]> git.saurik.com Git - redis.git/blob - src/dscache.c
3a06b03ef6dd36325f6512ea2f94a0a2f4fe5bee
[redis.git] / src / dscache.c
1 #include "redis.h"
2
3 #include <fcntl.h>
4 #include <pthread.h>
5 #include <math.h>
6 #include <signal.h>
7
8 /* dscache.c - Disk store cache for disk store backend.
9 *
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
13 *
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
16 *
17 * This file implements the whole caching subsystem and contains further
18 * documentation. */
19
20 /* TODO:
21 *
22 * WARNING: most of the following todo items and design issues are no
23 * longer relevant with the new design. Here as a checklist to see if
24 * some old ideas still apply.
25 *
26 * - What happens when an object is destroyed?
27 *
28 * If the object is destroyed since semantically it was deleted or
29 * replaced with something new, we don't care if there was a SAVE
30 * job pending for it. Anyway when the IO JOb will be created we'll get
31 * the pointer of the current value.
32 *
33 * If the object is already a REDIS_IO_SAVEINPROG object, then it is
34 * impossible that we get a decrRefCount() that will reach refcount of zero
35 * since the object is both in the dataset and in the io job entry.
36 *
37 * - What happens with MULTI/EXEC?
38 *
39 * Good question. Without some kind of versioning with a global counter
40 * it is not possible to have trasactions on disk, but they are still
41 * useful since from the point of view of memory and client bugs it is
42 * a protection anyway. Also it's useful for WATCH.
43 *
44 * Btw there is to check what happens when WATCH gets combined to keys
45 * that gets removed from the object cache. Should be save but better
46 * to check.
47 *
48 * - Check if/why INCR will not update the LRU info for the object.
49 *
50 * - Fix/Check the following race condition: a key gets a DEL so there is
51 * a write operation scheduled against this key. Later the same key will
52 * be the argument of a GET, but the write operation was still not
53 * completed (to delete the file). If the GET will be for some reason
54 * a blocking loading (via lookup) we can load the old value on memory.
55 *
56 * This problems can be fixed with negative caching. We can use it
57 * to optimize the system, but also when a key is deleted we mark
58 * it as non existing on disk as well (in a way that this cache
59 * entry can't be evicted, setting time to 0), then we avoid looking at
60 * the disk at all if the key can't be there. When an IO Job complete
61 * a deletion, we set the time of the negative caching to a non zero
62 * value so it will be evicted later.
63 *
64 * Are there other patterns like this where we load stale data?
65 *
66 * Also, make sure that key preloading is ONLY done for keys that are
67 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
68 * data from disk that should instead be deleted.
69 *
70 * - dsSet() should use rename(2) in order to avoid corruptions.
71 *
72 * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
73 * impossible since anyway the io_keys stuff will work as lock?
74 *
75 * - Serialize special encoded things in a raw form.
76 */
77
78 /* Virtual Memory is composed mainly of two subsystems:
79 * - Blocking Virutal Memory
80 * - Threaded Virtual Memory I/O
81 * The two parts are not fully decoupled, but functions are split among two
82 * different sections of the source code (delimited by comments) in order to
83 * make more clear what functionality is about the blocking VM and what about
84 * the threaded (not blocking) VM.
85 *
86 * Redis VM design:
87 *
88 * Redis VM is a blocking VM (one that blocks reading swapped values from
89 * disk into memory when a value swapped out is needed in memory) that is made
90 * unblocking by trying to examine the command argument vector in order to
91 * load in background values that will likely be needed in order to exec
92 * the command. The command is executed only once all the relevant keys
93 * are loaded into memory.
94 *
95 * This basically is almost as simple of a blocking VM, but almost as parallel
96 * as a fully non-blocking VM.
97 */
98
99 void spawnIOThread(void);
100
101 /* =================== Virtual Memory - Blocking Side ====================== */
102
103 void dsInit(void) {
104 int pipefds[2];
105 size_t stacksize;
106
107 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
108
109 redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path);
110 /* Open Disk Store */
111 if (dsOpen() != REDIS_OK) {
112 redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
113 exit(1);
114 };
115
116 /* Initialize threaded I/O for Object Cache */
117 server.io_newjobs = listCreate();
118 server.io_processing = listCreate();
119 server.io_processed = listCreate();
120 server.io_ready_clients = listCreate();
121 pthread_mutex_init(&server.io_mutex,NULL);
122 pthread_cond_init(&server.io_condvar,NULL);
123 server.io_active_threads = 0;
124 if (pipe(pipefds) == -1) {
125 redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
126 ,strerror(errno));
127 exit(1);
128 }
129 server.io_ready_pipe_read = pipefds[0];
130 server.io_ready_pipe_write = pipefds[1];
131 redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
132 /* LZF requires a lot of stack */
133 pthread_attr_init(&server.io_threads_attr);
134 pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
135
136 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
137 * multiplying it by 2 in the while loop later will not really help ;) */
138 if (!stacksize) stacksize = 1;
139
140 while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
141 pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
142 /* Listen for events in the threaded I/O pipe */
143 if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
144 vmThreadedIOCompletedJob, NULL) == AE_ERR)
145 oom("creating file event");
146
147 /* Spawn our I/O thread */
148 spawnIOThread();
149 }
150
151 /* Compute how good candidate the specified object is for eviction.
152 * An higher number means a better candidate. */
153 double computeObjectSwappability(robj *o) {
154 /* actual age can be >= minage, but not < minage. As we use wrapping
155 * 21 bit clocks with minutes resolution for the LRU. */
156 return (double) estimateObjectIdleTime(o);
157 }
158
159 /* Try to free one entry from the diskstore object cache */
160 int cacheFreeOneEntry(void) {
161 int j, i;
162 struct dictEntry *best = NULL;
163 double best_swappability = 0;
164 redisDb *best_db = NULL;
165 robj *val;
166 sds key;
167
168 for (j = 0; j < server.dbnum; j++) {
169 redisDb *db = server.db+j;
170 /* Why maxtries is set to 100?
171 * Because this way (usually) we'll find 1 object even if just 1% - 2%
172 * are swappable objects */
173 int maxtries = 100;
174
175 if (dictSize(db->dict) == 0) continue;
176 for (i = 0; i < 5; i++) {
177 dictEntry *de;
178 double swappability;
179 robj keyobj;
180 sds keystr;
181
182 if (maxtries) maxtries--;
183 de = dictGetRandomKey(db->dict);
184 keystr = dictGetEntryKey(de);
185 val = dictGetEntryVal(de);
186 initStaticStringObject(keyobj,keystr);
187
188 /* Don't remove objects that are currently target of a
189 * read or write operation. */
190 if (cacheScheduleIOGetFlags(db,&keyobj) != 0) {
191 if (maxtries) i--; /* don't count this try */
192 continue;
193 }
194 swappability = computeObjectSwappability(val);
195 if (!best || swappability > best_swappability) {
196 best = de;
197 best_swappability = swappability;
198 best_db = db;
199 }
200 }
201 }
202 if (best == NULL) {
203 /* FIXME: If there are objects that are in the write queue
204 * so we can't delete them we should block here, at the cost of
205 * slowness as the object cache memory limit is considered
206 * n hard limit. */
207 return REDIS_ERR;
208 }
209 key = dictGetEntryKey(best);
210 val = dictGetEntryVal(best);
211
212 redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
213 key, best_swappability);
214
215 /* Delete this key from memory */
216 {
217 robj *kobj = createStringObject(key,sdslen(key));
218 dbDelete(best_db,kobj);
219 decrRefCount(kobj);
220 }
221 return REDIS_OK;
222 }
223
224 /* Return true if it's safe to swap out objects in a given moment.
225 * Basically we don't want to swap objects out while there is a BGSAVE
226 * or a BGAEOREWRITE running in backgroud. */
227 int dsCanTouchDiskStore(void) {
228 return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1);
229 }
230
231 /* ==================== Disk store negative caching ========================
232 *
233 * When disk store is enabled, we need negative caching, that is, to remember
234 * keys that are for sure *not* on the disk key-value store.
235 *
236 * This is usefuls because without negative caching cache misses will cost us
237 * a disk lookup, even if the same non existing key is accessed again and again.
238 *
239 * With negative caching we remember that the key is not on disk, so if it's
240 * not in memory and we have a negative cache entry, we don't try a disk
241 * access at all.
242 */
243
244 /* Returns true if the specified key may exists on disk, that is, we don't
245 * have an entry in our negative cache for this key */
246 int cacheKeyMayExist(redisDb *db, robj *key) {
247 return dictFind(db->io_negcache,key) == NULL;
248 }
249
250 /* Set the specified key as an entry that may possibily exist on disk, that is,
251 * remove the negative cache entry for this key if any. */
252 void cacheSetKeyMayExist(redisDb *db, robj *key) {
253 dictDelete(db->io_negcache,key);
254 }
255
256 /* Set the specified key as non existing on disk, that is, create a negative
257 * cache entry for this key. */
258 void cacheSetKeyDoesNotExist(redisDb *db, robj *key) {
259 if (dictReplace(db->io_negcache,key,(void*)time(NULL))) {
260 incrRefCount(key);
261 }
262 }
263
264 /* Remove one entry from negative cache using approximated LRU. */
265 int negativeCacheEvictOneEntry(void) {
266 struct dictEntry *de;
267 robj *best = NULL;
268 redisDb *best_db = NULL;
269 time_t time, best_time = 0;
270 int j;
271
272 for (j = 0; j < server.dbnum; j++) {
273 redisDb *db = server.db+j;
274 int i;
275
276 if (dictSize(db->io_negcache) == 0) continue;
277 for (i = 0; i < 3; i++) {
278 de = dictGetRandomKey(db->io_negcache);
279 time = (time_t) dictGetEntryVal(de);
280
281 if (best == NULL || time < best_time) {
282 best = dictGetEntryKey(de);
283 best_db = db;
284 best_time = time;
285 }
286 }
287 }
288 if (best) {
289 dictDelete(best_db->io_negcache,best);
290 return REDIS_OK;
291 } else {
292 return REDIS_ERR;
293 }
294 }
295
296 /* ================== Disk store cache - Threaded I/O ====================== */
297
298 void freeIOJob(iojob *j) {
299 decrRefCount(j->key);
300 /* j->val can be NULL if the job is about deleting the key from disk. */
301 if (j->val) decrRefCount(j->val);
302 zfree(j);
303 }
304
305 /* Every time a thread finished a Job, it writes a byte into the write side
306 * of an unix pipe in order to "awake" the main thread, and this function
307 * is called. */
308 void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
309 int mask)
310 {
311 char buf[1];
312 int retval, processed = 0, toprocess = -1;
313 REDIS_NOTUSED(el);
314 REDIS_NOTUSED(mask);
315 REDIS_NOTUSED(privdata);
316
317 /* For every byte we read in the read side of the pipe, there is one
318 * I/O job completed to process. */
319 while((retval = read(fd,buf,1)) == 1) {
320 iojob *j;
321 listNode *ln;
322
323 redisLog(REDIS_DEBUG,"Processing I/O completed job");
324
325 /* Get the processed element (the oldest one) */
326 lockThreadedIO();
327 redisAssert(listLength(server.io_processed) != 0);
328 if (toprocess == -1) {
329 toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
330 if (toprocess <= 0) toprocess = 1;
331 }
332 ln = listFirst(server.io_processed);
333 j = ln->value;
334 listDelNode(server.io_processed,ln);
335 unlockThreadedIO();
336
337 /* Post process it in the main thread, as there are things we
338 * can do just here to avoid race conditions and/or invasive locks */
339 redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s",
340 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
341 (unsigned char*)j->key->ptr);
342 if (j->type == REDIS_IOJOB_LOAD) {
343 /* Create the key-value pair in the in-memory database */
344 if (j->val != NULL) {
345 /* Note: it's possible that the key is already in memory
346 * due to a blocking load operation. */
347 if (dbAdd(j->db,j->key,j->val) == REDIS_OK) {
348 incrRefCount(j->val);
349 if (j->expire != -1) setExpire(j->db,j->key,j->expire);
350 }
351 } else {
352 /* Key not found on disk. If it is also not in memory
353 * as a cached object, nor there is a job writing it
354 * in background, we are sure the key does not exist
355 * currently.
356 *
357 * So we set a negative cache entry avoiding that the
358 * resumed client will block load what does not exist... */
359 if (dictFind(j->db->dict,j->key) == NULL &&
360 (cacheScheduleIOGetFlags(j->db,j->key) &
361 (REDIS_IO_SAVE|REDIS_IO_SAVEINPROG)) == 0)
362 {
363 cacheSetKeyDoesNotExist(j->db,j->key);
364 }
365 }
366 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_LOADINPROG);
367 handleClientsBlockedOnSwappedKey(j->db,j->key);
368 freeIOJob(j);
369 } else if (j->type == REDIS_IOJOB_SAVE) {
370 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_SAVEINPROG);
371 freeIOJob(j);
372 }
373 processed++;
374 if (processed == toprocess) return;
375 }
376 if (retval < 0 && errno != EAGAIN) {
377 redisLog(REDIS_WARNING,
378 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
379 strerror(errno));
380 }
381 }
382
383 void lockThreadedIO(void) {
384 pthread_mutex_lock(&server.io_mutex);
385 }
386
387 void unlockThreadedIO(void) {
388 pthread_mutex_unlock(&server.io_mutex);
389 }
390
391 void *IOThreadEntryPoint(void *arg) {
392 iojob *j;
393 listNode *ln;
394 REDIS_NOTUSED(arg);
395
396 pthread_detach(pthread_self());
397 lockThreadedIO();
398 while(1) {
399 /* Get a new job to process */
400 if (listLength(server.io_newjobs) == 0) {
401 /* Wait for more work to do */
402 pthread_cond_wait(&server.io_condvar,&server.io_mutex);
403 continue;
404 }
405 redisLog(REDIS_DEBUG,"%ld IO jobs to process",
406 listLength(server.io_newjobs));
407 ln = listFirst(server.io_newjobs);
408 j = ln->value;
409 listDelNode(server.io_newjobs,ln);
410 /* Add the job in the processing queue */
411 listAddNodeTail(server.io_processing,j);
412 ln = listLast(server.io_processing); /* We use ln later to remove it */
413 unlockThreadedIO();
414
415 redisLog(REDIS_DEBUG,"Thread %ld: new job type %s: %p about key '%s'",
416 (long) pthread_self(),
417 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
418 (void*)j, (char*)j->key->ptr);
419
420 /* Process the Job */
421 if (j->type == REDIS_IOJOB_LOAD) {
422 time_t expire;
423
424 j->val = dsGet(j->db,j->key,&expire);
425 if (j->val) j->expire = expire;
426 } else if (j->type == REDIS_IOJOB_SAVE) {
427 if (j->val) {
428 dsSet(j->db,j->key,j->val);
429 } else {
430 dsDel(j->db,j->key);
431 }
432 }
433
434 /* Done: insert the job into the processed queue */
435 redisLog(REDIS_DEBUG,"Thread %ld completed the job: %p (key %s)",
436 (long) pthread_self(), (void*)j, (char*)j->key->ptr);
437
438 lockThreadedIO();
439 listDelNode(server.io_processing,ln);
440 listAddNodeTail(server.io_processed,j);
441
442 /* Signal the main thread there is new stuff to process */
443 redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
444 }
445 /* never reached, but that's the full pattern... */
446 unlockThreadedIO();
447 return NULL;
448 }
449
450 void spawnIOThread(void) {
451 pthread_t thread;
452 sigset_t mask, omask;
453 int err;
454
455 sigemptyset(&mask);
456 sigaddset(&mask,SIGCHLD);
457 sigaddset(&mask,SIGHUP);
458 sigaddset(&mask,SIGPIPE);
459 pthread_sigmask(SIG_SETMASK, &mask, &omask);
460 while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
461 redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
462 strerror(err));
463 usleep(1000000);
464 }
465 pthread_sigmask(SIG_SETMASK, &omask, NULL);
466 server.io_active_threads++;
467 }
468
469 /* Wait that all the pending IO Jobs are processed */
470 void waitEmptyIOJobsQueue(void) {
471 while(1) {
472 int io_processed_len;
473
474 lockThreadedIO();
475 if (listLength(server.io_newjobs) == 0 &&
476 listLength(server.io_processing) == 0)
477 {
478 unlockThreadedIO();
479 return;
480 }
481 /* If there are new jobs we need to signal the thread to
482 * process the next one. */
483 redisLog(REDIS_DEBUG,"waitEmptyIOJobsQueue: new %d, processing %d",
484 listLength(server.io_newjobs),
485 listLength(server.io_processing));
486
487 /* FIXME: signal or not?
488 if (listLength(server.io_newjobs)) {
489 pthread_cond_signal(&server.io_condvar);
490 }
491 */
492 /* While waiting for empty jobs queue condition we post-process some
493 * finshed job, as I/O threads may be hanging trying to write against
494 * the io_ready_pipe_write FD but there are so much pending jobs that
495 * it's blocking. */
496 io_processed_len = listLength(server.io_processed);
497 unlockThreadedIO();
498 if (io_processed_len) {
499 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
500 (void*)0xdeadbeef,0);
501 /* FIXME: probably wiser to drop this sleeps. Anyway
502 * the contention on the IO thread will avoid we to loop
503 * too fast here. */
504 usleep(1000); /* 1 millisecond */
505 } else {
506 /* FIXME: same as fixme above. */
507 usleep(10000); /* 10 milliseconds */
508 }
509 }
510 }
511
512 /* Process all the IO Jobs already completed by threads but still waiting
513 * processing from the main thread. */
514 void processAllPendingIOJobs(void) {
515 while(1) {
516 int io_processed_len;
517
518 lockThreadedIO();
519 io_processed_len = listLength(server.io_processed);
520 unlockThreadedIO();
521 if (io_processed_len == 0) return;
522 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
523 (void*)0xdeadbeef,0);
524 }
525 }
526
527 /* This function must be called while with threaded IO locked */
528 void queueIOJob(iojob *j) {
529 redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
530 (void*)j, j->type, (char*)j->key->ptr);
531 listAddNodeTail(server.io_newjobs,j);
532 if (server.io_active_threads < server.vm_max_threads)
533 spawnIOThread();
534 }
535
536 void dsCreateIOJob(int type, redisDb *db, robj *key, robj *val) {
537 iojob *j;
538
539 j = zmalloc(sizeof(*j));
540 j->type = type;
541 j->db = db;
542 j->key = key;
543 incrRefCount(key);
544 j->val = val;
545 if (val) incrRefCount(val);
546
547 lockThreadedIO();
548 queueIOJob(j);
549 pthread_cond_signal(&server.io_condvar);
550 unlockThreadedIO();
551 }
552
553 /* ============= Disk store cache - Scheduling of IO operations =============
554 *
555 * We use a queue and an hash table to hold the state of IO operations
556 * so that's fast to lookup if there is already an IO operation in queue
557 * for a given key.
558 *
559 * There are two types of IO operations for a given key:
560 * REDIS_IO_LOAD and REDIS_IO_SAVE.
561 *
562 * The function cacheScheduleIO() function pushes the specified IO operation
563 * in the queue, but avoid adding the same key for the same operation
564 * multiple times, thanks to the associated hash table.
565 *
566 * We take a set of flags per every key, so when the scheduled IO operation
567 * gets moved from the scheduled queue to the actual IO Jobs queue that
568 * is processed by the IO thread, we flag it as IO_LOADINPROG or
569 * IO_SAVEINPROG.
570 *
571 * So for every given key we always know if there is some IO operation
572 * scheduled, or in progress, for this key.
573 *
574 * NOTE: all this is very important in order to guarantee correctness of
575 * the Disk Store Cache. Jobs are always queued here. Load jobs are
576 * queued at the head for faster execution only in the case there is not
577 * already a write operation of some kind for this job.
578 *
579 * So we have ordering, but can do exceptions when there are no already
580 * operations for a given key. Also when we need to block load a given
581 * key, for an immediate lookup operation, we can check if the key can
582 * be accessed synchronously without race conditions (no IN PROGRESS
583 * operations for this key), otherwise we blocking wait for completion. */
584
585 #define REDIS_IO_LOAD 1
586 #define REDIS_IO_SAVE 2
587 #define REDIS_IO_LOADINPROG 4
588 #define REDIS_IO_SAVEINPROG 8
589
590 void cacheScheduleIOAddFlag(redisDb *db, robj *key, long flag) {
591 struct dictEntry *de = dictFind(db->io_queued,key);
592
593 if (!de) {
594 dictAdd(db->io_queued,key,(void*)flag);
595 incrRefCount(key);
596 return;
597 } else {
598 long flags = (long) dictGetEntryVal(de);
599
600 if (flags & flag) {
601 redisLog(REDIS_WARNING,"Adding the same flag again: was: %ld, addede: %ld",flags,flag);
602 redisAssert(!(flags & flag));
603 }
604 flags |= flag;
605 dictGetEntryVal(de) = (void*) flags;
606 }
607 }
608
609 void cacheScheduleIODelFlag(redisDb *db, robj *key, long flag) {
610 struct dictEntry *de = dictFind(db->io_queued,key);
611 long flags;
612
613 redisAssert(de != NULL);
614 flags = (long) dictGetEntryVal(de);
615 redisAssert(flags & flag);
616 flags &= ~flag;
617 if (flags == 0) {
618 dictDelete(db->io_queued,key);
619 } else {
620 dictGetEntryVal(de) = (void*) flags;
621 }
622 }
623
624 int cacheScheduleIOGetFlags(redisDb *db, robj *key) {
625 struct dictEntry *de = dictFind(db->io_queued,key);
626
627 return (de == NULL) ? 0 : ((long) dictGetEntryVal(de));
628 }
629
630 void cacheScheduleIO(redisDb *db, robj *key, int type) {
631 ioop *op;
632 long flags;
633
634 if ((flags = cacheScheduleIOGetFlags(db,key)) & type) return;
635
636 redisLog(REDIS_DEBUG,"Scheduling key %s for %s",
637 key->ptr, type == REDIS_IO_LOAD ? "loading" : "saving");
638 cacheScheduleIOAddFlag(db,key,type);
639 op = zmalloc(sizeof(*op));
640 op->type = type;
641 op->db = db;
642 op->key = key;
643 incrRefCount(key);
644 op->ctime = time(NULL);
645
646 /* Give priority to load operations if there are no save already
647 * in queue for the same key. */
648 if (type == REDIS_IO_LOAD && !(flags & REDIS_IO_SAVE)) {
649 listAddNodeHead(server.cache_io_queue, op);
650 } else {
651 /* FIXME: probably when this happens we want to at least move
652 * the write job about this queue on top, and set the creation time
653 * to a value that will force processing ASAP. */
654 listAddNodeTail(server.cache_io_queue, op);
655 }
656 }
657
658 void cacheCron(void) {
659 time_t now = time(NULL);
660 listNode *ln;
661 int jobs, topush = 0;
662
663 /* Sync stuff on disk, but only if we have less than 100 IO jobs */
664 lockThreadedIO();
665 jobs = listLength(server.io_newjobs);
666 unlockThreadedIO();
667
668 topush = 100-jobs;
669 if (topush < 0) topush = 0;
670 if (topush > (signed)listLength(server.cache_io_queue))
671 topush = listLength(server.cache_io_queue);
672
673 while((ln = listFirst(server.cache_io_queue)) != NULL) {
674 ioop *op = ln->value;
675
676 if (!topush) break;
677 topush--;
678
679 if (op->type == REDIS_IO_LOAD ||
680 (now - op->ctime) >= server.cache_flush_delay)
681 {
682 struct dictEntry *de;
683 robj *val;
684
685 /* Don't add a SAVE job in queue if there is already
686 * a save in progress for the same key. */
687 if (op->type == REDIS_IO_SAVE &&
688 cacheScheduleIOGetFlags(op->db,op->key) & REDIS_IO_SAVEINPROG)
689 {
690 /* Move the operation at the end of the list of there
691 * are other operations. Otherwise break, nothing to do
692 * here. */
693 if (listLength(server.cache_io_queue) > 1) {
694 listDelNode(server.cache_io_queue,ln);
695 listAddNodeTail(server.cache_io_queue,op);
696 continue;
697 } else {
698 break;
699 }
700 }
701
702 redisLog(REDIS_DEBUG,"Creating IO %s Job for key %s",
703 op->type == REDIS_IO_LOAD ? "load" : "save", op->key->ptr);
704
705 if (op->type == REDIS_IO_LOAD) {
706 dsCreateIOJob(REDIS_IOJOB_LOAD,op->db,op->key,NULL);
707 } else {
708 /* Lookup the key, in order to put the current value in the IO
709 * Job. Otherwise if the key does not exists we schedule a disk
710 * store delete operation, setting the value to NULL. */
711 de = dictFind(op->db->dict,op->key->ptr);
712 if (de) {
713 val = dictGetEntryVal(de);
714 } else {
715 /* Setting the value to NULL tells the IO thread to delete
716 * the key on disk. */
717 val = NULL;
718 }
719 dsCreateIOJob(REDIS_IOJOB_SAVE,op->db,op->key,val);
720 }
721 /* Mark the operation as in progress. */
722 cacheScheduleIODelFlag(op->db,op->key,op->type);
723 cacheScheduleIOAddFlag(op->db,op->key,
724 (op->type == REDIS_IO_LOAD) ? REDIS_IO_LOADINPROG :
725 REDIS_IO_SAVEINPROG);
726 /* Finally remove the operation from the queue.
727 * But we'll have trace of it in the hash table. */
728 listDelNode(server.cache_io_queue,ln);
729 decrRefCount(op->key);
730 zfree(op);
731 } else {
732 break; /* too early */
733 }
734 }
735
736 /* Reclaim memory from the object cache */
737 while (server.ds_enabled && zmalloc_used_memory() >
738 server.cache_max_memory)
739 {
740 int done = 0;
741
742 if (cacheFreeOneEntry() == REDIS_OK) done++;
743 if (negativeCacheEvictOneEntry() == REDIS_OK) done++;
744 if (done == 0) break; /* nothing more to free */
745 }
746 }
747
748 /* ========== Disk store cache - Blocking clients on missing keys =========== */
749
750 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
751 * If the key is already in memory we don't need to block.
752 *
753 * FIXME: we should try if it's actually better to suspend the client
754 * accessing an object that is being saved, and awake it only when
755 * the saving was completed.
756 *
757 * Otherwise if the key is not in memory, we block the client and start
758 * an IO Job to load it:
759 *
760 * the key is added to the io_keys list in the client structure, and also
761 * in the hash table mapping swapped keys to waiting clients, that is,
762 * server.io_waited_keys. */
763 int waitForSwappedKey(redisClient *c, robj *key) {
764 struct dictEntry *de;
765 list *l;
766
767 /* Return ASAP if the key is in memory */
768 de = dictFind(c->db->dict,key->ptr);
769 if (de != NULL) return 0;
770
771 /* Don't wait for keys we are sure are not on disk either */
772 if (!cacheKeyMayExist(c->db,key)) return 0;
773
774 /* Add the key to the list of keys this client is waiting for.
775 * This maps clients to keys they are waiting for. */
776 listAddNodeTail(c->io_keys,key);
777 incrRefCount(key);
778
779 /* Add the client to the swapped keys => clients waiting map. */
780 de = dictFind(c->db->io_keys,key);
781 if (de == NULL) {
782 int retval;
783
784 /* For every key we take a list of clients blocked for it */
785 l = listCreate();
786 retval = dictAdd(c->db->io_keys,key,l);
787 incrRefCount(key);
788 redisAssert(retval == DICT_OK);
789 } else {
790 l = dictGetEntryVal(de);
791 }
792 listAddNodeTail(l,c);
793
794 /* Are we already loading the key from disk? If not create a job */
795 if (de == NULL)
796 cacheScheduleIO(c->db,key,REDIS_IO_LOAD);
797 return 1;
798 }
799
800 /* Preload keys for any command with first, last and step values for
801 * the command keys prototype, as defined in the command table. */
802 void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
803 int j, last;
804 if (cmd->vm_firstkey == 0) return;
805 last = cmd->vm_lastkey;
806 if (last < 0) last = argc+last;
807 for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) {
808 redisAssert(j < argc);
809 waitForSwappedKey(c,argv[j]);
810 }
811 }
812
813 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
814 * Note that the number of keys to preload is user-defined, so we need to
815 * apply a sanity check against argc. */
816 void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
817 int i, num;
818 REDIS_NOTUSED(cmd);
819
820 num = atoi(argv[2]->ptr);
821 if (num > (argc-3)) return;
822 for (i = 0; i < num; i++) {
823 waitForSwappedKey(c,argv[3+i]);
824 }
825 }
826
827 /* Preload keys needed to execute the entire MULTI/EXEC block.
828 *
829 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
830 * and will block the client when any command requires a swapped out value. */
831 void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
832 int i, margc;
833 struct redisCommand *mcmd;
834 robj **margv;
835 REDIS_NOTUSED(cmd);
836 REDIS_NOTUSED(argc);
837 REDIS_NOTUSED(argv);
838
839 if (!(c->flags & REDIS_MULTI)) return;
840 for (i = 0; i < c->mstate.count; i++) {
841 mcmd = c->mstate.commands[i].cmd;
842 margc = c->mstate.commands[i].argc;
843 margv = c->mstate.commands[i].argv;
844
845 if (mcmd->vm_preload_proc != NULL) {
846 mcmd->vm_preload_proc(c,mcmd,margc,margv);
847 } else {
848 waitForMultipleSwappedKeys(c,mcmd,margc,margv);
849 }
850 }
851 }
852
853 /* Is this client attempting to run a command against swapped keys?
854 * If so, block it ASAP, load the keys in background, then resume it.
855 *
856 * The important idea about this function is that it can fail! If keys will
857 * still be swapped when the client is resumed, this key lookups will
858 * just block loading keys from disk. In practical terms this should only
859 * happen with SORT BY command or if there is a bug in this function.
860 *
861 * Return 1 if the client is marked as blocked, 0 if the client can
862 * continue as the keys it is going to access appear to be in memory. */
863 int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
864 if (cmd->vm_preload_proc != NULL) {
865 cmd->vm_preload_proc(c,cmd,c->argc,c->argv);
866 } else {
867 waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv);
868 }
869
870 /* If the client was blocked for at least one key, mark it as blocked. */
871 if (listLength(c->io_keys)) {
872 c->flags |= REDIS_IO_WAIT;
873 aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
874 server.cache_blocked_clients++;
875 return 1;
876 } else {
877 return 0;
878 }
879 }
880
881 /* Remove the 'key' from the list of blocked keys for a given client.
882 *
883 * The function returns 1 when there are no longer blocking keys after
884 * the current one was removed (and the client can be unblocked). */
885 int dontWaitForSwappedKey(redisClient *c, robj *key) {
886 list *l;
887 listNode *ln;
888 listIter li;
889 struct dictEntry *de;
890
891 /* The key object might be destroyed when deleted from the c->io_keys
892 * list (and the "key" argument is physically the same object as the
893 * object inside the list), so we need to protect it. */
894 incrRefCount(key);
895
896 /* Remove the key from the list of keys this client is waiting for. */
897 listRewind(c->io_keys,&li);
898 while ((ln = listNext(&li)) != NULL) {
899 if (equalStringObjects(ln->value,key)) {
900 listDelNode(c->io_keys,ln);
901 break;
902 }
903 }
904 redisAssert(ln != NULL);
905
906 /* Remove the client form the key => waiting clients map. */
907 de = dictFind(c->db->io_keys,key);
908 redisAssert(de != NULL);
909 l = dictGetEntryVal(de);
910 ln = listSearchKey(l,c);
911 redisAssert(ln != NULL);
912 listDelNode(l,ln);
913 if (listLength(l) == 0)
914 dictDelete(c->db->io_keys,key);
915
916 decrRefCount(key);
917 return listLength(c->io_keys) == 0;
918 }
919
920 /* Every time we now a key was loaded back in memory, we handle clients
921 * waiting for this key if any. */
922 void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
923 struct dictEntry *de;
924 list *l;
925 listNode *ln;
926 int len;
927
928 de = dictFind(db->io_keys,key);
929 if (!de) return;
930
931 l = dictGetEntryVal(de);
932 len = listLength(l);
933 /* Note: we can't use something like while(listLength(l)) as the list
934 * can be freed by the calling function when we remove the last element. */
935 while (len--) {
936 ln = listFirst(l);
937 redisClient *c = ln->value;
938
939 if (dontWaitForSwappedKey(c,key)) {
940 /* Put the client in the list of clients ready to go as we
941 * loaded all the keys about it. */
942 listAddNodeTail(server.io_ready_clients,c);
943 }
944 }
945 }