]> git.saurik.com Git - redis.git/blob - src/dscache.c
2bda0b509016ddeff0c0afe077fdda3cdee0d6dd
[redis.git] / src / dscache.c
1 #include "redis.h"
2
3 #include <fcntl.h>
4 #include <pthread.h>
5 #include <math.h>
6 #include <signal.h>
7
8 /* dscache.c - Disk store cache for disk store backend.
9 *
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
13 *
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
16 *
17 * This file implements the whole caching subsystem and contains further
18 * documentation. */
19
20 /* TODO:
21 *
22 * - The WATCH helper will be used to signal the cache system
23 * we need to flush a given key/dbid into disk, adding this key/dbid
24 * pair into a server.ds_cache_dirty linked list AND hash table (so that we
25 * don't add the same thing multiple times).
26 *
27 * - cron() checks if there are elements on this list. When there are things
28 * to flush, we create an IO Job for the I/O thread.
29 * NOTE: We disalbe object sharing when server.ds_enabled == 1 so objects
30 * that are referenced an IO job for flushing on disk are marked as
31 * o->storage == REDIS_DS_SAVING.
32 *
33 * - This is what we do on key lookup:
34 * 1) The key already exists in memory. object->storage == REDIS_DS_MEMORY
35 * or it is object->storage == REDIS_DS_DIRTY:
36 * We don't do nothing special, lookup, return value object pointer.
37 * 2) The key is in memory but object->storage == REDIS_DS_SAVING.
38 * When this happens we block waiting for the I/O thread to process
39 * this object. Then continue.
40 * 3) The key is not in memory. We block to load the key from disk.
41 * Of course the key may not be present at all on the disk store as well,
42 * in such case we just detect this condition and continue, returning
43 * NULL from lookup.
44 *
45 * - Preloading of needed keys:
46 * 1) As it was done with VM, also with this new system we try preloading
47 * keys a client is going to use. We block the client, load keys
48 * using the I/O thread, unblock the client. Same code as VM more or less.
49 *
50 * - Reclaiming memory.
51 * In cron() we detect our memory limit was reached. What we
52 * do is deleting keys that are REDIS_DS_MEMORY, using LRU.
53 *
54 * If this is not enough to return again under the memory limits we also
55 * start to flush keys that need to be synched on disk synchronously,
56 * removing it from the memory. We do this blocking as memory limit is a
57 * much "harder" barrirer in the new design.
58 *
59 * - IO thread operations are no longer stopped for sync loading/saving of
60 * things. When a key is found to be in the process of being saved
61 * we simply wait for the IO thread to end its work.
62 *
63 * Otherwise if there is to load a key without any IO thread operation
64 * just started it is blocking-loaded in the lookup function.
65 *
66 * - What happens when an object is destroyed?
67 *
68 * If o->storage == REDIS_DS_MEMORY then we simply destory the object.
69 * If o->storage == REDIS_DS_DIRTY we can still remove the object. It had
70 * changes not flushed on disk, but is being removed so
71 * who cares.
72 * if o->storage == REDIS_DS_SAVING then the object is being saved so
73 * it is impossible that its refcount == 1, must be at
74 * least two. When the object is saved the storage will
75 * be set back to DS_MEMORY.
76 *
77 * - What happens when keys are deleted?
78 *
79 * We simply schedule a key flush operation as usually, but when the
80 * IO thread will be created the object pointer will be set to NULL
81 * so the IO thread will know that the work to do is to delete the key
82 * from the disk store.
83 *
84 * - What happens with MULTI/EXEC?
85 *
86 * Good question.
87 */
88
89 /* Virtual Memory is composed mainly of two subsystems:
90 * - Blocking Virutal Memory
91 * - Threaded Virtual Memory I/O
92 * The two parts are not fully decoupled, but functions are split among two
93 * different sections of the source code (delimited by comments) in order to
94 * make more clear what functionality is about the blocking VM and what about
95 * the threaded (not blocking) VM.
96 *
97 * Redis VM design:
98 *
99 * Redis VM is a blocking VM (one that blocks reading swapped values from
100 * disk into memory when a value swapped out is needed in memory) that is made
101 * unblocking by trying to examine the command argument vector in order to
102 * load in background values that will likely be needed in order to exec
103 * the command. The command is executed only once all the relevant keys
104 * are loaded into memory.
105 *
106 * This basically is almost as simple of a blocking VM, but almost as parallel
107 * as a fully non-blocking VM.
108 */
109
110 void spawnIOThread(void);
111
112 /* =================== Virtual Memory - Blocking Side ====================== */
113
114 void dsInit(void) {
115 int pipefds[2];
116 size_t stacksize;
117
118 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
119
120 redisLog(REDIS_NOTICE,"Initializing Disk Store at %s", server.ds_path);
121 /* Open Disk Store */
122 if (dsOpen() != REDIS_OK) {
123 redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
124 exit(1);
125 };
126
127 /* Initialize threaded I/O for Object Cache */
128 server.io_newjobs = listCreate();
129 server.io_processing = listCreate();
130 server.io_processed = listCreate();
131 server.io_ready_clients = listCreate();
132 pthread_mutex_init(&server.io_mutex,NULL);
133 server.io_active_threads = 0;
134 if (pipe(pipefds) == -1) {
135 redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
136 ,strerror(errno));
137 exit(1);
138 }
139 server.io_ready_pipe_read = pipefds[0];
140 server.io_ready_pipe_write = pipefds[1];
141 redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
142 /* LZF requires a lot of stack */
143 pthread_attr_init(&server.io_threads_attr);
144 pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
145
146 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
147 * multiplying it by 2 in the while loop later will not really help ;) */
148 if (!stacksize) stacksize = 1;
149
150 while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
151 pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
152 /* Listen for events in the threaded I/O pipe */
153 if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
154 vmThreadedIOCompletedJob, NULL) == AE_ERR)
155 oom("creating file event");
156
157 /* Spawn our I/O thread */
158 spawnIOThread();
159 }
160
161 /* Compute how good candidate the specified object is for eviction.
162 * An higher number means a better candidate. */
163 double computeObjectSwappability(robj *o) {
164 /* actual age can be >= minage, but not < minage. As we use wrapping
165 * 21 bit clocks with minutes resolution for the LRU. */
166 return (double) estimateObjectIdleTime(o);
167 }
168
169 /* Try to free one entry from the diskstore object cache */
170 int cacheFreeOneEntry(void) {
171 int j, i;
172 struct dictEntry *best = NULL;
173 double best_swappability = 0;
174 redisDb *best_db = NULL;
175 robj *val;
176 sds key;
177
178 for (j = 0; j < server.dbnum; j++) {
179 redisDb *db = server.db+j;
180 /* Why maxtries is set to 100?
181 * Because this way (usually) we'll find 1 object even if just 1% - 2%
182 * are swappable objects */
183 int maxtries = 100;
184
185 if (dictSize(db->dict) == 0) continue;
186 for (i = 0; i < 5; i++) {
187 dictEntry *de;
188 double swappability;
189
190 if (maxtries) maxtries--;
191 de = dictGetRandomKey(db->dict);
192 val = dictGetEntryVal(de);
193 /* Only swap objects that are currently in memory.
194 *
195 * Also don't swap shared objects: not a good idea in general and
196 * we need to ensure that the main thread does not touch the
197 * object while the I/O thread is using it, but we can't
198 * control other keys without adding additional mutex. */
199 if (val->storage != REDIS_DS_MEMORY) {
200 if (maxtries) i--; /* don't count this try */
201 continue;
202 }
203 swappability = computeObjectSwappability(val);
204 if (!best || swappability > best_swappability) {
205 best = de;
206 best_swappability = swappability;
207 best_db = db;
208 }
209 }
210 }
211 if (best == NULL) {
212 /* FIXME: If there are objects marked as DS_DIRTY or DS_SAVING
213 * let's wait for this objects to be clear and retry...
214 *
215 * Object cache vm limit is considered an hard limit. */
216 return REDIS_ERR;
217 }
218 key = dictGetEntryKey(best);
219 val = dictGetEntryVal(best);
220
221 redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
222 key, best_swappability);
223
224 /* Delete this key from memory */
225 {
226 robj *kobj = createStringObject(key,sdslen(key));
227 dbDelete(best_db,kobj);
228 decrRefCount(kobj);
229 }
230 }
231
232 /* Return true if it's safe to swap out objects in a given moment.
233 * Basically we don't want to swap objects out while there is a BGSAVE
234 * or a BGAEOREWRITE running in backgroud. */
235 int dsCanTouchDiskStore(void) {
236 return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1);
237 }
238
239 /* =================== Virtual Memory - Threaded I/O ======================= */
240
241 void freeIOJob(iojob *j) {
242 decrRefCount(j->key);
243 decrRefCount(j->val);
244 zfree(j);
245 }
246
247 /* Every time a thread finished a Job, it writes a byte into the write side
248 * of an unix pipe in order to "awake" the main thread, and this function
249 * is called. */
250 void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
251 int mask)
252 {
253 char buf[1];
254 int retval, processed = 0, toprocess = -1;
255 REDIS_NOTUSED(el);
256 REDIS_NOTUSED(mask);
257 REDIS_NOTUSED(privdata);
258
259 /* For every byte we read in the read side of the pipe, there is one
260 * I/O job completed to process. */
261 while((retval = read(fd,buf,1)) == 1) {
262 iojob *j;
263 listNode *ln;
264 struct dictEntry *de;
265
266 redisLog(REDIS_DEBUG,"Processing I/O completed job");
267
268 /* Get the processed element (the oldest one) */
269 lockThreadedIO();
270 redisAssert(listLength(server.io_processed) != 0);
271 if (toprocess == -1) {
272 toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
273 if (toprocess <= 0) toprocess = 1;
274 }
275 ln = listFirst(server.io_processed);
276 j = ln->value;
277 listDelNode(server.io_processed,ln);
278 unlockThreadedIO();
279
280 /* Post process it in the main thread, as there are things we
281 * can do just here to avoid race conditions and/or invasive locks */
282 redisLog(REDIS_DEBUG,"COMPLETED Job type: %d, ID %p, key: %s", j->type, (void*)j->id, (unsigned char*)j->key->ptr);
283 de = dictFind(j->db->dict,j->key->ptr);
284 redisAssert(de != NULL);
285 if (j->type == REDIS_IOJOB_LOAD) {
286 dbAdd(j->db,j->key,j->val);
287 freeIOJob(j);
288 /* FIXME: notify clients waiting for this key */
289 } else if (j->type == REDIS_IOJOB_SAVE) {
290 redisAssert(j->val->storage == REDIS_DS_SAVING);
291 j->val->storage = REDIS_DS_MEMORY;
292 freeIOJob(j);
293 }
294 processed++;
295 if (processed == toprocess) return;
296 }
297 if (retval < 0 && errno != EAGAIN) {
298 redisLog(REDIS_WARNING,
299 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
300 strerror(errno));
301 }
302 }
303
304 void lockThreadedIO(void) {
305 pthread_mutex_lock(&server.io_mutex);
306 }
307
308 void unlockThreadedIO(void) {
309 pthread_mutex_unlock(&server.io_mutex);
310 }
311
312 void *IOThreadEntryPoint(void *arg) {
313 iojob *j;
314 listNode *ln;
315 REDIS_NOTUSED(arg);
316
317 pthread_detach(pthread_self());
318 while(1) {
319 /* Get a new job to process */
320 lockThreadedIO();
321 if (listLength(server.io_newjobs) == 0) {
322 /* No new jobs in queue, exit. */
323 redisLog(REDIS_DEBUG,"Thread %ld exiting, nothing to do",
324 (long) pthread_self());
325 server.io_active_threads--;
326 unlockThreadedIO();
327 return NULL;
328 }
329 ln = listFirst(server.io_newjobs);
330 j = ln->value;
331 listDelNode(server.io_newjobs,ln);
332 /* Add the job in the processing queue */
333 j->thread = pthread_self();
334 listAddNodeTail(server.io_processing,j);
335 ln = listLast(server.io_processing); /* We use ln later to remove it */
336 unlockThreadedIO();
337 redisLog(REDIS_DEBUG,"Thread %ld got a new job (type %d): %p about key '%s'",
338 (long) pthread_self(), j->type, (void*)j, (char*)j->key->ptr);
339
340 /* Process the Job */
341 if (j->type == REDIS_IOJOB_LOAD) {
342 vmpointer *vp = (vmpointer*)j->id;
343 j->val = vmReadObjectFromSwap(j->page,vp->vtype);
344 } else if (j->type == REDIS_IOJOB_PREPARE_SWAP) {
345 j->pages = rdbSavedObjectPages(j->val);
346 } else if (j->type == REDIS_IOJOB_DO_SWAP) {
347 if (vmWriteObjectOnSwap(j->val,j->page) == REDIS_ERR)
348 j->canceled = 1;
349 }
350
351 /* Done: insert the job into the processed queue */
352 redisLog(REDIS_DEBUG,"Thread %ld completed the job: %p (key %s)",
353 (long) pthread_self(), (void*)j, (char*)j->key->ptr);
354 lockThreadedIO();
355 listDelNode(server.io_processing,ln);
356 listAddNodeTail(server.io_processed,j);
357 unlockThreadedIO();
358
359 /* Signal the main thread there is new stuff to process */
360 redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
361 }
362 return NULL; /* never reached */
363 }
364
365 void spawnIOThread(void) {
366 pthread_t thread;
367 sigset_t mask, omask;
368 int err;
369
370 sigemptyset(&mask);
371 sigaddset(&mask,SIGCHLD);
372 sigaddset(&mask,SIGHUP);
373 sigaddset(&mask,SIGPIPE);
374 pthread_sigmask(SIG_SETMASK, &mask, &omask);
375 while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
376 redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
377 strerror(err));
378 usleep(1000000);
379 }
380 pthread_sigmask(SIG_SETMASK, &omask, NULL);
381 server.io_active_threads++;
382 }
383
384 /* We need to wait for the last thread to exit before we are able to
385 * fork() in order to BGSAVE or BGREWRITEAOF. */
386 void waitEmptyIOJobsQueue(void) {
387 while(1) {
388 int io_processed_len;
389
390 lockThreadedIO();
391 if (listLength(server.io_newjobs) == 0 &&
392 listLength(server.io_processing) == 0 &&
393 server.io_active_threads == 0)
394 {
395 unlockThreadedIO();
396 return;
397 }
398 /* While waiting for empty jobs queue condition we post-process some
399 * finshed job, as I/O threads may be hanging trying to write against
400 * the io_ready_pipe_write FD but there are so much pending jobs that
401 * it's blocking. */
402 io_processed_len = listLength(server.io_processed);
403 unlockThreadedIO();
404 if (io_processed_len) {
405 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
406 (void*)0xdeadbeef,0);
407 usleep(1000); /* 1 millisecond */
408 } else {
409 usleep(10000); /* 10 milliseconds */
410 }
411 }
412 }
413
414 /* This function must be called while with threaded IO locked */
415 void queueIOJob(iojob *j) {
416 redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
417 (void*)j, j->type, (char*)j->key->ptr);
418 listAddNodeTail(server.io_newjobs,j);
419 if (server.io_active_threads < server.vm_max_threads)
420 spawnIOThread();
421 }
422
423 int vmSwapObjectThreaded(robj *key, robj *val, redisDb *db) {
424 iojob *j;
425
426 j = zmalloc(sizeof(*j));
427 j->type = REDIS_IOJOB_PREPARE_SWAP;
428 j->db = db;
429 j->key = key;
430 incrRefCount(key);
431 j->id = j->val = val;
432 incrRefCount(val);
433 j->canceled = 0;
434 j->thread = (pthread_t) -1;
435 val->storage = REDIS_VM_SWAPPING;
436
437 lockThreadedIO();
438 queueIOJob(j);
439 unlockThreadedIO();
440 return REDIS_OK;
441 }
442
443 /* ============ Virtual Memory - Blocking clients on missing keys =========== */
444
445 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
446 * If there is not already a job loading the key, it is craeted.
447 * The key is added to the io_keys list in the client structure, and also
448 * in the hash table mapping swapped keys to waiting clients, that is,
449 * server.io_waited_keys. */
450 int waitForSwappedKey(redisClient *c, robj *key) {
451 struct dictEntry *de;
452 robj *o;
453 list *l;
454
455 /* If the key does not exist or is already in RAM we don't need to
456 * block the client at all. */
457 de = dictFind(c->db->dict,key->ptr);
458 if (de == NULL) return 0;
459 o = dictGetEntryVal(de);
460 if (o->storage == REDIS_VM_MEMORY) {
461 return 0;
462 } else if (o->storage == REDIS_VM_SWAPPING) {
463 /* We were swapping the key, undo it! */
464 vmCancelThreadedIOJob(o);
465 return 0;
466 }
467
468 /* OK: the key is either swapped, or being loaded just now. */
469
470 /* Add the key to the list of keys this client is waiting for.
471 * This maps clients to keys they are waiting for. */
472 listAddNodeTail(c->io_keys,key);
473 incrRefCount(key);
474
475 /* Add the client to the swapped keys => clients waiting map. */
476 de = dictFind(c->db->io_keys,key);
477 if (de == NULL) {
478 int retval;
479
480 /* For every key we take a list of clients blocked for it */
481 l = listCreate();
482 retval = dictAdd(c->db->io_keys,key,l);
483 incrRefCount(key);
484 redisAssert(retval == DICT_OK);
485 } else {
486 l = dictGetEntryVal(de);
487 }
488 listAddNodeTail(l,c);
489
490 /* Are we already loading the key from disk? If not create a job */
491 if (o->storage == REDIS_VM_SWAPPED) {
492 iojob *j;
493 vmpointer *vp = (vmpointer*)o;
494
495 o->storage = REDIS_VM_LOADING;
496 j = zmalloc(sizeof(*j));
497 j->type = REDIS_IOJOB_LOAD;
498 j->db = c->db;
499 j->id = (robj*)vp;
500 j->key = key;
501 incrRefCount(key);
502 j->page = vp->page;
503 j->val = NULL;
504 j->canceled = 0;
505 j->thread = (pthread_t) -1;
506 lockThreadedIO();
507 queueIOJob(j);
508 unlockThreadedIO();
509 }
510 return 1;
511 }
512
513 /* Preload keys for any command with first, last and step values for
514 * the command keys prototype, as defined in the command table. */
515 void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
516 int j, last;
517 if (cmd->vm_firstkey == 0) return;
518 last = cmd->vm_lastkey;
519 if (last < 0) last = argc+last;
520 for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) {
521 redisAssert(j < argc);
522 waitForSwappedKey(c,argv[j]);
523 }
524 }
525
526 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
527 * Note that the number of keys to preload is user-defined, so we need to
528 * apply a sanity check against argc. */
529 void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
530 int i, num;
531 REDIS_NOTUSED(cmd);
532
533 num = atoi(argv[2]->ptr);
534 if (num > (argc-3)) return;
535 for (i = 0; i < num; i++) {
536 waitForSwappedKey(c,argv[3+i]);
537 }
538 }
539
540 /* Preload keys needed to execute the entire MULTI/EXEC block.
541 *
542 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
543 * and will block the client when any command requires a swapped out value. */
544 void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
545 int i, margc;
546 struct redisCommand *mcmd;
547 robj **margv;
548 REDIS_NOTUSED(cmd);
549 REDIS_NOTUSED(argc);
550 REDIS_NOTUSED(argv);
551
552 if (!(c->flags & REDIS_MULTI)) return;
553 for (i = 0; i < c->mstate.count; i++) {
554 mcmd = c->mstate.commands[i].cmd;
555 margc = c->mstate.commands[i].argc;
556 margv = c->mstate.commands[i].argv;
557
558 if (mcmd->vm_preload_proc != NULL) {
559 mcmd->vm_preload_proc(c,mcmd,margc,margv);
560 } else {
561 waitForMultipleSwappedKeys(c,mcmd,margc,margv);
562 }
563 }
564 }
565
566 /* Is this client attempting to run a command against swapped keys?
567 * If so, block it ASAP, load the keys in background, then resume it.
568 *
569 * The important idea about this function is that it can fail! If keys will
570 * still be swapped when the client is resumed, this key lookups will
571 * just block loading keys from disk. In practical terms this should only
572 * happen with SORT BY command or if there is a bug in this function.
573 *
574 * Return 1 if the client is marked as blocked, 0 if the client can
575 * continue as the keys it is going to access appear to be in memory. */
576 int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
577 if (cmd->vm_preload_proc != NULL) {
578 cmd->vm_preload_proc(c,cmd,c->argc,c->argv);
579 } else {
580 waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv);
581 }
582
583 /* If the client was blocked for at least one key, mark it as blocked. */
584 if (listLength(c->io_keys)) {
585 c->flags |= REDIS_IO_WAIT;
586 aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
587 server.vm_blocked_clients++;
588 return 1;
589 } else {
590 return 0;
591 }
592 }
593
594 /* Remove the 'key' from the list of blocked keys for a given client.
595 *
596 * The function returns 1 when there are no longer blocking keys after
597 * the current one was removed (and the client can be unblocked). */
598 int dontWaitForSwappedKey(redisClient *c, robj *key) {
599 list *l;
600 listNode *ln;
601 listIter li;
602 struct dictEntry *de;
603
604 /* The key object might be destroyed when deleted from the c->io_keys
605 * list (and the "key" argument is physically the same object as the
606 * object inside the list), so we need to protect it. */
607 incrRefCount(key);
608
609 /* Remove the key from the list of keys this client is waiting for. */
610 listRewind(c->io_keys,&li);
611 while ((ln = listNext(&li)) != NULL) {
612 if (equalStringObjects(ln->value,key)) {
613 listDelNode(c->io_keys,ln);
614 break;
615 }
616 }
617 redisAssert(ln != NULL);
618
619 /* Remove the client form the key => waiting clients map. */
620 de = dictFind(c->db->io_keys,key);
621 redisAssert(de != NULL);
622 l = dictGetEntryVal(de);
623 ln = listSearchKey(l,c);
624 redisAssert(ln != NULL);
625 listDelNode(l,ln);
626 if (listLength(l) == 0)
627 dictDelete(c->db->io_keys,key);
628
629 decrRefCount(key);
630 return listLength(c->io_keys) == 0;
631 }
632
633 /* Every time we now a key was loaded back in memory, we handle clients
634 * waiting for this key if any. */
635 void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
636 struct dictEntry *de;
637 list *l;
638 listNode *ln;
639 int len;
640
641 de = dictFind(db->io_keys,key);
642 if (!de) return;
643
644 l = dictGetEntryVal(de);
645 len = listLength(l);
646 /* Note: we can't use something like while(listLength(l)) as the list
647 * can be freed by the calling function when we remove the last element. */
648 while (len--) {
649 ln = listFirst(l);
650 redisClient *c = ln->value;
651
652 if (dontWaitForSwappedKey(c,key)) {
653 /* Put the client in the list of clients ready to go as we
654 * loaded all the keys about it. */
655 listAddNodeTail(server.io_ready_clients,c);
656 }
657 }
658 }