8 /* dscache.c - Disk store cache for disk store backend. 
  10  * When Redis is configured for using disk as backend instead of memory, the 
  11  * memory is used as a cache, so that recently accessed keys are taken in 
  12  * memory for fast read and write operations. 
  14  * Modified keys are marked to be flushed on disk, and will be flushed 
  15  * as long as the maxium configured flush time elapsed. 
  17  * This file implements the whole caching subsystem and contains further 
  22  * WARNING: most of the following todo items and design issues are no 
  23  * longer relevant with the new design. Here as a checklist to see if 
  24  * some old ideas still apply. 
  26  * - What happens when an object is destroyed? 
  28  *   If the object is destroyed since semantically it was deleted or 
  29  *   replaced with something new, we don't care if there was a SAVE 
  30  *   job pending for it. Anyway when the IO JOb will be created we'll get 
  31  *   the pointer of the current value. 
  33  *   If the object is already a REDIS_IO_SAVEINPROG object, then it is 
  34  *   impossible that we get a decrRefCount() that will reach refcount of zero 
  35  *   since the object is both in the dataset and in the io job entry. 
  37  * - What happens with MULTI/EXEC? 
  39  *   Good question. Without some kind of versioning with a global counter 
  40  *   it is not possible to have trasactions on disk, but they are still 
  41  *   useful since from the point of view of memory and client bugs it is 
  42  *   a protection anyway. Also it's useful for WATCH. 
  44  *   Btw there is to check what happens when WATCH gets combined to keys 
  45  *   that gets removed from the object cache. Should be save but better 
  48  * - Check if/why INCR will not update the LRU info for the object. 
  50  * - Fix/Check the following race condition: a key gets a DEL so there is 
  51  *   a write operation scheduled against this key. Later the same key will 
  52  *   be the argument of a GET, but the write operation was still not 
  53  *   completed (to delete the file). If the GET will be for some reason 
  54  *   a blocking loading (via lookup) we can load the old value on memory. 
  56  *   This problems can be fixed with negative caching. We can use it 
  57  *   to optimize the system, but also when a key is deleted we mark 
  58  *   it as non existing on disk as well (in a way that this cache 
  59  *   entry can't be evicted, setting time to 0), then we avoid looking at 
  60  *   the disk at all if the key can't be there. When an IO Job complete 
  61  *   a deletion, we set the time of the negative caching to a non zero 
  62  *   value so it will be evicted later. 
  64  *   Are there other patterns like this where we load stale data? 
  66  *   Also, make sure that key preloading is ONLY done for keys that are 
  67  *   not marked as cacheKeyDoesNotExist(), otherwise, again, we can load 
  68  *   data from disk that should instead be deleted. 
  70  * - dsSet() should use rename(2) in order to avoid corruptions. 
  72  * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this 
  73  *   impossible since anyway the io_keys stuff will work as lock? 
  75  * - Serialize special encoded things in a raw form. 
  77  * - When putting IO read operations on top of the queue, do this only if 
  78  *   the already-on-top operation is not a save or if it is a save that 
  79  *   is scheduled for later execution. If there is a save that is ready to 
  80  *   fire, let's insert the load operation just before the first save that 
  81  *   is scheduled for later exection for instance. 
  83  * - Support MULTI/EXEC transactions via a journal file, that is played on 
  84  *   startup to check if there is cleanup to do. This way we can implement 
  85  *   transactions with our simple file based KV store. 
  88 /* Virtual Memory is composed mainly of two subsystems: 
  89  * - Blocking Virutal Memory 
  90  * - Threaded Virtual Memory I/O 
  91  * The two parts are not fully decoupled, but functions are split among two 
  92  * different sections of the source code (delimited by comments) in order to 
  93  * make more clear what functionality is about the blocking VM and what about 
  94  * the threaded (not blocking) VM. 
  98  * Redis VM is a blocking VM (one that blocks reading swapped values from 
  99  * disk into memory when a value swapped out is needed in memory) that is made 
 100  * unblocking by trying to examine the command argument vector in order to 
 101  * load in background values that will likely be needed in order to exec 
 102  * the command. The command is executed only once all the relevant keys 
 103  * are loaded into memory. 
 105  * This basically is almost as simple of a blocking VM, but almost as parallel 
 106  * as a fully non-blocking VM. 
 109 void spawnIOThread(void); 
 110 int cacheScheduleIOPushJobs(int flags
); 
 111 int processActiveIOJobs(int max
); 
 113 /* =================== Virtual Memory - Blocking Side  ====================== */ 
 119     zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */ 
 121     redisLog(REDIS_NOTICE
,"Opening Disk Store: %s", server
.ds_path
); 
 122     /* Open Disk Store */ 
 123     if (dsOpen() != REDIS_OK
) { 
 124         redisLog(REDIS_WARNING
,"Fatal error opening disk store. Exiting."); 
 128     /* Initialize threaded I/O for Object Cache */ 
 129     server
.io_newjobs 
= listCreate(); 
 130     server
.io_processing 
= listCreate(); 
 131     server
.io_processed 
= listCreate(); 
 132     server
.io_ready_clients 
= listCreate(); 
 133     pthread_mutex_init(&server
.io_mutex
,NULL
); 
 134     pthread_cond_init(&server
.io_condvar
,NULL
); 
 135     pthread_mutex_init(&server
.bgsavethread_mutex
,NULL
); 
 136     server
.io_active_threads 
= 0; 
 137     if (pipe(pipefds
) == -1) { 
 138         redisLog(REDIS_WARNING
,"Unable to intialized DS: pipe(2): %s. Exiting." 
 142     server
.io_ready_pipe_read 
= pipefds
[0]; 
 143     server
.io_ready_pipe_write 
= pipefds
[1]; 
 144     redisAssert(anetNonBlock(NULL
,server
.io_ready_pipe_read
) != ANET_ERR
); 
 145     /* LZF requires a lot of stack */ 
 146     pthread_attr_init(&server
.io_threads_attr
); 
 147     pthread_attr_getstacksize(&server
.io_threads_attr
, &stacksize
); 
 149     /* Solaris may report a stacksize of 0, let's set it to 1 otherwise 
 150      * multiplying it by 2 in the while loop later will not really help ;) */ 
 151     if (!stacksize
) stacksize 
= 1; 
 153     while (stacksize 
< REDIS_THREAD_STACK_SIZE
) stacksize 
*= 2; 
 154     pthread_attr_setstacksize(&server
.io_threads_attr
, stacksize
); 
 155     /* Listen for events in the threaded I/O pipe */ 
 156     if (aeCreateFileEvent(server
.el
, server
.io_ready_pipe_read
, AE_READABLE
, 
 157         vmThreadedIOCompletedJob
, NULL
) == AE_ERR
) 
 158         oom("creating file event"); 
 160     /* Spawn our I/O thread */ 
 164 /* Compute how good candidate the specified object is for eviction. 
 165  * An higher number means a better candidate. */ 
 166 double computeObjectSwappability(robj 
*o
) { 
 167     /* actual age can be >= minage, but not < minage. As we use wrapping 
 168      * 21 bit clocks with minutes resolution for the LRU. */ 
 169     return (double) estimateObjectIdleTime(o
); 
 172 /* Try to free one entry from the diskstore object cache */ 
 173 int cacheFreeOneEntry(void) { 
 175     struct dictEntry 
*best 
= NULL
; 
 176     double best_swappability 
= 0; 
 177     redisDb 
*best_db 
= NULL
; 
 181     for (j 
= 0; j 
< server
.dbnum
; j
++) { 
 182         redisDb 
*db 
= server
.db
+j
; 
 183         /* Why maxtries is set to 100? 
 184          * Because this way (usually) we'll find 1 object even if just 1% - 2% 
 185          * are swappable objects */ 
 188         for (i 
= 0; i 
< 5 && dictSize(db
->dict
); i
++) { 
 194             if (maxtries
) maxtries
--; 
 195             de 
= dictGetRandomKey(db
->dict
); 
 196             keystr 
= dictGetEntryKey(de
); 
 197             val 
= dictGetEntryVal(de
); 
 198             initStaticStringObject(keyobj
,keystr
); 
 200             /* Don't remove objects that are currently target of a 
 201              * read or write operation. */ 
 202             if (cacheScheduleIOGetFlags(db
,&keyobj
) != 0) { 
 203                 if (maxtries
) i
--; /* don't count this try */ 
 206             swappability 
= computeObjectSwappability(val
); 
 207             if (!best 
|| swappability 
> best_swappability
) { 
 209                 best_swappability 
= swappability
; 
 215         /* Not able to free a single object? we should check if our 
 216          * IO queues have stuff in queue, and try to consume the queue 
 217          * otherwise we'll use an infinite amount of memory if changes to 
 218          * the dataset are faster than I/O */ 
 219         if (listLength(server
.cache_io_queue
) > 0) { 
 220             redisLog(REDIS_DEBUG
,"--- Busy waiting IO to reclaim memory"); 
 221             cacheScheduleIOPushJobs(REDIS_IO_ASAP
); 
 222             processActiveIOJobs(1); 
 225         /* Nothing to free at all... */ 
 228     key 
= dictGetEntryKey(best
); 
 229     val 
= dictGetEntryVal(best
); 
 231     redisLog(REDIS_DEBUG
,"Key selected for cache eviction: %s swappability:%f", 
 232         key
, best_swappability
); 
 234     /* Delete this key from memory */ 
 236         robj 
*kobj 
= createStringObject(key
,sdslen(key
)); 
 237         dbDelete(best_db
,kobj
); 
 243 /* ==================== Disk store negative caching  ======================== 
 245  * When disk store is enabled, we need negative caching, that is, to remember 
 246  * keys that are for sure *not* on the disk key-value store. 
 248  * This is usefuls because without negative caching cache misses will cost us 
 249  * a disk lookup, even if the same non existing key is accessed again and again. 
 251  * With negative caching we remember that the key is not on disk, so if it's 
 252  * not in memory and we have a negative cache entry, we don't try a disk 
 256 /* Returns true if the specified key may exists on disk, that is, we don't 
 257  * have an entry in our negative cache for this key */ 
 258 int cacheKeyMayExist(redisDb 
*db
, robj 
*key
) { 
 259     return dictFind(db
->io_negcache
,key
) == NULL
; 
 262 /* Set the specified key as an entry that may possibily exist on disk, that is, 
 263  * remove the negative cache entry for this key if any. */ 
 264 void cacheSetKeyMayExist(redisDb 
*db
, robj 
*key
) { 
 265     dictDelete(db
->io_negcache
,key
); 
 268 /* Set the specified key as non existing on disk, that is, create a negative 
 269  * cache entry for this key. */ 
 270 void cacheSetKeyDoesNotExist(redisDb 
*db
, robj 
*key
) { 
 271     if (dictReplace(db
->io_negcache
,key
,(void*)time(NULL
))) { 
 276 /* Remove one entry from negative cache using approximated LRU. */ 
 277 int negativeCacheEvictOneEntry(void) { 
 278     struct dictEntry 
*de
; 
 280     redisDb 
*best_db 
= NULL
; 
 281     time_t time
, best_time 
= 0; 
 284     for (j 
= 0; j 
< server
.dbnum
; j
++) { 
 285         redisDb 
*db 
= server
.db
+j
; 
 288         if (dictSize(db
->io_negcache
) == 0) continue; 
 289         for (i 
= 0; i 
< 3; i
++) { 
 290             de 
= dictGetRandomKey(db
->io_negcache
); 
 291             time 
= (time_t) dictGetEntryVal(de
); 
 293             if (best 
== NULL 
|| time 
< best_time
) { 
 294                 best 
= dictGetEntryKey(de
); 
 301         dictDelete(best_db
->io_negcache
,best
); 
 308 /* ================== Disk store cache - Threaded I/O  ====================== */ 
 310 void freeIOJob(iojob 
*j
) { 
 311     decrRefCount(j
->key
); 
 312     /* j->val can be NULL if the job is about deleting the key from disk. */ 
 313     if (j
->val
) decrRefCount(j
->val
); 
 317 /* Every time a thread finished a Job, it writes a byte into the write side 
 318  * of an unix pipe in order to "awake" the main thread, and this function 
 321  * If privdata == NULL the function will try to put more jobs in the queue 
 322  * of IO jobs to process as more room is made. privdata is equal to NULL 
 323  * when the function is called from the event loop, so we want to push 
 324  * more IO jobs in the queue. Instead when the function is called by 
 325  * other functions that want to create a write-barrier to avoid race  
 326  * conditions we don't push new jobs in the queue. */ 
 327 void vmThreadedIOCompletedJob(aeEventLoop 
*el
, int fd
, void *privdata
, 
 331     int retval
, processed 
= 0, toprocess 
= -1; 
 335     /* For every byte we read in the read side of the pipe, there is one 
 336      * I/O job completed to process. */ 
 337     while((retval 
= read(fd
,buf
,1)) == 1) { 
 341         redisLog(REDIS_DEBUG
,"Processing I/O completed job"); 
 343         /* Get the processed element (the oldest one) */ 
 345         redisAssert(listLength(server
.io_processed
) != 0); 
 346         if (toprocess 
== -1) { 
 347             toprocess 
= (listLength(server
.io_processed
)*REDIS_MAX_COMPLETED_JOBS_PROCESSED
)/100; 
 348             if (toprocess 
<= 0) toprocess 
= 1; 
 350         ln 
= listFirst(server
.io_processed
); 
 352         listDelNode(server
.io_processed
,ln
); 
 355         /* Post process it in the main thread, as there are things we 
 356          * can do just here to avoid race conditions and/or invasive locks */ 
 357         redisLog(REDIS_DEBUG
,"COMPLETED Job type %s, key: %s", 
 358             (j
->type 
== REDIS_IOJOB_LOAD
) ? "load" : "save", 
 359             (unsigned char*)j
->key
->ptr
); 
 360         if (j
->type 
== REDIS_IOJOB_LOAD
) { 
 361             /* Create the key-value pair in the in-memory database */ 
 362             if (j
->val 
!= NULL
) { 
 363                 /* Note: it's possible that the key is already in memory 
 364                  * due to a blocking load operation. */ 
 365                 if (dbAdd(j
->db
,j
->key
,j
->val
) == REDIS_OK
) { 
 366                     incrRefCount(j
->val
); 
 367                     if (j
->expire 
!= -1) setExpire(j
->db
,j
->key
,j
->expire
); 
 370                 /* Key not found on disk. If it is also not in memory 
 371                  * as a cached object, nor there is a job writing it 
 372                  * in background, we are sure the key does not exist 
 375                  * So we set a negative cache entry avoiding that the 
 376                  * resumed client will block load what does not exist... */ 
 377                 if (dictFind(j
->db
->dict
,j
->key
->ptr
) == NULL 
&& 
 378                     (cacheScheduleIOGetFlags(j
->db
,j
->key
) & 
 379                       (REDIS_IO_SAVE
|REDIS_IO_SAVEINPROG
)) == 0) 
 381                     cacheSetKeyDoesNotExist(j
->db
,j
->key
); 
 384             cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_LOADINPROG
); 
 385             handleClientsBlockedOnSwappedKey(j
->db
,j
->key
); 
 387         } else if (j
->type 
== REDIS_IOJOB_SAVE
) { 
 388             cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_SAVEINPROG
); 
 392         if (privdata 
== NULL
) cacheScheduleIOPushJobs(0); 
 393         if (processed 
== toprocess
) return; 
 395     if (retval 
< 0 && errno 
!= EAGAIN
) { 
 396         redisLog(REDIS_WARNING
, 
 397             "WARNING: read(2) error in vmThreadedIOCompletedJob() %s", 
 402 void lockThreadedIO(void) { 
 403     pthread_mutex_lock(&server
.io_mutex
); 
 406 void unlockThreadedIO(void) { 
 407     pthread_mutex_unlock(&server
.io_mutex
); 
 410 void *IOThreadEntryPoint(void *arg
) { 
 416     pthread_detach(pthread_self()); 
 419         /* Get a new job to process */ 
 420         if (listLength(server
.io_newjobs
) == 0) { 
 421             /* Wait for more work to do */ 
 422             redisLog(REDIS_DEBUG
,"[T] wait for signal"); 
 423             pthread_cond_wait(&server
.io_condvar
,&server
.io_mutex
); 
 424             redisLog(REDIS_DEBUG
,"[T] signal received"); 
 428         redisLog(REDIS_DEBUG
,"[T] %ld IO jobs to process", 
 429             listLength(server
.io_newjobs
)); 
 430         ln 
= listFirst(server
.io_newjobs
); 
 432         listDelNode(server
.io_newjobs
,ln
); 
 433         /* Add the job in the processing queue */ 
 434         listAddNodeTail(server
.io_processing
,j
); 
 435         ln 
= listLast(server
.io_processing
); /* We use ln later to remove it */ 
 438         redisLog(REDIS_DEBUG
,"[T] %ld: new job type %s: %p about key '%s'", 
 439             (long) pthread_self(), 
 440             (j
->type 
== REDIS_IOJOB_LOAD
) ? "load" : "save", 
 441             (void*)j
, (char*)j
->key
->ptr
); 
 443         /* Process the Job */ 
 444         if (j
->type 
== REDIS_IOJOB_LOAD
) { 
 447             j
->val 
= dsGet(j
->db
,j
->key
,&expire
); 
 448             if (j
->val
) j
->expire 
= expire
; 
 449         } else if (j
->type 
== REDIS_IOJOB_SAVE
) { 
 451                 dsSet(j
->db
,j
->key
,j
->val
,j
->expire
); 
 457         /* Done: insert the job into the processed queue */ 
 458         redisLog(REDIS_DEBUG
,"[T] %ld completed the job: %p (key %s)", 
 459             (long) pthread_self(), (void*)j
, (char*)j
->key
->ptr
); 
 461         redisLog(REDIS_DEBUG
,"[T] lock IO"); 
 463         redisLog(REDIS_DEBUG
,"[T] IO locked"); 
 464         listDelNode(server
.io_processing
,ln
); 
 465         listAddNodeTail(server
.io_processed
,j
); 
 467         /* Signal the main thread there is new stuff to process */ 
 468         redisAssert(write(server
.io_ready_pipe_write
,"x",1) == 1); 
 469         redisLog(REDIS_DEBUG
,"TIME (%c): %lld\n", j
->type 
== REDIS_IOJOB_LOAD 
? 'L' : 'S', ustime()-start
); 
 471     /* never reached, but that's the full pattern... */ 
 476 void spawnIOThread(void) { 
 478     sigset_t mask
, omask
; 
 482     sigaddset(&mask
,SIGCHLD
); 
 483     sigaddset(&mask
,SIGHUP
); 
 484     sigaddset(&mask
,SIGPIPE
); 
 485     pthread_sigmask(SIG_SETMASK
, &mask
, &omask
); 
 486     while ((err 
= pthread_create(&thread
,&server
.io_threads_attr
,IOThreadEntryPoint
,NULL
)) != 0) { 
 487         redisLog(REDIS_WARNING
,"Unable to spawn an I/O thread: %s", 
 491     pthread_sigmask(SIG_SETMASK
, &omask
, NULL
); 
 492     server
.io_active_threads
++; 
 495 /* Wait that up to 'max' pending IO Jobs are processed by the I/O thread. 
 496  * From our point of view an IO job processed means that the count of 
 497  * server.io_processed must increase by one. 
 499  * If max is -1, all the pending IO jobs will be processed. 
 501  * Returns the number of IO jobs processed. 
 503  * NOTE: while this may appear like a busy loop, we are actually blocked 
 504  * by IO since we continuously acquire/release the IO lock. */ 
 505 int processActiveIOJobs(int max
) { 
 508     while(max 
== -1 || max 
> 0) { 
 509         int io_processed_len
; 
 511         redisLog(REDIS_DEBUG
,"[P] lock IO"); 
 513         redisLog(REDIS_DEBUG
,"Waiting IO jobs processing: new:%d proessing:%d processed:%d",listLength(server
.io_newjobs
),listLength(server
.io_processing
),listLength(server
.io_processed
)); 
 515         if (listLength(server
.io_newjobs
) == 0 && 
 516             listLength(server
.io_processing
) == 0) 
 518             /* There is nothing more to process */ 
 519             redisLog(REDIS_DEBUG
,"[P] Nothing to process, unlock IO, return"); 
 525         /* If there are new jobs we need to signal the thread to 
 526          * process the next one. FIXME: drop this if useless. */ 
 527         redisLog(REDIS_DEBUG
,"[P] waitEmptyIOJobsQueue: new %d, processing %d, processed %d", 
 528             listLength(server
.io_newjobs
), 
 529             listLength(server
.io_processing
), 
 530             listLength(server
.io_processed
)); 
 532         if (listLength(server
.io_newjobs
)) { 
 533             redisLog(REDIS_DEBUG
,"[P] There are new jobs, signal"); 
 534             pthread_cond_signal(&server
.io_condvar
); 
 538         /* Check if we can process some finished job */ 
 539         io_processed_len 
= listLength(server
.io_processed
); 
 540         redisLog(REDIS_DEBUG
,"[P] Unblock IO"); 
 542         redisLog(REDIS_DEBUG
,"[P] Wait"); 
 544         if (io_processed_len
) { 
 545             vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
, 
 546                                                         (void*)0xdeadbeef,0); 
 548             if (max 
!= -1) max
--; 
 554 void waitEmptyIOJobsQueue(void) { 
 555     processActiveIOJobs(-1); 
 558 /* Process up to 'max' IO Jobs already completed by threads but still waiting 
 559  * processing from the main thread. 
 561  * If max == -1 all the pending jobs are processed. 
 563  * The number of processed jobs is returned. */ 
 564 int processPendingIOJobs(int max
) { 
 567     while(max 
== -1 || max 
> 0) { 
 568         int io_processed_len
; 
 571         io_processed_len 
= listLength(server
.io_processed
); 
 573         if (io_processed_len 
== 0) break; 
 574         vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
, 
 575                                                     (void*)0xdeadbeef,0); 
 576         if (max 
!= -1) max
--; 
 582 void processAllPendingIOJobs(void) { 
 583     processPendingIOJobs(-1); 
 586 /* This function must be called while with threaded IO locked */ 
 587 void queueIOJob(iojob 
*j
) { 
 588     redisLog(REDIS_DEBUG
,"Queued IO Job %p type %d about key '%s'\n", 
 589         (void*)j
, j
->type
, (char*)j
->key
->ptr
); 
 590     listAddNodeTail(server
.io_newjobs
,j
); 
 591     if (server
.io_active_threads 
< server
.vm_max_threads
) 
 595 /* Consume all the IO scheduled operations, and all the thread IO jobs 
 596  * so that eventually the state of diskstore is a point-in-time snapshot. 
 598  * This is useful when we need to BGSAVE with diskstore enabled. */ 
 599 void cacheForcePointInTime(void) { 
 600     redisLog(REDIS_NOTICE
,"Diskstore: synching on disk to reach point-in-time state."); 
 601     while (listLength(server
.cache_io_queue
) != 0) { 
 602         cacheScheduleIOPushJobs(REDIS_IO_ASAP
); 
 603         processActiveIOJobs(1); 
 605     waitEmptyIOJobsQueue(); 
 606     processAllPendingIOJobs(); 
 609 void cacheCreateIOJob(int type
, redisDb 
*db
, robj 
*key
, robj 
*val
, time_t expire
) { 
 612     j 
= zmalloc(sizeof(*j
)); 
 618     if (val
) incrRefCount(val
); 
 623     pthread_cond_signal(&server
.io_condvar
); 
 627 /* ============= Disk store cache - Scheduling of IO operations =============  
 629  * We use a queue and an hash table to hold the state of IO operations 
 630  * so that's fast to lookup if there is already an IO operation in queue 
 633  * There are two types of IO operations for a given key: 
 634  * REDIS_IO_LOAD and REDIS_IO_SAVE. 
 636  * The function cacheScheduleIO() function pushes the specified IO operation 
 637  * in the queue, but avoid adding the same key for the same operation 
 638  * multiple times, thanks to the associated hash table. 
 640  * We take a set of flags per every key, so when the scheduled IO operation 
 641  * gets moved from the scheduled queue to the actual IO Jobs queue that 
 642  * is processed by the IO thread, we flag it as IO_LOADINPROG or 
 645  * So for every given key we always know if there is some IO operation 
 646  * scheduled, or in progress, for this key. 
 648  * NOTE: all this is very important in order to guarantee correctness of 
 649  * the Disk Store Cache. Jobs are always queued here. Load jobs are 
 650  * queued at the head for faster execution only in the case there is not 
 651  * already a write operation of some kind for this job. 
 653  * So we have ordering, but can do exceptions when there are no already 
 654  * operations for a given key. Also when we need to block load a given 
 655  * key, for an immediate lookup operation, we can check if the key can 
 656  * be accessed synchronously without race conditions (no IN PROGRESS 
 657  * operations for this key), otherwise we blocking wait for completion. */ 
 659 #define REDIS_IO_LOAD 1 
 660 #define REDIS_IO_SAVE 2 
 661 #define REDIS_IO_LOADINPROG 4 
 662 #define REDIS_IO_SAVEINPROG 8 
 664 void cacheScheduleIOAddFlag(redisDb 
*db
, robj 
*key
, long flag
) { 
 665     struct dictEntry 
*de 
= dictFind(db
->io_queued
,key
); 
 668         dictAdd(db
->io_queued
,key
,(void*)flag
); 
 672         long flags 
= (long) dictGetEntryVal(de
); 
 675             redisLog(REDIS_WARNING
,"Adding the same flag again: was: %ld, addede: %ld",flags
,flag
); 
 676             redisAssert(!(flags 
& flag
)); 
 679         dictGetEntryVal(de
) = (void*) flags
; 
 683 void cacheScheduleIODelFlag(redisDb 
*db
, robj 
*key
, long flag
) { 
 684     struct dictEntry 
*de 
= dictFind(db
->io_queued
,key
); 
 687     redisAssert(de 
!= NULL
); 
 688     flags 
= (long) dictGetEntryVal(de
); 
 689     redisAssert(flags 
& flag
); 
 692         dictDelete(db
->io_queued
,key
); 
 694         dictGetEntryVal(de
) = (void*) flags
; 
 698 int cacheScheduleIOGetFlags(redisDb 
*db
, robj 
*key
) { 
 699     struct dictEntry 
*de 
= dictFind(db
->io_queued
,key
); 
 701     return (de 
== NULL
) ? 0 : ((long) dictGetEntryVal(de
)); 
 704 void cacheScheduleIO(redisDb 
*db
, robj 
*key
, int type
) { 
 708     if ((flags 
= cacheScheduleIOGetFlags(db
,key
)) & type
) return; 
 710     redisLog(REDIS_DEBUG
,"Scheduling key %s for %s", 
 711         key
->ptr
, type 
== REDIS_IO_LOAD 
? "loading" : "saving"); 
 712     cacheScheduleIOAddFlag(db
,key
,type
); 
 713     op 
= zmalloc(sizeof(*op
)); 
 718     op
->ctime 
= time(NULL
); 
 720     /* Give priority to load operations if there are no save already 
 721      * in queue for the same key. */ 
 722     if (type 
== REDIS_IO_LOAD 
&& !(flags 
& REDIS_IO_SAVE
)) { 
 723         listAddNodeHead(server
.cache_io_queue
, op
); 
 724         cacheScheduleIOPushJobs(REDIS_IO_ONLYLOADS
); 
 726         /* FIXME: probably when this happens we want to at least move 
 727          * the write job about this queue on top, and set the creation time 
 728          * to a value that will force processing ASAP. */ 
 729         listAddNodeTail(server
.cache_io_queue
, op
); 
 733 /* Push scheduled IO operations into IO Jobs that the IO thread can process. 
 735  * If flags include REDIS_IO_ONLYLOADS only load jobs are processed:this is 
 736  * useful since it's safe to push LOAD IO jobs from any place of the code, while 
 737  * SAVE io jobs should never be pushed while we are processing a command 
 738  * (not protected by lookupKey() that will block on keys in IO_SAVEINPROG 
 741  * The REDIS_IO_ASAP flag tells the function to don't wait for the IO job 
 742  * scheduled completion time, but just do the operation ASAP. This is useful 
 743  * when we need to reclaim memory from the IO queue. 
 745 #define MAX_IO_JOBS_QUEUE 10 
 746 int cacheScheduleIOPushJobs(int flags
) { 
 747     time_t now 
= time(NULL
); 
 749     int jobs
, topush 
= 0, pushed 
= 0; 
 751     /* Don't push new jobs if there is a threaded BGSAVE in progress. */ 
 752     if (server
.bgsavethread 
!= (pthread_t
) -1) return 0; 
 754     /* Sync stuff on disk, but only if we have less 
 755      * than MAX_IO_JOBS_QUEUE IO jobs. */ 
 757     jobs 
= listLength(server
.io_newjobs
); 
 760     topush 
= MAX_IO_JOBS_QUEUE
-jobs
; 
 761     if (topush 
< 0) topush 
= 0; 
 762     if (topush 
> (signed)listLength(server
.cache_io_queue
)) 
 763         topush 
= listLength(server
.cache_io_queue
); 
 765     while((ln 
= listFirst(server
.cache_io_queue
)) != NULL
) { 
 766         ioop 
*op 
= ln
->value
; 
 767         struct dictEntry 
*de
; 
 773         if (op
->type 
!= REDIS_IO_LOAD 
&& flags 
& REDIS_IO_ONLYLOADS
) break; 
 775         /* Don't execute SAVE before the scheduled time for completion */ 
 776         if (op
->type 
== REDIS_IO_SAVE 
&& !(flags 
& REDIS_IO_ASAP
) && 
 777               (now 
- op
->ctime
) < server
.cache_flush_delay
) break; 
 779         /* Don't add a SAVE job in the IO thread queue if there is already 
 780          * a save in progress for the same key. */ 
 781         if (op
->type 
== REDIS_IO_SAVE 
&&  
 782             cacheScheduleIOGetFlags(op
->db
,op
->key
) & REDIS_IO_SAVEINPROG
) 
 784             /* Move the operation at the end of the list if there 
 785              * are other operations, so we can try to process the next one. 
 786              * Otherwise break, nothing to do here. */ 
 787             if (listLength(server
.cache_io_queue
) > 1) { 
 788                 listDelNode(server
.cache_io_queue
,ln
); 
 789                 listAddNodeTail(server
.cache_io_queue
,op
); 
 796         redisLog(REDIS_DEBUG
,"Creating IO %s Job for key %s", 
 797             op
->type 
== REDIS_IO_LOAD 
? "load" : "save", op
->key
->ptr
); 
 799         if (op
->type 
== REDIS_IO_LOAD
) { 
 800             cacheCreateIOJob(REDIS_IOJOB_LOAD
,op
->db
,op
->key
,NULL
,0); 
 804             /* Lookup the key, in order to put the current value in the IO 
 805              * Job. Otherwise if the key does not exists we schedule a disk 
 806              * store delete operation, setting the value to NULL. */ 
 807             de 
= dictFind(op
->db
->dict
,op
->key
->ptr
); 
 809                 val 
= dictGetEntryVal(de
); 
 810                 expire 
= getExpire(op
->db
,op
->key
); 
 812                 /* Setting the value to NULL tells the IO thread to delete 
 813                  * the key on disk. */ 
 816             cacheCreateIOJob(REDIS_IOJOB_SAVE
,op
->db
,op
->key
,val
,expire
); 
 818         /* Mark the operation as in progress. */ 
 819         cacheScheduleIODelFlag(op
->db
,op
->key
,op
->type
); 
 820         cacheScheduleIOAddFlag(op
->db
,op
->key
, 
 821             (op
->type 
== REDIS_IO_LOAD
) ? REDIS_IO_LOADINPROG 
: 
 822                                           REDIS_IO_SAVEINPROG
); 
 823         /* Finally remove the operation from the queue. 
 824          * But we'll have trace of it in the hash table. */ 
 825         listDelNode(server
.cache_io_queue
,ln
); 
 826         decrRefCount(op
->key
); 
 833 void cacheCron(void) { 
 835     cacheScheduleIOPushJobs(0); 
 837     /* Reclaim memory from the object cache */ 
 838     while (server
.ds_enabled 
&& zmalloc_used_memory() > 
 839             server
.cache_max_memory
) 
 843         if (cacheFreeOneEntry() == REDIS_OK
) done
++; 
 844         if (negativeCacheEvictOneEntry() == REDIS_OK
) done
++; 
 845         if (done 
== 0) break; /* nothing more to free */ 
 849 /* ========== Disk store cache - Blocking clients on missing keys =========== */ 
 851 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded. 
 852  * If the key is already in memory we don't need to block. 
 854  *   FIXME: we should try if it's actually better to suspend the client 
 855  *   accessing an object that is being saved, and awake it only when 
 856  *   the saving was completed. 
 858  * Otherwise if the key is not in memory, we block the client and start 
 859  * an IO Job to load it: 
 861  * the key is added to the io_keys list in the client structure, and also 
 862  * in the hash table mapping swapped keys to waiting clients, that is, 
 863  * server.io_waited_keys. */ 
 864 int waitForSwappedKey(redisClient 
*c
, robj 
*key
) { 
 865     struct dictEntry 
*de
; 
 868     /* Return ASAP if the key is in memory */ 
 869     de 
= dictFind(c
->db
->dict
,key
->ptr
); 
 870     if (de 
!= NULL
) return 0; 
 872     /* Don't wait for keys we are sure are not on disk either */ 
 873     if (!cacheKeyMayExist(c
->db
,key
)) return 0; 
 875     /* Add the key to the list of keys this client is waiting for. 
 876      * This maps clients to keys they are waiting for. */ 
 877     listAddNodeTail(c
->io_keys
,key
); 
 880     /* Add the client to the swapped keys => clients waiting map. */ 
 881     de 
= dictFind(c
->db
->io_keys
,key
); 
 885         /* For every key we take a list of clients blocked for it */ 
 887         retval 
= dictAdd(c
->db
->io_keys
,key
,l
); 
 889         redisAssert(retval 
== DICT_OK
); 
 891         l 
= dictGetEntryVal(de
); 
 893     listAddNodeTail(l
,c
); 
 895     /* Are we already loading the key from disk? If not create a job */ 
 897         cacheScheduleIO(c
->db
,key
,REDIS_IO_LOAD
); 
 901 /* Preload keys for any command with first, last and step values for 
 902  * the command keys prototype, as defined in the command table. */ 
 903 void waitForMultipleSwappedKeys(redisClient 
*c
, struct redisCommand 
*cmd
, int argc
, robj 
**argv
) { 
 905     if (cmd
->vm_firstkey 
== 0) return; 
 906     last 
= cmd
->vm_lastkey
; 
 907     if (last 
< 0) last 
= argc
+last
; 
 908     for (j 
= cmd
->vm_firstkey
; j 
<= last
; j 
+= cmd
->vm_keystep
) { 
 909         redisAssert(j 
< argc
); 
 910         waitForSwappedKey(c
,argv
[j
]); 
 914 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands. 
 915  * Note that the number of keys to preload is user-defined, so we need to 
 916  * apply a sanity check against argc. */ 
 917 void zunionInterBlockClientOnSwappedKeys(redisClient 
*c
, struct redisCommand 
*cmd
, int argc
, robj 
**argv
) { 
 921     num 
= atoi(argv
[2]->ptr
); 
 922     if (num 
> (argc
-3)) return; 
 923     for (i 
= 0; i 
< num
; i
++) { 
 924         waitForSwappedKey(c
,argv
[3+i
]); 
 928 /* Preload keys needed to execute the entire MULTI/EXEC block. 
 930  * This function is called by blockClientOnSwappedKeys when EXEC is issued, 
 931  * and will block the client when any command requires a swapped out value. */ 
 932 void execBlockClientOnSwappedKeys(redisClient 
*c
, struct redisCommand 
*cmd
, int argc
, robj 
**argv
) { 
 934     struct redisCommand 
*mcmd
; 
 940     if (!(c
->flags 
& REDIS_MULTI
)) return; 
 941     for (i 
= 0; i 
< c
->mstate
.count
; i
++) { 
 942         mcmd 
= c
->mstate
.commands
[i
].cmd
; 
 943         margc 
= c
->mstate
.commands
[i
].argc
; 
 944         margv 
= c
->mstate
.commands
[i
].argv
; 
 946         if (mcmd
->vm_preload_proc 
!= NULL
) { 
 947             mcmd
->vm_preload_proc(c
,mcmd
,margc
,margv
); 
 949             waitForMultipleSwappedKeys(c
,mcmd
,margc
,margv
); 
 954 /* Is this client attempting to run a command against swapped keys? 
 955  * If so, block it ASAP, load the keys in background, then resume it. 
 957  * The important idea about this function is that it can fail! If keys will 
 958  * still be swapped when the client is resumed, this key lookups will 
 959  * just block loading keys from disk. In practical terms this should only 
 960  * happen with SORT BY command or if there is a bug in this function. 
 962  * Return 1 if the client is marked as blocked, 0 if the client can 
 963  * continue as the keys it is going to access appear to be in memory. */ 
 964 int blockClientOnSwappedKeys(redisClient 
*c
, struct redisCommand 
*cmd
) { 
 965     if (cmd
->vm_preload_proc 
!= NULL
) { 
 966         cmd
->vm_preload_proc(c
,cmd
,c
->argc
,c
->argv
); 
 968         waitForMultipleSwappedKeys(c
,cmd
,c
->argc
,c
->argv
); 
 971     /* If the client was blocked for at least one key, mark it as blocked. */ 
 972     if (listLength(c
->io_keys
)) { 
 973         c
->flags 
|= REDIS_IO_WAIT
; 
 974         aeDeleteFileEvent(server
.el
,c
->fd
,AE_READABLE
); 
 975         server
.cache_blocked_clients
++; 
 982 /* Remove the 'key' from the list of blocked keys for a given client. 
 984  * The function returns 1 when there are no longer blocking keys after 
 985  * the current one was removed (and the client can be unblocked). */ 
 986 int dontWaitForSwappedKey(redisClient 
*c
, robj 
*key
) { 
 990     struct dictEntry 
*de
; 
 992     /* The key object might be destroyed when deleted from the c->io_keys 
 993      * list (and the "key" argument is physically the same object as the 
 994      * object inside the list), so we need to protect it. */ 
 997     /* Remove the key from the list of keys this client is waiting for. */ 
 998     listRewind(c
->io_keys
,&li
); 
 999     while ((ln 
= listNext(&li
)) != NULL
) { 
1000         if (equalStringObjects(ln
->value
,key
)) { 
1001             listDelNode(c
->io_keys
,ln
); 
1005     redisAssert(ln 
!= NULL
); 
1007     /* Remove the client form the key => waiting clients map. */ 
1008     de 
= dictFind(c
->db
->io_keys
,key
); 
1009     redisAssert(de 
!= NULL
); 
1010     l 
= dictGetEntryVal(de
); 
1011     ln 
= listSearchKey(l
,c
); 
1012     redisAssert(ln 
!= NULL
); 
1014     if (listLength(l
) == 0) 
1015         dictDelete(c
->db
->io_keys
,key
); 
1018     return listLength(c
->io_keys
) == 0; 
1021 /* Every time we now a key was loaded back in memory, we handle clients 
1022  * waiting for this key if any. */ 
1023 void handleClientsBlockedOnSwappedKey(redisDb 
*db
, robj 
*key
) { 
1024     struct dictEntry 
*de
; 
1029     de 
= dictFind(db
->io_keys
,key
); 
1032     l 
= dictGetEntryVal(de
); 
1033     len 
= listLength(l
); 
1034     /* Note: we can't use something like while(listLength(l)) as the list 
1035      * can be freed by the calling function when we remove the last element. */ 
1038         redisClient 
*c 
= ln
->value
; 
1040         if (dontWaitForSwappedKey(c
,key
)) { 
1041             /* Put the client in the list of clients ready to go as we 
1042              * loaded all the keys about it. */ 
1043             listAddNodeTail(server
.io_ready_clients
,c
);