]> git.saurik.com Git - redis.git/blob - src/dscache.c
03be8ffa455418f14ac0c0c572019fe04416cda9
[redis.git] / src / dscache.c
1 #include "redis.h"
2
3 #include <fcntl.h>
4 #include <pthread.h>
5 #include <math.h>
6 #include <signal.h>
7
8 /* dscache.c - Disk store cache for disk store backend.
9 *
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
13 *
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
16 *
17 * This file implements the whole caching subsystem and contains further
18 * documentation. */
19
20 /* TODO:
21 *
22 * - The WATCH helper will be used to signal the cache system
23 * we need to flush a given key/dbid into disk, adding this key/dbid
24 * pair into a server.ds_cache_dirty linked list AND hash table (so that we
25 * don't add the same thing multiple times).
26 *
27 * - cron() checks if there are elements on this list. When there are things
28 * to flush, we create an IO Job for the I/O thread.
29 * NOTE: We disalbe object sharing when server.ds_enabled == 1 so objects
30 * that are referenced an IO job for flushing on disk are marked as
31 * o->storage == REDIS_DS_SAVING.
32 *
33 * - This is what we do on key lookup:
34 * 1) The key already exists in memory. object->storage == REDIS_DS_MEMORY
35 * or it is object->storage == REDIS_DS_DIRTY:
36 * We don't do nothing special, lookup, return value object pointer.
37 * 2) The key is in memory but object->storage == REDIS_DS_SAVING.
38 * When this happens we block waiting for the I/O thread to process
39 * this object. Then continue.
40 * 3) The key is not in memory. We block to load the key from disk.
41 * Of course the key may not be present at all on the disk store as well,
42 * in such case we just detect this condition and continue, returning
43 * NULL from lookup.
44 *
45 * - Preloading of needed keys:
46 * 1) As it was done with VM, also with this new system we try preloading
47 * keys a client is going to use. We block the client, load keys
48 * using the I/O thread, unblock the client. Same code as VM more or less.
49 *
50 * - Reclaiming memory.
51 * In cron() we detect our memory limit was reached. What we
52 * do is deleting keys that are REDIS_DS_MEMORY, using LRU.
53 *
54 * If this is not enough to return again under the memory limits we also
55 * start to flush keys that need to be synched on disk synchronously,
56 * removing it from the memory. We do this blocking as memory limit is a
57 * much "harder" barrirer in the new design.
58 *
59 * - IO thread operations are no longer stopped for sync loading/saving of
60 * things. When a key is found to be in the process of being saved
61 * we simply wait for the IO thread to end its work.
62 *
63 * Otherwise if there is to load a key without any IO thread operation
64 * just started it is blocking-loaded in the lookup function.
65 *
66 * - What happens when an object is destroyed?
67 *
68 * If o->storage == REDIS_DS_MEMORY then we simply destory the object.
69 * If o->storage == REDIS_DS_DIRTY we can still remove the object. It had
70 * changes not flushed on disk, but is being removed so
71 * who cares.
72 * if o->storage == REDIS_DS_SAVING then the object is being saved so
73 * it is impossible that its refcount == 1, must be at
74 * least two. When the object is saved the storage will
75 * be set back to DS_MEMORY.
76 *
77 * - What happens when keys are deleted?
78 *
79 * We simply schedule a key flush operation as usually, but when the
80 * IO thread will be created the object pointer will be set to NULL
81 * so the IO thread will know that the work to do is to delete the key
82 * from the disk store.
83 *
84 * - What happens with MULTI/EXEC?
85 *
86 * Good question.
87 *
88 * - If dsSet() fails on the write thread log the error and reschedule the
89 * key for flush.
90 *
91 * - Check why INCR will not update the LRU info for the object.
92 */
93
94 /* Virtual Memory is composed mainly of two subsystems:
95 * - Blocking Virutal Memory
96 * - Threaded Virtual Memory I/O
97 * The two parts are not fully decoupled, but functions are split among two
98 * different sections of the source code (delimited by comments) in order to
99 * make more clear what functionality is about the blocking VM and what about
100 * the threaded (not blocking) VM.
101 *
102 * Redis VM design:
103 *
104 * Redis VM is a blocking VM (one that blocks reading swapped values from
105 * disk into memory when a value swapped out is needed in memory) that is made
106 * unblocking by trying to examine the command argument vector in order to
107 * load in background values that will likely be needed in order to exec
108 * the command. The command is executed only once all the relevant keys
109 * are loaded into memory.
110 *
111 * This basically is almost as simple of a blocking VM, but almost as parallel
112 * as a fully non-blocking VM.
113 */
114
115 void spawnIOThread(void);
116
117 /* =================== Virtual Memory - Blocking Side ====================== */
118
119 void dsInit(void) {
120 int pipefds[2];
121 size_t stacksize;
122
123 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
124
125 redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path);
126 /* Open Disk Store */
127 if (dsOpen() != REDIS_OK) {
128 redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
129 exit(1);
130 };
131
132 /* Initialize threaded I/O for Object Cache */
133 server.io_newjobs = listCreate();
134 server.io_processing = listCreate();
135 server.io_processed = listCreate();
136 server.io_ready_clients = listCreate();
137 pthread_mutex_init(&server.io_mutex,NULL);
138 pthread_cond_init(&server.io_condvar,NULL);
139 server.io_active_threads = 0;
140 if (pipe(pipefds) == -1) {
141 redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
142 ,strerror(errno));
143 exit(1);
144 }
145 server.io_ready_pipe_read = pipefds[0];
146 server.io_ready_pipe_write = pipefds[1];
147 redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
148 /* LZF requires a lot of stack */
149 pthread_attr_init(&server.io_threads_attr);
150 pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
151
152 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
153 * multiplying it by 2 in the while loop later will not really help ;) */
154 if (!stacksize) stacksize = 1;
155
156 while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
157 pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
158 /* Listen for events in the threaded I/O pipe */
159 if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
160 vmThreadedIOCompletedJob, NULL) == AE_ERR)
161 oom("creating file event");
162
163 /* Spawn our I/O thread */
164 spawnIOThread();
165 }
166
167 /* Compute how good candidate the specified object is for eviction.
168 * An higher number means a better candidate. */
169 double computeObjectSwappability(robj *o) {
170 /* actual age can be >= minage, but not < minage. As we use wrapping
171 * 21 bit clocks with minutes resolution for the LRU. */
172 return (double) estimateObjectIdleTime(o);
173 }
174
175 /* Try to free one entry from the diskstore object cache */
176 int cacheFreeOneEntry(void) {
177 int j, i;
178 struct dictEntry *best = NULL;
179 double best_swappability = 0;
180 redisDb *best_db = NULL;
181 robj *val;
182 sds key;
183
184 for (j = 0; j < server.dbnum; j++) {
185 redisDb *db = server.db+j;
186 /* Why maxtries is set to 100?
187 * Because this way (usually) we'll find 1 object even if just 1% - 2%
188 * are swappable objects */
189 int maxtries = 100;
190
191 if (dictSize(db->dict) == 0) continue;
192 for (i = 0; i < 5; i++) {
193 dictEntry *de;
194 double swappability;
195
196 if (maxtries) maxtries--;
197 de = dictGetRandomKey(db->dict);
198 val = dictGetEntryVal(de);
199 /* Only swap objects that are currently in memory.
200 *
201 * Also don't swap shared objects: not a good idea in general and
202 * we need to ensure that the main thread does not touch the
203 * object while the I/O thread is using it, but we can't
204 * control other keys without adding additional mutex. */
205 if (val->storage != REDIS_DS_MEMORY) {
206 if (maxtries) i--; /* don't count this try */
207 continue;
208 }
209 swappability = computeObjectSwappability(val);
210 if (!best || swappability > best_swappability) {
211 best = de;
212 best_swappability = swappability;
213 best_db = db;
214 }
215 }
216 }
217 if (best == NULL) {
218 /* FIXME: If there are objects marked as DS_DIRTY or DS_SAVING
219 * let's wait for this objects to be clear and retry...
220 *
221 * Object cache vm limit is considered an hard limit. */
222 return REDIS_ERR;
223 }
224 key = dictGetEntryKey(best);
225 val = dictGetEntryVal(best);
226
227 redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
228 key, best_swappability);
229
230 /* Delete this key from memory */
231 {
232 robj *kobj = createStringObject(key,sdslen(key));
233 dbDelete(best_db,kobj);
234 decrRefCount(kobj);
235 }
236 return REDIS_OK;
237 }
238
239 /* Return true if it's safe to swap out objects in a given moment.
240 * Basically we don't want to swap objects out while there is a BGSAVE
241 * or a BGAEOREWRITE running in backgroud. */
242 int dsCanTouchDiskStore(void) {
243 return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1);
244 }
245
246 /* =================== Virtual Memory - Threaded I/O ======================= */
247
248 void freeIOJob(iojob *j) {
249 decrRefCount(j->key);
250 /* j->val can be NULL if the job is about deleting the key from disk. */
251 if (j->val) decrRefCount(j->val);
252 zfree(j);
253 }
254
255 /* Every time a thread finished a Job, it writes a byte into the write side
256 * of an unix pipe in order to "awake" the main thread, and this function
257 * is called. */
258 void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
259 int mask)
260 {
261 char buf[1];
262 int retval, processed = 0, toprocess = -1;
263 REDIS_NOTUSED(el);
264 REDIS_NOTUSED(mask);
265 REDIS_NOTUSED(privdata);
266
267 /* For every byte we read in the read side of the pipe, there is one
268 * I/O job completed to process. */
269 while((retval = read(fd,buf,1)) == 1) {
270 iojob *j;
271 listNode *ln;
272
273 redisLog(REDIS_DEBUG,"Processing I/O completed job");
274
275 /* Get the processed element (the oldest one) */
276 lockThreadedIO();
277 redisAssert(listLength(server.io_processed) != 0);
278 if (toprocess == -1) {
279 toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
280 if (toprocess <= 0) toprocess = 1;
281 }
282 ln = listFirst(server.io_processed);
283 j = ln->value;
284 listDelNode(server.io_processed,ln);
285 unlockThreadedIO();
286
287 /* Post process it in the main thread, as there are things we
288 * can do just here to avoid race conditions and/or invasive locks */
289 redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s",
290 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
291 (unsigned char*)j->key->ptr);
292 if (j->type == REDIS_IOJOB_LOAD) {
293 /* Create the key-value pair in the in-memory database */
294 if (j->val != NULL) {
295 /* Note: the key may already be here if between the time
296 * this key loading was scheduled and now there was the
297 * need to blocking load the key for a key lookup. */
298 if (dbAdd(j->db,j->key,j->val) == REDIS_OK) {
299 incrRefCount(j->val);
300 if (j->expire != -1) setExpire(j->db,j->key,j->expire);
301 }
302 } else {
303 /* The key does not exist. Create a negative cache entry
304 * for this key. */
305 /* FIXME: add this entry into the negative cache */
306 }
307 /* Handle clients waiting for this key to be loaded. */
308 handleClientsBlockedOnSwappedKey(j->db,j->key);
309 freeIOJob(j);
310 } else if (j->type == REDIS_IOJOB_SAVE) {
311 if (j->val) {
312 redisAssert(j->val->storage == REDIS_DS_SAVING);
313 j->val->storage = REDIS_DS_MEMORY;
314 }
315 freeIOJob(j);
316 }
317 processed++;
318 if (processed == toprocess) return;
319 }
320 if (retval < 0 && errno != EAGAIN) {
321 redisLog(REDIS_WARNING,
322 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
323 strerror(errno));
324 }
325 }
326
327 void lockThreadedIO(void) {
328 pthread_mutex_lock(&server.io_mutex);
329 }
330
331 void unlockThreadedIO(void) {
332 pthread_mutex_unlock(&server.io_mutex);
333 }
334
335 void *IOThreadEntryPoint(void *arg) {
336 iojob *j;
337 listNode *ln;
338 REDIS_NOTUSED(arg);
339
340 pthread_detach(pthread_self());
341 lockThreadedIO();
342 while(1) {
343 /* Wait for more work to do */
344 pthread_cond_wait(&server.io_condvar,&server.io_mutex);
345 /* Get a new job to process */
346 if (listLength(server.io_newjobs) == 0) {
347 /* No new jobs in queue, reiterate. */
348 unlockThreadedIO();
349 continue;
350 }
351 ln = listFirst(server.io_newjobs);
352 j = ln->value;
353 listDelNode(server.io_newjobs,ln);
354 /* Add the job in the processing queue */
355 listAddNodeTail(server.io_processing,j);
356 ln = listLast(server.io_processing); /* We use ln later to remove it */
357 unlockThreadedIO();
358
359 redisLog(REDIS_DEBUG,"Thread %ld: new job type %s: %p about key '%s'",
360 (long) pthread_self(),
361 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
362 (void*)j, (char*)j->key->ptr);
363
364 /* Process the Job */
365 if (j->type == REDIS_IOJOB_LOAD) {
366 time_t expire;
367
368 j->val = dsGet(j->db,j->key,&expire);
369 if (j->val) j->expire = expire;
370 } else if (j->type == REDIS_IOJOB_SAVE) {
371 if (j->val) {
372 redisAssert(j->val->storage == REDIS_DS_SAVING);
373 dsSet(j->db,j->key,j->val);
374 } else {
375 dsDel(j->db,j->key);
376 }
377 }
378
379 /* Done: insert the job into the processed queue */
380 redisLog(REDIS_DEBUG,"Thread %ld completed the job: %p (key %s)",
381 (long) pthread_self(), (void*)j, (char*)j->key->ptr);
382
383 lockThreadedIO();
384 listDelNode(server.io_processing,ln);
385 listAddNodeTail(server.io_processed,j);
386
387 /* Signal the main thread there is new stuff to process */
388 redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
389 }
390 /* never reached, but that's the full pattern... */
391 unlockThreadedIO();
392 return NULL;
393 }
394
395 void spawnIOThread(void) {
396 pthread_t thread;
397 sigset_t mask, omask;
398 int err;
399
400 sigemptyset(&mask);
401 sigaddset(&mask,SIGCHLD);
402 sigaddset(&mask,SIGHUP);
403 sigaddset(&mask,SIGPIPE);
404 pthread_sigmask(SIG_SETMASK, &mask, &omask);
405 while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
406 redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
407 strerror(err));
408 usleep(1000000);
409 }
410 pthread_sigmask(SIG_SETMASK, &omask, NULL);
411 server.io_active_threads++;
412 }
413
414 /* Wait that all the pending IO Jobs are processed */
415 void waitEmptyIOJobsQueue(void) {
416 while(1) {
417 int io_processed_len;
418
419 lockThreadedIO();
420 if (listLength(server.io_newjobs) == 0 &&
421 listLength(server.io_processing) == 0)
422 {
423 unlockThreadedIO();
424 return;
425 }
426 /* While waiting for empty jobs queue condition we post-process some
427 * finshed job, as I/O threads may be hanging trying to write against
428 * the io_ready_pipe_write FD but there are so much pending jobs that
429 * it's blocking. */
430 io_processed_len = listLength(server.io_processed);
431 unlockThreadedIO();
432 if (io_processed_len) {
433 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
434 (void*)0xdeadbeef,0);
435 usleep(1000); /* 1 millisecond */
436 } else {
437 usleep(10000); /* 10 milliseconds */
438 }
439 }
440 }
441
442 /* Process all the IO Jobs already completed by threads but still waiting
443 * processing from the main thread. */
444 void processAllPendingIOJobs(void) {
445 while(1) {
446 int io_processed_len;
447
448 lockThreadedIO();
449 io_processed_len = listLength(server.io_processed);
450 unlockThreadedIO();
451 if (io_processed_len == 0) return;
452 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
453 (void*)0xdeadbeef,0);
454 }
455 }
456
457 /* This function must be called while with threaded IO locked */
458 void queueIOJob(iojob *j) {
459 redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
460 (void*)j, j->type, (char*)j->key->ptr);
461 listAddNodeTail(server.io_newjobs,j);
462 if (server.io_active_threads < server.vm_max_threads)
463 spawnIOThread();
464 }
465
466 void dsCreateIOJob(int type, redisDb *db, robj *key, robj *val) {
467 iojob *j;
468
469 j = zmalloc(sizeof(*j));
470 j->type = type;
471 j->db = db;
472 j->key = key;
473 incrRefCount(key);
474 j->val = val;
475 if (val) incrRefCount(val);
476
477 lockThreadedIO();
478 queueIOJob(j);
479 pthread_cond_signal(&server.io_condvar);
480 unlockThreadedIO();
481 }
482
483 void cacheScheduleForFlush(redisDb *db, robj *key) {
484 dirtykey *dk;
485 dictEntry *de;
486
487 de = dictFind(db->dict,key->ptr);
488 if (de) {
489 robj *val = dictGetEntryVal(de);
490 if (val->storage == REDIS_DS_DIRTY)
491 return;
492 else
493 val->storage = REDIS_DS_DIRTY;
494 }
495
496 redisLog(REDIS_DEBUG,"Scheduling key %s for saving",key->ptr);
497 dk = zmalloc(sizeof(*dk));
498 dk->db = db;
499 dk->key = key;
500 incrRefCount(key);
501 dk->ctime = time(NULL);
502 listAddNodeTail(server.cache_flush_queue, dk);
503 }
504
505 void cacheCron(void) {
506 time_t now = time(NULL);
507 listNode *ln;
508
509 /* Sync stuff on disk */
510 while((ln = listFirst(server.cache_flush_queue)) != NULL) {
511 dirtykey *dk = ln->value;
512
513 if ((now - dk->ctime) >= server.cache_flush_delay) {
514 struct dictEntry *de;
515 robj *val;
516
517 redisLog(REDIS_DEBUG,"Creating IO Job to save key %s",dk->key->ptr);
518
519 /* Lookup the key, in order to put the current value in the IO
520 * Job and mark ti as DS_SAVING.
521 * Otherwise if the key does not exists we schedule a disk store
522 * delete operation, setting the value to NULL. */
523 de = dictFind(dk->db->dict,dk->key->ptr);
524 if (de) {
525 val = dictGetEntryVal(de);
526 redisAssert(val->storage == REDIS_DS_DIRTY);
527 val->storage = REDIS_DS_SAVING;
528 } else {
529 /* Setting the value to NULL tells the IO thread to delete
530 * the key on disk. */
531 val = NULL;
532 }
533 dsCreateIOJob(REDIS_IOJOB_SAVE,dk->db,dk->key,val);
534 listDelNode(server.cache_flush_queue,ln);
535 decrRefCount(dk->key);
536 zfree(dk);
537 } else {
538 break; /* too early */
539 }
540 }
541
542 /* Reclaim memory from the object cache */
543 while (server.ds_enabled && zmalloc_used_memory() >
544 server.cache_max_memory)
545 {
546 if (cacheFreeOneEntry() == REDIS_ERR) break;
547 }
548 }
549
550 /* ============ Negative caching for diskstore objects ====================== */
551 /* Since accesses to keys that don't exist with disk store cost us a disk
552 * access, we need to cache names of keys that do not exist but are frequently
553 * accessed. */
554 int cacheKeyMayExist(redisDb *db, robj *key) {
555 /* FIXME: for now we just always return true. */
556 return 1;
557 }
558
559 /* ============ Virtual Memory - Blocking clients on missing keys =========== */
560
561 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
562 * If the key is already in memory we don't need to block, regardless
563 * of the storage of the value object for this key:
564 *
565 * - If it's REDIS_DS_MEMORY we have the key in memory.
566 * - If it's REDIS_DS_DIRTY they key was modified, but still in memory.
567 * - if it's REDIS_DS_SAVING the key is being saved by an IO Job. When
568 * the client will lookup the key it will block if the key is still
569 * in this stage but it's more or less the best we can do.
570 *
571 * FIXME: we should try if it's actually better to suspend the client
572 * accessing an object that is being saved, and awake it only when
573 * the saving was completed.
574 *
575 * Otherwise if the key is not in memory, we block the client and start
576 * an IO Job to load it:
577 *
578 * the key is added to the io_keys list in the client structure, and also
579 * in the hash table mapping swapped keys to waiting clients, that is,
580 * server.io_waited_keys. */
581 int waitForSwappedKey(redisClient *c, robj *key) {
582 struct dictEntry *de;
583 list *l;
584
585 /* Return ASAP if the key is in memory */
586 de = dictFind(c->db->dict,key->ptr);
587 if (de != NULL) return 0;
588
589 /* Add the key to the list of keys this client is waiting for.
590 * This maps clients to keys they are waiting for. */
591 listAddNodeTail(c->io_keys,key);
592 incrRefCount(key);
593
594 /* Add the client to the swapped keys => clients waiting map. */
595 de = dictFind(c->db->io_keys,key);
596 if (de == NULL) {
597 int retval;
598
599 /* For every key we take a list of clients blocked for it */
600 l = listCreate();
601 retval = dictAdd(c->db->io_keys,key,l);
602 incrRefCount(key);
603 redisAssert(retval == DICT_OK);
604 } else {
605 l = dictGetEntryVal(de);
606 }
607 listAddNodeTail(l,c);
608
609 /* Are we already loading the key from disk? If not create a job */
610 if (de == NULL)
611 dsCreateIOJob(REDIS_IOJOB_LOAD,c->db,key,NULL);
612 return 1;
613 }
614
615 /* Preload keys for any command with first, last and step values for
616 * the command keys prototype, as defined in the command table. */
617 void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
618 int j, last;
619 if (cmd->vm_firstkey == 0) return;
620 last = cmd->vm_lastkey;
621 if (last < 0) last = argc+last;
622 for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) {
623 redisAssert(j < argc);
624 waitForSwappedKey(c,argv[j]);
625 }
626 }
627
628 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
629 * Note that the number of keys to preload is user-defined, so we need to
630 * apply a sanity check against argc. */
631 void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
632 int i, num;
633 REDIS_NOTUSED(cmd);
634
635 num = atoi(argv[2]->ptr);
636 if (num > (argc-3)) return;
637 for (i = 0; i < num; i++) {
638 waitForSwappedKey(c,argv[3+i]);
639 }
640 }
641
642 /* Preload keys needed to execute the entire MULTI/EXEC block.
643 *
644 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
645 * and will block the client when any command requires a swapped out value. */
646 void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
647 int i, margc;
648 struct redisCommand *mcmd;
649 robj **margv;
650 REDIS_NOTUSED(cmd);
651 REDIS_NOTUSED(argc);
652 REDIS_NOTUSED(argv);
653
654 if (!(c->flags & REDIS_MULTI)) return;
655 for (i = 0; i < c->mstate.count; i++) {
656 mcmd = c->mstate.commands[i].cmd;
657 margc = c->mstate.commands[i].argc;
658 margv = c->mstate.commands[i].argv;
659
660 if (mcmd->vm_preload_proc != NULL) {
661 mcmd->vm_preload_proc(c,mcmd,margc,margv);
662 } else {
663 waitForMultipleSwappedKeys(c,mcmd,margc,margv);
664 }
665 }
666 }
667
668 /* Is this client attempting to run a command against swapped keys?
669 * If so, block it ASAP, load the keys in background, then resume it.
670 *
671 * The important idea about this function is that it can fail! If keys will
672 * still be swapped when the client is resumed, this key lookups will
673 * just block loading keys from disk. In practical terms this should only
674 * happen with SORT BY command or if there is a bug in this function.
675 *
676 * Return 1 if the client is marked as blocked, 0 if the client can
677 * continue as the keys it is going to access appear to be in memory. */
678 int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
679 if (cmd->vm_preload_proc != NULL) {
680 cmd->vm_preload_proc(c,cmd,c->argc,c->argv);
681 } else {
682 waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv);
683 }
684
685 /* If the client was blocked for at least one key, mark it as blocked. */
686 if (listLength(c->io_keys)) {
687 c->flags |= REDIS_IO_WAIT;
688 aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
689 server.cache_blocked_clients++;
690 return 1;
691 } else {
692 return 0;
693 }
694 }
695
696 /* Remove the 'key' from the list of blocked keys for a given client.
697 *
698 * The function returns 1 when there are no longer blocking keys after
699 * the current one was removed (and the client can be unblocked). */
700 int dontWaitForSwappedKey(redisClient *c, robj *key) {
701 list *l;
702 listNode *ln;
703 listIter li;
704 struct dictEntry *de;
705
706 /* The key object might be destroyed when deleted from the c->io_keys
707 * list (and the "key" argument is physically the same object as the
708 * object inside the list), so we need to protect it. */
709 incrRefCount(key);
710
711 /* Remove the key from the list of keys this client is waiting for. */
712 listRewind(c->io_keys,&li);
713 while ((ln = listNext(&li)) != NULL) {
714 if (equalStringObjects(ln->value,key)) {
715 listDelNode(c->io_keys,ln);
716 break;
717 }
718 }
719 redisAssert(ln != NULL);
720
721 /* Remove the client form the key => waiting clients map. */
722 de = dictFind(c->db->io_keys,key);
723 redisAssert(de != NULL);
724 l = dictGetEntryVal(de);
725 ln = listSearchKey(l,c);
726 redisAssert(ln != NULL);
727 listDelNode(l,ln);
728 if (listLength(l) == 0)
729 dictDelete(c->db->io_keys,key);
730
731 decrRefCount(key);
732 return listLength(c->io_keys) == 0;
733 }
734
735 /* Every time we now a key was loaded back in memory, we handle clients
736 * waiting for this key if any. */
737 void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
738 struct dictEntry *de;
739 list *l;
740 listNode *ln;
741 int len;
742
743 de = dictFind(db->io_keys,key);
744 if (!de) return;
745
746 l = dictGetEntryVal(de);
747 len = listLength(l);
748 /* Note: we can't use something like while(listLength(l)) as the list
749 * can be freed by the calling function when we remove the last element. */
750 while (len--) {
751 ln = listFirst(l);
752 redisClient *c = ln->value;
753
754 if (dontWaitForSwappedKey(c,key)) {
755 /* Put the client in the list of clients ready to go as we
756 * loaded all the keys about it. */
757 listAddNodeTail(server.io_ready_clients,c);
758 }
759 }
760 }