pipe(pipefds
) == -1) { 
 125         redisLog(REDIS_WARNING
,"Unable to intialized DS: pipe(2): %s. Exiting." 
 129     server
.io_ready_pipe_read 
= pipefds
[0]; 
 130     server
.io_ready_pipe_write 
= pipefds
[1]; 
 131     redisAssert(anetNonBlock(NULL
,server
.io_ready_pipe_read
) != ANET_ERR
); 
 132     /* LZF requires a lot of stack */ 
 133     pthread_attr_init(&server
.io_threads_attr
); 
 134     pthread_attr_getstacksize(&server
.io_threads_attr
, &stacksize
); 
 136     /* Solaris may report a stacksize of 0, let's set it to 1 otherwise 
 137      * multiplying it by 2 in the while loop later will not really help ;) */ 
 138     if (!stacksize
) stacksize 
= 1; 
 140     while (stacksize 
< REDIS_THREAD_STACK_SIZE
) stacksize 
*= 2; 
 141     pthread_attr_setstacksize(&server
.io_threads_attr
, stacksize
); 
 142     /* Listen for events in the threaded I/O pipe */ 
 143     if (aeCreateFileEvent(server
.el
, server
.io_ready_pipe_read
, AE_READABLE
, 
 144         vmThreadedIOCompletedJob
, NULL
) == AE_ERR
) 
 145         oom("creating file event"); 
 147     /* Spawn our I/O thread */ 
 151 /* Compute how good candidate the specified object is for eviction. 
 152  * An higher number means a better candidate. */ 
 153 double computeObjectSwappability(robj 
*o
) { 
 154     /* actual age can be >= minage, but not < minage. As we use wrapping 
 155      * 21 bit clocks with minutes resolution for the LRU. */ 
 156     return (double) estimateObjectIdleTime(o
); 
 159 /* Try to free one entry from the diskstore object cache */ 
 160 int cacheFreeOneEntry(void) { 
 162     struct dictEntry 
*best 
= NULL
; 
 163     double best_swappability 
= 0; 
 164     redisDb 
*best_db 
= NULL
; 
 168     for (j 
= 0; j 
< server
.dbnum
; j
++) { 
 169         redisDb 
*db 
= server
.db
+j
; 
 170         /* Why maxtries is set to 100? 
 171          * Because this way (usually) we'll find 1 object even if just 1% - 2% 
 172          * are swappable objects */ 
 175         if (dictSize(db
->dict
) == 0) continue; 
 176         for (i 
= 0; i 
< 5; i
++) { 
 182             if (maxtries
) maxtries
--; 
 183             de 
= dictGetRandomKey(db
->dict
); 
 184             keystr 
= dictGetEntryKey(de
); 
 185             val 
= dictGetEntryVal(de
); 
 186             initStaticStringObject(keyobj
,keystr
); 
 188             /* Don't remove objects that are currently target of a 
 189              * read or write operation. */ 
 190             if (cacheScheduleIOGetFlags(db
,&keyobj
) != 0) { 
 191                 if (maxtries
) i
--; /* don't count this try */ 
 194             swappability 
= computeObjectSwappability(val
); 
 195             if (!best 
|| swappability 
> best_swappability
) { 
 197                 best_swappability 
= swappability
; 
 203         /* FIXME: If there are objects that are in the write queue 
 204          * so we can't delete them we should block here, at the cost of 
 205          * slowness as the object cache memory limit is considered  
 209     key 
= dictGetEntryKey(best
); 
 210     val 
= dictGetEntryVal(best
); 
 212     redisLog(REDIS_DEBUG
,"Key selected for cache eviction: %s swappability:%f", 
 213         key
, best_swappability
); 
 215     /* Delete this key from memory */ 
 217         robj 
*kobj 
= createStringObject(key
,sdslen(key
)); 
 218         dbDelete(best_db
,kobj
); 
 224 /* Return true if it's safe to swap out objects in a given moment. 
 225  * Basically we don't want to swap objects out while there is a BGSAVE 
 226  * or a BGAEOREWRITE running in backgroud. */ 
 227 int dsCanTouchDiskStore(void) { 
 228     return (server
.bgsavechildpid 
== -1 && server
.bgrewritechildpid 
== -1); 
 231 /* ==================== Disk store negative caching  ======================== 
 233  * When disk store is enabled, we need negative caching, that is, to remember 
 234  * keys that are for sure *not* on the disk key-value store. 
 236  * This is usefuls because without negative caching cache misses will cost us 
 237  * a disk lookup, even if the same non existing key is accessed again and again. 
 239  * With negative caching we remember that the key is not on disk, so if it's 
 240  * not in memory and we have a negative cache entry, we don't try a disk 
 244 /* Returns true if the specified key may exists on disk, that is, we don't 
 245  * have an entry in our negative cache for this key */ 
 246 int cacheKeyMayExist(redisDb 
*db
, robj 
*key
) { 
 247     return dictFind(db
->io_negcache
,key
) == NULL
; 
 250 /* Set the specified key as an entry that may possibily exist on disk, that is, 
 251  * remove the negative cache entry for this key if any. */ 
 252 void cacheSetKeyMayExist(redisDb 
*db
, robj 
*key
) { 
 253     dictDelete(db
->io_negcache
,key
); 
 256 /* Set the specified key as non existing on disk, that is, create a negative 
 257  * cache entry for this key. */ 
 258 void cacheSetKeyDoesNotExist(redisDb 
*db
, robj 
*key
) { 
 259     if (dictReplace(db
->io_negcache
,key
,(void*)time(NULL
))) { 
 264 /* Remove one entry from negative cache using approximated LRU. */ 
 265 int negativeCacheEvictOneEntry(void) { 
 266     struct dictEntry 
*de
; 
 268     redisDb 
*best_db 
= NULL
; 
 269     time_t time
, best_time 
= 0; 
 272     for (j 
= 0; j 
< server
.dbnum
; j
++) { 
 273         redisDb 
*db 
= server
.db
+j
; 
 276         if (dictSize(db
->io_negcache
) == 0) continue; 
 277         for (i 
= 0; i 
< 3; i
++) { 
 278             de 
= dictGetRandomKey(db
->io_negcache
); 
 279             time 
= (time_t) dictGetEntryVal(de
); 
 281             if (best 
== NULL 
|| time 
< best_time
) { 
 282                 best 
= dictGetEntryKey(de
); 
 289         dictDelete(best_db
->io_negcache
,best
); 
 296 /* ================== Disk store cache - Threaded I/O  ====================== */ 
 298 void freeIOJob(iojob 
*j
) { 
 299     decrRefCount(j
->key
); 
 300     /* j->val can be NULL if the job is about deleting the key from disk. */ 
 301     if (j
->val
) decrRefCount(j
->val
); 
 305 /* Every time a thread finished a Job, it writes a byte into the write side 
 306  * of an unix pipe in order to "awake" the main thread, and this function 
 308 void vmThreadedIOCompletedJob(aeEventLoop 
*el
, int fd
, void *privdata
, 
 312     int retval
, processed 
= 0, toprocess 
= -1; 
 315     REDIS_NOTUSED(privdata
); 
 317     /* For every byte we read in the read side of the pipe, there is one 
 318      * I/O job completed to process. */ 
 319     while((retval 
= read(fd
,buf
,1)) == 1) { 
 323         redisLog(REDIS_DEBUG
,"Processing I/O completed job"); 
 325         /* Get the processed element (the oldest one) */ 
 327         redisAssert(listLength(server
.io_processed
) != 0); 
 328         if (toprocess 
== -1) { 
 329             toprocess 
= (listLength(server
.io_processed
)*REDIS_MAX_COMPLETED_JOBS_PROCESSED
)/100; 
 330             if (toprocess 
<= 0) toprocess 
= 1; 
 332         ln 
= listFirst(server
.io_processed
); 
 334         listDelNode(server
.io_processed
,ln
); 
 337         /* Post process it in the main thread, as there are things we 
 338          * can do just here to avoid race conditions and/or invasive locks */ 
 339         redisLog(REDIS_DEBUG
,"COMPLETED Job type %s, key: %s", 
 340             (j
->type 
== REDIS_IOJOB_LOAD
) ? "load" : "save", 
 341             (unsigned char*)j
->key
->ptr
); 
 342         if (j
->type 
== REDIS_IOJOB_LOAD
) { 
 343             /* Create the key-value pair in the in-memory database */ 
 344             if (j
->val 
!= NULL
) { 
 345                 /* Note: it's possible that the key is already in memory 
 346                  * due to a blocking load operation. */ 
 347                 if (dbAdd(j
->db
,j
->key
,j
->val
) == REDIS_OK
) { 
 348                     incrRefCount(j
->val
); 
 349                     if (j
->expire 
!= -1) setExpire(j
->db
,j
->key
,j
->expire
); 
 352             cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_LOADINPROG
); 
 353             handleClientsBlockedOnSwappedKey(j
->db
,j
->key
); 
 355         } else if (j
->type 
== REDIS_IOJOB_SAVE
) { 
 356             cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_SAVEINPROG
); 
 360         if (processed 
== toprocess
) return; 
 362     if (retval 
< 0 && errno 
!= EAGAIN
) { 
 363         redisLog(REDIS_WARNING
, 
 364             "WARNING: read(2) error in vmThreadedIOCompletedJob() %s", 
 369 void lockThreadedIO(void) { 
 370     pthread_mutex_lock(&server
.io_mutex
); 
 373 void unlockThreadedIO(void) { 
 374     pthread_mutex_unlock(&server
.io_mutex
); 
 377 void *IOThreadEntryPoint(void *arg
) { 
 382     pthread_detach(pthread_self()); 
 385         /* Get a new job to process */ 
 386         if (listLength(server
.io_newjobs
) == 0) { 
 387             /* Wait for more work to do */ 
 388             pthread_cond_wait(&server
.io_condvar
,&server
.io_mutex
); 
 391         redisLog(REDIS_DEBUG
,"%ld IO jobs to process", 
 392             listLength(server
.io_newjobs
)); 
 393         ln 
= listFirst(server
.io_newjobs
); 
 395         listDelNode(server
.io_newjobs
,ln
); 
 396         /* Add the job in the processing queue */ 
 397         listAddNodeTail(server
.io_processing
,j
); 
 398         ln 
= listLast(server
.io_processing
); /* We use ln later to remove it */ 
 401         redisLog(REDIS_DEBUG
,"Thread %ld: new job type %s: %p about key '%s'", 
 402             (long) pthread_self(), 
 403             (j
->type 
== REDIS_IOJOB_LOAD
) ? "load" : "save", 
 404             (void*)j
, (char*)j
->key
->ptr
); 
 406         /* Process the Job */ 
 407         if (j
->type 
== REDIS_IOJOB_LOAD
) { 
 410             j
->val 
= dsGet(j
->db
,j
->key
,&expire
); 
 411             if (j
->val
) j
->expire 
= expire
; 
 412         } else if (j
->type 
== REDIS_IOJOB_SAVE
) { 
 414                 dsSet(j
->db
,j
->key
,j
->val
); 
 420         /* Done: insert the job into the processed queue */ 
 421         redisLog(REDIS_DEBUG
,"Thread %ld completed the job: %p (key %s)", 
 422             (long) pthread_self(), (void*)j
, (char*)j
->key
->ptr
); 
 425         listDelNode(server
.io_processing
,ln
); 
 426         listAddNodeTail(server
.io_processed
,j
); 
 428         /* Signal the main thread there is new stuff to process */ 
 429         redisAssert(write(server
.io_ready_pipe_write
,"x",1) == 1); 
 431     /* never reached, but that's the full pattern... */ 
 436 void spawnIOThread(void) { 
 438     sigset_t mask
, omask
; 
 442     sigaddset(&mask
,SIGCHLD
); 
 443     sigaddset(&mask
,SIGHUP
); 
 444     sigaddset(&mask
,SIGPIPE
); 
 445     pthread_sigmask(SIG_SETMASK
, &mask
, &omask
); 
 446     while ((err 
= pthread_create(&thread
,&server
.io_threads_attr
,IOThreadEntryPoint
,NULL
)) != 0) { 
 447         redisLog(REDIS_WARNING
,"Unable to spawn an I/O thread: %s", 
 451     pthread_sigmask(SIG_SETMASK
, &omask
, NULL
); 
 452     server
.io_active_threads
++; 
 455 /* Wait that all the pending IO Jobs are processed */ 
 456 void waitEmptyIOJobsQueue(void) { 
 458         int io_processed_len
; 
 461         if (listLength(server
.io_newjobs
) == 0 && 
 462             listLength(server
.io_processing
) == 0) 
 467         /* If there are new jobs we need to signal the thread to 
 468          * process the next one. */ 
 469         redisLog(REDIS_DEBUG
,"waitEmptyIOJobsQueue: new %d, processing %d", 
 470             listLength(server
.io_newjobs
), 
 471             listLength(server
.io_processing
)); 
 473         if (listLength(server.io_newjobs)) { 
 474             pthread_cond_signal(&server.io_condvar); 
 477         /* While waiting for empty jobs queue condition we post-process some 
 478          * finshed job, as I/O threads may be hanging trying to write against 
 479          * the io_ready_pipe_write FD but there are so much pending jobs that 
 481         io_processed_len 
= listLength(server
.io_processed
); 
 483         if (io_processed_len
) { 
 484             vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
, 
 485                                                         (void*)0xdeadbeef,0); 
 486             usleep(1000); /* 1 millisecond */ 
 488             usleep(10000); /* 10 milliseconds */ 
 493 /* Process all the IO Jobs already completed by threads but still waiting 
 494  * processing from the main thread. */ 
 495 void processAllPendingIOJobs(void) { 
 497         int io_processed_len
; 
 500         io_processed_len 
= listLength(server
.io_processed
); 
 502         if (io_processed_len 
== 0) return; 
 503         vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
, 
 504                                                     (void*)0xdeadbeef,0); 
 508 /* This function must be called while with threaded IO locked */ 
 509 void queueIOJob(iojob 
*j
) { 
 510     redisLog(REDIS_DEBUG
,"Queued IO Job %p type %d about key '%s'\n", 
 511         (void*)j
, j
->type
, (char*)j
->key
->ptr
); 
 512     listAddNodeTail(server
.io_newjobs
,j
); 
 513     if (server
.io_active_threads 
< server
.vm_max_threads
) 
 517 void dsCreateIOJob(int type
, redisDb 
*db
, robj 
*key
, robj 
*val
) { 
 520     j 
= zmalloc(sizeof(*j
)); 
 526     if (val
) incrRefCount(val
); 
 530     pthread_cond_signal(&server
.io_condvar
); 
 534 /* ============= Disk store cache - Scheduling of IO operations =============  
 536  * We use a queue and an hash table to hold the state of IO operations 
 537  * so that's fast to lookup if there is already an IO operation in queue 
 540  * There are two types of IO operations for a given key: 
 541  * REDIS_IO_LOAD and REDIS_IO_SAVE. 
 543  * The function cacheScheduleIO() function pushes the specified IO operation 
 544  * in the queue, but avoid adding the same key for the same operation 
 545  * multiple times, thanks to the associated hash table. 
 547  * We take a set of flags per every key, so when the scheduled IO operation 
 548  * gets moved from the scheduled queue to the actual IO Jobs queue that 
 549  * is processed by the IO thread, we flag it as IO_LOADINPROG or 
 552  * So for every given key we always know if there is some IO operation 
 553  * scheduled, or in progress, for this key. 
 555  * NOTE: all this is very important in order to guarantee correctness of 
 556  * the Disk Store Cache. Jobs are always queued here. Load jobs are 
 557  * queued at the head for faster execution only in the case there is not 
 558  * already a write operation of some kind for this job. 
 560  * So we have ordering, but can do exceptions when there are no already 
 561  * operations for a given key. Also when we need to block load a given 
 562  * key, for an immediate lookup operation, we can check if the key can 
 563  * be accessed synchronously without race conditions (no IN PROGRESS 
 564  * operations for this key), otherwise we blocking wait for completion. */ 
 566 #define REDIS_IO_LOAD 1 
 567 #define REDIS_IO_SAVE 2 
 568 #define REDIS_IO_LOADINPROG 4 
 569 #define REDIS_IO_SAVEINPROG 8 
 571 void cacheScheduleIOAddFlag(redisDb 
*db
, robj 
*key
, long flag
) { 
 572     struct dictEntry 
*de 
= dictFind(db
->io_queued
,key
); 
 575         dictAdd(db
->io_queued
,key
,(void*)flag
); 
 579         long flags 
= (long) dictGetEntryVal(de
); 
 582             redisLog(REDIS_WARNING
,"Adding the same flag again: was: %ld, addede: %ld",flags
,flag
); 
 583             redisAssert(!(flags 
& flag
)); 
 586         dictGetEntryVal(de
) = (void*) flags
; 
 590 void cacheScheduleIODelFlag(redisDb 
*db
, robj 
*key
, long flag
) { 
 591     struct dictEntry 
*de 
= dictFind(db
->io_queued
,key
); 
 594     redisAssert(de 
!= NULL
); 
 595     flags 
= (long) dictGetEntryVal(de
); 
 596     redisAssert(flags 
& flag
); 
 599         dictDelete(db
->io_queued
,key
); 
 601         dictGetEntryVal(de
) = (void*) flags
; 
 605 int cacheScheduleIOGetFlags(redisDb 
*db
, robj 
*key
) { 
 606     struct dictEntry 
*de 
= dictFind(db
->io_queued
,key
); 
 608     return (de 
== NULL
) ? 0 : ((long) dictGetEntryVal(de
)); 
 611 void cacheScheduleIO(redisDb 
*db
, robj 
*key
, int type
) { 
 615     if ((flags 
= cacheScheduleIOGetFlags(db
,key
)) & type
) return; 
 617     redisLog(REDIS_DEBUG
,"Scheduling key %s for %s", 
 618         key
->ptr
, type 
== REDIS_IO_LOAD 
? "loading" : "saving"); 
 619     cacheScheduleIOAddFlag(db
,key
,type
); 
 620     op 
= zmalloc(sizeof(*op
)); 
 625     op
->ctime 
= time(NULL
); 
 627     /* Give priority to load operations if there are no save already 
 628      * in queue for the same key. */ 
 629     if (type 
== REDIS_IO_LOAD 
&& !(flags 
& REDIS_IO_SAVE
)) { 
 630         listAddNodeHead(server
.cache_io_queue
, op
); 
 632         /* FIXME: probably when this happens we want to at least move 
 633          * the write job about this queue on top, and set the creation time 
 634          * to a value that will force processing ASAP. */ 
 635         listAddNodeTail(server
.cache_io_queue
, op
); 
 639 void cacheCron(void) { 
 640     time_t now 
= time(NULL
); 
 642     int jobs
, topush 
= 0; 
 644     /* Sync stuff on disk, but only if we have less than 100 IO jobs */ 
 646     jobs 
= listLength(server
.io_newjobs
); 
 650     if (topush 
< 0) topush 
= 0; 
 651     if (topush 
> (signed)listLength(server
.cache_io_queue
)) 
 652         topush 
= listLength(server
.cache_io_queue
); 
 654     while((ln 
= listFirst(server
.cache_io_queue
)) != NULL
) { 
 655         ioop 
*op 
= ln
->value
; 
 660         if (op
->type 
== REDIS_IO_LOAD 
|| 
 661             (now 
- op
->ctime
) >= server
.cache_flush_delay
) 
 663             struct dictEntry 
*de
; 
 666             /* Don't add a SAVE job in queue if there is already 
 667              * a save in progress for the same key. */ 
 668             if (op
->type 
== REDIS_IO_SAVE 
&&  
 669                 cacheScheduleIOGetFlags(op
->db
,op
->key
) & REDIS_IO_SAVEINPROG
) 
 671                 /* Move the operation at the end of the list of there 
 672                  * are other operations. Otherwise break, nothing to do 
 674                 if (listLength(server
.cache_io_queue
) > 1) { 
 675                     listDelNode(server
.cache_io_queue
,ln
); 
 676                     listAddNodeTail(server
.cache_io_queue
,op
); 
 683             redisLog(REDIS_DEBUG
,"Creating IO %s Job for key %s", 
 684                 op
->type 
== REDIS_IO_LOAD 
? "load" : "save", op
->key
->ptr
); 
 686             if (op
->type 
== REDIS_IO_LOAD
) { 
 687                 dsCreateIOJob(REDIS_IOJOB_LOAD
,op
->db
,op
->key
,NULL
); 
 689                 /* Lookup the key, in order to put the current value in the IO 
 690                  * Job. Otherwise if the key does not exists we schedule a disk 
 691                  * store delete operation, setting the value to NULL. */ 
 692                 de 
= dictFind(op
->db
->dict
,op
->key
->ptr
); 
 694                     val 
= dictGetEntryVal(de
); 
 696                     /* Setting the value to NULL tells the IO thread to delete 
 697                      * the key on disk. */ 
 700                 dsCreateIOJob(REDIS_IOJOB_SAVE
,op
->db
,op
->key
,val
); 
 702             /* Mark the operation as in progress. */ 
 703             cacheScheduleIODelFlag(op
->db
,op
->key
,op
->type
); 
 704             cacheScheduleIOAddFlag(op
->db
,op
->key
, 
 705                 (op
->type 
== REDIS_IO_LOAD
) ? REDIS_IO_LOADINPROG 
: 
 706                                               REDIS_IO_SAVEINPROG
); 
 707             /* Finally remove the operation from the queue. 
 708              * But we'll have trace of it in the hash table. */ 
 709             listDelNode(server
.cache_io_queue
,ln
); 
 710             decrRefCount(op
->key
); 
 713             break; /* too early */ 
 717     /* Reclaim memory from the object cache */ 
 718     while (server
.ds_enabled 
&& zmalloc_used_memory() > 
 719             server
.cache_max_memory
) 
 723         if (cacheFreeOneEntry() == REDIS_OK
) done
++; 
 724         if (negativeCacheEvictOneEntry() == REDIS_OK
) done
++; 
 725         if (done 
== 0) break; /* nothing more to free */ 
 729 /* ========== Disk store cache - Blocking clients on missing keys =========== */ 
 731 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded. 
 732  * If the key is already in memory we don't need to block. 
 734  *   FIXME: we should try if it's actually better to suspend the client 
 735  *   accessing an object that is being saved, and awake it only when 
 736  *   the saving was completed. 
 738  * Otherwise if the key is not in memory, we block the client and start 
 739  * an IO Job to load it: 
 741  * the key is added to the io_keys list in the client structure, and also 
 742  * in the hash table mapping swapped keys to waiting clients, that is, 
 743  * server.io_waited_keys. */ 
 744 int waitForSwappedKey(redisClient 
*c
, robj 
*key
) { 
 745     struct dictEntry 
*de
; 
 748     /* Return ASAP if the key is in memory */ 
 749     de 
= dictFind(c
->db
->dict
,key
->ptr
); 
 750     if (de 
!= NULL
) return 0; 
 752     /* Don't wait for keys we are sure are not on disk either */ 
 753     if (!cacheKeyMayExist(c
->db
,key
)) return 0; 
 755     /* Add the key to the list of keys this client is waiting for. 
 756      * This maps clients to keys they are waiting for. */ 
 757     listAddNodeTail(c
->io_keys
,key
); 
 760     /* Add the client to the swapped keys => clients waiting map. */ 
 761     de 
= dictFind(c
->db
->io_keys
,key
); 
 765         /* For every key we take a list of clients blocked for it */ 
 767         retval 
= dictAdd(c
->db
->io_keys
,key
,l
); 
 769         redisAssert(retval 
== DICT_OK
); 
 771         l 
= dictGetEntryVal(de
); 
 773     listAddNodeTail(l
,c
); 
 775     /* Are we already loading the key from disk? If not create a job */ 
 777         cacheScheduleIO(c
->db
,key
,REDIS_IO_LOAD
); 
 781 /* Preload keys for any command with first, last and step values for 
 782  * the command keys prototype, as defined in the command table. */ 
 783 void waitForMultipleSwappedKeys(redisClient 
*c
, struct redisCommand 
*cmd
, int argc
, robj 
**argv
) { 
 785     if (cmd
->vm_firstkey 
== 0) return; 
 786     last 
= cmd
->vm_lastkey
; 
 787     if (last 
< 0) last 
= argc
+last
; 
 788     for (j 
= cmd
->vm_firstkey
; j 
<= last
; j 
+= cmd
->vm_keystep
) { 
 789         redisAssert(j 
< argc
); 
 790         waitForSwappedKey(c
,argv
[j
]); 
 794 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands. 
 795  * Note that the number of keys to preload is user-defined, so we need to 
 796  * apply a sanity check against argc. */ 
 797 void zunionInterBlockClientOnSwappedKeys(redisClient 
*c
, struct redisCommand 
*cmd
, int argc
, robj 
**argv
) { 
 801     num 
= atoi(argv
[2]->ptr
); 
 802     if (num 
> (argc
-3)) return; 
 803     for (i 
= 0; i 
< num
; i
++) { 
 804         waitForSwappedKey(c
,argv
[3+i
]); 
 808 /* Preload keys needed to execute the entire MULTI/EXEC block. 
 810  * This function is called by blockClientOnSwappedKeys when EXEC is issued, 
 811  * and will block the client when any command requires a swapped out value. */ 
 812 void execBlockClientOnSwappedKeys(redisClient 
*c
, struct redisCommand 
*cmd
, int argc
, robj 
**argv
) { 
 814     struct redisCommand 
*mcmd
; 
 820     if (!(c
->flags 
& REDIS_MULTI
)) return; 
 821     for (i 
= 0; i 
< c
->mstate
.count
; i
++) { 
 822         mcmd 
= c
->mstate
.commands
[i
].cmd
; 
 823         margc 
= c
->mstate
.commands
[i
].argc
; 
 824         margv 
= c
->mstate
.commands
[i
].argv
; 
 826         if (mcmd
->vm_preload_proc 
!= NULL
) { 
 827             mcmd
->vm_preload_proc(c
,mcmd
,margc
,margv
); 
 829             waitForMultipleSwappedKeys(c
,mcmd
,margc
,margv
); 
 834 /* Is this client attempting to run a command against swapped keys? 
 835  * If so, block it ASAP, load the keys in background, then resume it. 
 837  * The important idea about this function is that it can fail! If keys will 
 838  * still be swapped when the client is resumed, this key lookups will 
 839  * just block loading keys from disk. In practical terms this should only 
 840  * happen with SORT BY command or if there is a bug in this function. 
 842  * Return 1 if the client is marked as blocked, 0 if the client can 
 843  * continue as the keys it is going to access appear to be in memory. */ 
 844 int blockClientOnSwappedKeys(redisClient 
*c
, struct redisCommand 
*cmd
) { 
 845     if (cmd
->vm_preload_proc 
!= NULL
) { 
 846         cmd
->vm_preload_proc(c
,cmd
,c
->argc
,c
->argv
); 
 848         waitForMultipleSwappedKeys(c
,cmd
,c
->argc
,c
->argv
); 
 851     /* If the client was blocked for at least one key, mark it as blocked. */ 
 852     if (listLength(c
->io_keys
)) { 
 853         c
->flags 
|= REDIS_IO_WAIT
; 
 854         aeDeleteFileEvent(server
.el
,c
->fd
,AE_READABLE
); 
 855         server
.cache_blocked_clients
++; 
 862 /* Remove the 'key' from the list of blocked keys for a given client. 
 864  * The function returns 1 when there are no longer blocking keys after 
 865  * the current one was removed (and the client can be unblocked). */ 
 866 int dontWaitForSwappedKey(redisClient 
*c
, robj 
*key
) { 
 870     struct dictEntry 
*de
; 
 872     /* The key object might be destroyed when deleted from the c->io_keys 
 873      * list (and the "key" argument is physically the same object as the 
 874      * object inside the list), so we need to protect it. */ 
 877     /* Remove the key from the list of keys this client is waiting for. */ 
 878     listRewind(c
->io_keys
,&li
); 
 879     while ((ln 
= listNext(&li
)) != NULL
) { 
 880         if (equalStringObjects(ln
->value
,key
)) { 
 881             listDelNode(c
->io_keys
,ln
); 
 885     redisAssert(ln 
!= NULL
); 
 887     /* Remove the client form the key => waiting clients map. */ 
 888     de 
= dictFind(c
->db
->io_keys
,key
); 
 889     redisAssert(de 
!= NULL
); 
 890     l 
= dictGetEntryVal(de
); 
 891     ln 
= listSearchKey(l
,c
); 
 892     redisAssert(ln 
!= NULL
); 
 894     if (listLength(l
) == 0) 
 895         dictDelete(c
->db
->io_keys
,key
); 
 898     return listLength(c
->io_keys
) == 0; 
 901 /* Every time we now a key was loaded back in memory, we handle clients 
 902  * waiting for this key if any. */ 
 903 void handleClientsBlockedOnSwappedKey(redisDb 
*db
, robj 
*key
) { 
 904     struct dictEntry 
*de
; 
 909     de 
= dictFind(db
->io_keys
,key
); 
 912     l 
= dictGetEntryVal(de
); 
 914     /* Note: we can't use something like while(listLength(l)) as the list 
 915      * can be freed by the calling function when we remove the last element. */ 
 918         redisClient 
*c 
= ln
->value
; 
 920         if (dontWaitForSwappedKey(c
,key
)) { 
 921             /* Put the client in the list of clients ready to go as we 
 922              * loaded all the keys about it. */ 
 923             listAddNodeTail(server
.io_ready_clients
,c
);