+/* Output the generated parsing program for bison,
+ Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002
+ Free Software Foundation, Inc.
+
+ This file is part of Bison, the GNU Compiler Compiler.
+
+ Bison is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ Bison is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Bison; see the file COPYING. If not, write to the Free
+ Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
+ 02111-1307, USA. */
+
+
+/* The parser tables consist of these tables.
+
+ YYTRANSLATE = vector mapping yylex's token numbers into bison's
+ token numbers.
+
+ YYTNAME = vector of string-names indexed by bison token number.
+
+ YYTOKNUM = vector of yylex token numbers corresponding to entries
+ in YYTNAME.
+
+ YYRLINE = vector of line-numbers of all rules. For yydebug
+ printouts.
+
+ YYRHS = vector of items of all rules. This is exactly what RITEMS
+ contains. For yydebug and for semantic parser.
+
+ YYPRHS[R] = index in YYRHS of first item for rule R.
+
+ YYR1[R] = symbol number of symbol that rule R derives.
+
+ YYR2[R] = number of symbols composing right hand side of rule R.
+
+ YYSTOS[S] = the symbol number of the symbol that leads to state S.
+
+ YYDEFACT[S] = default rule to reduce with in state s, when YYTABLE
+ doesn't specify something else to do. Zero means the default is an
+ error.
+
+ YYDEFGOTO[I] = default state to go to after a reduction of a rule
+ that generates variable NTOKENS + I, except when YYTABLE specifies
+ something else to do.
+
+ YYPACT[S] = index in YYTABLE of the portion describing state S.
+ The lookahead token's type is used to index that portion to find
+ out what to do.
+
+ If the value in YYTABLE is positive, we shift the token and go to
+ that state.
+
+ If the value is negative, it is minus a rule number to reduce by.
+
+ If the value is zero, the default action from YYDEFACT[S] is used.
+
+ YYPGOTO[I] = the index in YYTABLE of the portion describing what to
+ do after reducing a rule that derives variable I + NTOKENS. This
+ portion is indexed by the parser state number, S, as of before the
+ text for this nonterminal was read. The value from YYTABLE is the
+ state to go to if the corresponding value in YYCHECK is S.
+
+ YYTABLE = a vector filled with portions for different uses, found
+ via YYPACT and YYPGOTO.
+
+ YYCHECK = a vector indexed in parallel with YYTABLE. It indicates,
+ in a roundabout way, the bounds of the portion you are trying to
+ examine.
+
+ Suppose that the portion of YYTABLE starts at index P and the index
+ to be examined within the portion is I. Then if YYCHECK[P+I] != I,
+ I is outside the bounds of what is actually allocated, and the
+ default (from YYDEFACT or YYDEFGOTO) should be used. Otherwise,
+ YYTABLE[P+I] should be used.
+
+ YYFINAL = the state number of the termination state. YYFLAG = most
+ negative short int. Used to flag ?? */
+
+#include "system.h"
+#include "bitsetv.h"
+#include "quotearg.h"
+#include "getargs.h"
+#include "files.h"
+#include "gram.h"
+#include "complain.h"
+#include "lalr.h"
+#include "reader.h"
+#include "symtab.h"
+#include "conflicts.h"
+#include "tables.h"
+
+/* Several tables will be indexed both by state and nonterminal
+ numbers. We call `vector' such a thing (= either a state or a
+ symbol number.
+
+ Of course vector_number_t ought to be wide enough to contain
+ state_number_t and symbol_number_t. */
+typedef short vector_number_t;
+#define VECTOR_NUMBER_MAX ((vector_number_t) SHRT_MAX)
+#define VECTOR_NUMBER_MIN ((vector_number_t) SHRT_MIN)
+#define state_number_to_vector_number(State) \
+ ((vector_number_t) State)
+#define symbol_number_to_vector_number(Symbol) \
+ ((vector_number_t) (state_number_as_int (nstates) + Symbol - ntokens))
+
+int nvectors;
+
+
+/* FROMS and TOS are indexed by vector_number_t.
+
+ If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an
+ array of state numbers of the non defaulted GOTO on VECTOR.
+
+ If VECTOR is a state, TOS[VECTOR] is the array of actions to do on
+ the (array of) symbols FROMS[VECTOR].
+
+ In both cases, TALLY[VECTOR] is the size of the arrays
+ FROMS[VECTOR], TOS[VECTOR]; and WIDTH[VECTOR] =
+ (FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE =
+ TALLY[VECTOR].
+
+ FROMS therefore contains symbol_number_t and action_number_t,
+ TOS state_number_t and action_number_t,
+ TALLY sizes,
+ WIDTH differences of FROMS.
+
+ Let base_t be the type of FROMS, TOS, and WIDTH. */
+#define BASE_MAX ((base_t) INT_MAX)
+#define BASE_MIN ((base_t) INT_MIN)
+
+static base_t **froms = NULL;
+static base_t **tos = NULL;
+static unsigned int **conflict_tos = NULL;
+static short *tally = NULL;
+static base_t *width = NULL;
+
+
+/* For a given state, N = ACTROW[SYMBOL]:
+
+ If N = 0, stands for `run the default action'.
+ If N = MIN, stands for `raise a parse error'.
+ If N > 0, stands for `shift SYMBOL and go to n'.
+ If N < 0, stands for `reduce -N'. */
+typedef short action_t;
+#define ACTION_MAX ((action_t) SHRT_MAX)
+#define ACTION_MIN ((action_t) SHRT_MIN)
+
+static action_t *actrow = NULL;
+
+/* FROMS and TOS are reordered to be compressed. ORDER[VECTOR] is the
+ new vector number of VECTOR. We skip `empty' vectors (i.e.,
+ TALLY[VECTOR] = 0), and call these `entries'. */
+static vector_number_t *order = NULL;
+static int nentries;
+
+base_t *base = NULL;
+/* A distinguished value of BASE, negative infinite. During the
+ computation equals to BASE_MIN, later mapped to BASE_NINF to
+ keep parser tables small. */
+base_t base_ninf = 0;
+static base_t *pos = NULL;
+
+static unsigned int *conflrow = NULL;
+unsigned int *conflict_table = NULL;
+unsigned int *conflict_list = NULL;
+int conflict_list_cnt;
+static int conflict_list_free;
+
+/* TABLE_SIZE is the allocated size of both TABLE and CHECK. We start
+ with more or less the original hard-coded value (which was
+ SHRT_MAX). */
+static size_t table_size = 32768;
+base_t *table = NULL;
+base_t *check = NULL;
+/* The value used in TABLE to denote explicit parse errors
+ (%nonassoc), a negative infinite. First defaults to ACTION_MIN,
+ but in order to keep small tables, renumbered as TABLE_ERROR, which
+ is the smallest (non error) value minus 1. */
+base_t table_ninf = 0;
+static int lowzero;
+int high;
+
+state_number_t *yydefgoto;
+rule_number_t *yydefact;
+
+/*----------------------------------------------------------------.
+| If TABLE (and CHECK) appear to be small to be addressed at |
+| DESIRED, grow them. Note that TABLE[DESIRED] is to be used, so |
+| the desired size is at least DESIRED + 1. |
+`----------------------------------------------------------------*/
+
+static void
+table_grow (size_t desired)
+{
+ size_t old_size = table_size;
+
+ while (table_size <= desired)
+ table_size *= 2;
+
+ if (trace_flag & trace_resource)
+ fprintf (stderr, "growing table and check from: %d to %d\n",
+ old_size, table_size);
+
+ table = XREALLOC (table, base_t, table_size);
+ check = XREALLOC (check, base_t, table_size);
+ if (glr_parser)
+ conflict_table = XREALLOC (conflict_table, unsigned int, table_size);
+
+ for (/* Nothing. */; old_size < table_size; ++old_size)
+ {
+ table[old_size] = 0;
+ check[old_size] = -1;
+ }
+}
+
+
+
+
+/*-------------------------------------------------------------------.
+| For GLR parsers, for each conflicted token in STATE, as indicated |
+| by non-zero entries in CONFLROW, create a list of possible |
+| reductions that are alternatives to the shift or reduction |
+| currently recorded for that token in STATE. Store the alternative |
+| reductions followed by a 0 in CONFLICT_LIST, updating |
+| CONFLICT_LIST_CNT, and storing an index to the start of the list |
+| back into CONFLROW. |
+`-------------------------------------------------------------------*/
+
+static void
+conflict_row (state_t *state)
+{
+ int i, j;
+
+ if (! glr_parser)
+ return;
+
+ for (j = 0; j < ntokens; j += 1)
+ if (conflrow[j])
+ {
+ conflrow[j] = conflict_list_cnt;
+
+ /* Find all reductions for token J, and record all that do not
+ match ACTROW[J]. */
+ for (i = 0; i < state->nlookaheads; i += 1)
+ if (bitset_test (state->lookaheads[i], j)
+ && (actrow[j]
+ != rule_number_as_item_number (state->lookaheads_rule[i]->number)))
+ {
+ assert (conflict_list_free > 0);
+ conflict_list[conflict_list_cnt]
+ = state->lookaheads_rule[i]->number + 1;
+ conflict_list_cnt += 1;
+ conflict_list_free -= 1;
+ }
+
+ /* Leave a 0 at the end. */
+ assert (conflict_list_free > 0);
+ conflict_list_cnt += 1;
+ conflict_list_free -= 1;
+ }
+}
+
+
+/*------------------------------------------------------------------.
+| Decide what to do for each type of token if seen as the lookahead |
+| token in specified state. The value returned is used as the |
+| default action (yydefact) for the state. In addition, ACTROW is |
+| filled with what to do for each kind of token, index by symbol |
+| number, with zero meaning do the default action. The value |
+| ACTION_MIN, a very negative number, means this situation is an |
+| error. The parser recognizes this value specially. |
+| |
+| This is where conflicts are resolved. The loop over lookahead |
+| rules considered lower-numbered rules last, and the last rule |
+| considered that likes a token gets to handle it. |
+| |
+| For GLR parsers, also sets CONFLROW[SYM] to an index into |
+| CONFLICT_LIST iff there is an unresolved conflict (s/r or r/r) |
+| with symbol SYM. The default reduction is not used for a symbol |
+| that has any such conflicts. |
+`------------------------------------------------------------------*/
+
+static rule_t *
+action_row (state_t *state)
+{
+ int i;
+ rule_t *default_rule = NULL;
+ reductions_t *redp = state->reductions;
+ transitions_t *transitions = state->transitions;
+ errs_t *errp = state->errs;
+ /* Set to nonzero to inhibit having any default reduction. */
+ int nodefault = 0;
+ int conflicted = 0;
+
+ for (i = 0; i < ntokens; i++)
+ actrow[i] = conflrow[i] = 0;
+
+ if (redp->num >= 1)
+ {
+ int j;
+ bitset_iterator biter;
+ /* loop over all the rules available here which require
+ lookahead */
+ for (i = state->nlookaheads - 1; i >= 0; --i)
+ /* and find each token which the rule finds acceptable
+ to come next */
+ BITSET_FOR_EACH (biter, state->lookaheads[i], j, 0)
+ {
+ /* and record this rule as the rule to use if that
+ token follows. */
+ if (actrow[j] != 0)
+ conflicted = conflrow[j] = 1;
+ actrow[j] = rule_number_as_item_number (state->lookaheads_rule[i]->number);
+ }
+ }
+
+ /* Now see which tokens are allowed for shifts in this state. For
+ them, record the shift as the thing to do. So shift is preferred
+ to reduce. */
+ FOR_EACH_SHIFT (transitions, i)
+ {
+ symbol_number_t symbol = TRANSITION_SYMBOL (transitions, i);
+ state_t *shift_state = transitions->states[i];
+
+ if (actrow[symbol] != 0)
+ conflicted = conflrow[symbol] = 1;
+ actrow[symbol] = state_number_as_int (shift_state->number);
+
+ /* Do not use any default reduction if there is a shift for
+ error */
+ if (symbol == errtoken->number)
+ nodefault = 1;
+ }
+
+ /* See which tokens are an explicit error in this state (due to
+ %nonassoc). For them, record ACTION_MIN as the action. */
+ for (i = 0; i < errp->num; i++)
+ {
+ symbol_t *symbol = errp->symbols[i];
+ actrow[symbol->number] = ACTION_MIN;
+ }
+
+ /* Now find the most common reduction and make it the default action
+ for this state. */
+
+ if (redp->num >= 1 && !nodefault)
+ {
+ if (state->consistent)
+ default_rule = redp->rules[0];
+ else
+ {
+ int max = 0;
+ for (i = 0; i < state->nlookaheads; i++)
+ {
+ int count = 0;
+ rule_t *rule = state->lookaheads_rule[i];
+ symbol_number_t j;
+
+ for (j = 0; j < ntokens; j++)
+ if (actrow[j] == rule_number_as_item_number (rule->number))
+ count++;
+
+ if (count > max)
+ {
+ max = count;
+ default_rule = rule;
+ }
+ }
+
+ /* GLR parsers need space for conflict lists, so we can't
+ default conflicted entries. For non-conflicted entries
+ or as long as we are not building a GLR parser,
+ actions that match the default are replaced with zero,
+ which means "use the default". */
+
+ if (max > 0)
+ {
+ int j;
+ for (j = 0; j < ntokens; j++)
+ if (actrow[j] == rule_number_as_item_number (default_rule->number)
+ && ! (glr_parser && conflrow[j]))
+ actrow[j] = 0;
+ }
+ }
+ }
+
+ /* Find the rules which are reduced. */
+ if (!glr_parser)
+ {
+ for (i = 0; i < ntokens; i++)
+ if (actrow[i] < 0 && actrow[i] != ACTION_MIN)
+ rules[item_number_as_rule_number (actrow[i])].useful = TRUE;
+ if (default_rule)
+ default_rule->useful = TRUE;
+ }
+
+ /* If have no default rule, the default is an error.
+ So replace any action which says "error" with "use default". */
+
+ if (!default_rule)
+ for (i = 0; i < ntokens; i++)
+ if (actrow[i] == ACTION_MIN)
+ actrow[i] = 0;
+
+ if (conflicted)
+ conflict_row (state);
+
+ return default_rule;
+}
+
+
+/*--------------------------------------------.
+| Set FROMS, TOS, TALLY and WIDTH for STATE. |
+`--------------------------------------------*/
+
+static void
+save_row (state_number_t state)
+{
+ symbol_number_t i;
+ int count;
+ base_t *sp = NULL;
+ base_t *sp1 = NULL;
+ base_t *sp2 = NULL;
+ unsigned int *sp3 = NULL;
+
+ /* Number of non default actions in STATE. */
+ count = 0;
+ for (i = 0; i < ntokens; i++)
+ if (actrow[i] != 0)
+ count++;
+
+ if (count == 0)
+ return;
+
+ /* Allocate non defaulted actions. */
+ froms[state] = sp1 = sp = XCALLOC (base_t, count);
+ tos[state] = sp2 = XCALLOC (base_t, count);
+ if (glr_parser)
+ conflict_tos[state] = sp3 = XCALLOC (unsigned int, count);
+ else
+ conflict_tos[state] = NULL;
+
+ /* Store non defaulted actions. */
+ for (i = 0; i < ntokens; i++)
+ if (actrow[i] != 0)
+ {
+ *sp1++ = i;
+ *sp2++ = actrow[i];
+ if (glr_parser)
+ *sp3++ = conflrow[i];
+ }
+
+ tally[state] = count;
+ width[state] = sp1[-1] - sp[0] + 1;
+}
+
+
+/*------------------------------------------------------------------.
+| Figure out the actions for the specified state, indexed by |
+| lookahead token type. |
+| |
+| The YYDEFACT table is output now. The detailed info is saved for |
+| putting into YYTABLE later. |
+`------------------------------------------------------------------*/
+
+static void
+token_actions (void)
+{
+ state_number_t i;
+ rule_number_t r;
+ int nconflict = conflicts_total_count ();
+
+ yydefact = XCALLOC (rule_number_t, nstates);
+
+ actrow = XCALLOC (action_t, ntokens);
+ conflrow = XCALLOC (unsigned int, ntokens);
+
+ /* Now that the parser was computed, we can find which rules are
+ really reduced, and which are not because of SR or RR conflicts.
+ */
+ if (!glr_parser)
+ for (r = 0; r < nrules; ++r)
+ rules[r].useful = FALSE;
+
+ if (glr_parser)
+ {
+ conflict_list = XCALLOC (unsigned int, 1 + 2 * nconflict);
+ conflict_list_free = 2 * nconflict;
+ conflict_list_cnt = 1;
+ }
+ else
+ conflict_list_free = conflict_list_cnt = 0;
+
+ for (i = 0; i < nstates; ++i)
+ {
+ rule_t *default_rule = action_row (states[i]);
+ yydefact[i] = default_rule ? default_rule->number + 1 : 0;
+ save_row (i);
+ }
+
+ if (!glr_parser)
+ for (r = 0; r < nrules ; ++r)
+ if (!rules[r].useful)
+ {
+ LOCATION_PRINT (stderr, rules[r].location);
+ fprintf (stderr, ": %s: %s: ",
+ _("warning"), _("rule never reduced because of conflicts"));
+ rule_print (&rules[r], stderr);
+ }
+
+ free (actrow);
+ free (conflrow);
+}
+
+
+/*------------------------------------------------------------------.
+| Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], |
+| i.e., the information related to non defaulted GOTO on the nterm |
+| SYMBOL. |
+| |
+| DEFAULT_STATE is the principal destination on SYMBOL, i.e., the |
+| default GOTO destination on SYMBOL. |
+`------------------------------------------------------------------*/
+
+static void
+save_column (symbol_number_t symbol, state_number_t default_state)
+{
+ int i;
+ base_t *sp;
+ base_t *sp1;
+ base_t *sp2;
+ int count;
+ vector_number_t symno = symbol_number_to_vector_number (symbol);
+
+ goto_number_t begin = goto_map[symbol];
+ goto_number_t end = goto_map[symbol + 1];
+
+ /* Number of non default GOTO. */
+ count = 0;
+ for (i = begin; i < end; i++)
+ if (to_state[i] != default_state)
+ count++;
+
+ if (count == 0)
+ return;
+
+ /* Allocate room for non defaulted gotos. */
+ froms[symno] = sp1 = sp = XCALLOC (base_t, count);
+ tos[symno] = sp2 = XCALLOC (base_t, count);
+
+ /* Store the state numbers of the non defaulted gotos. */
+ for (i = begin; i < end; i++)
+ if (to_state[i] != default_state)
+ {
+ *sp1++ = from_state[i];
+ *sp2++ = to_state[i];
+ }
+
+ tally[symno] = count;
+ width[symno] = sp1[-1] - sp[0] + 1;
+}
+
+
+/*----------------------------------------------------------------.
+| Return `the' most common destination GOTO on SYMBOL (a nterm). |
+`----------------------------------------------------------------*/
+
+static state_number_t
+default_goto (symbol_number_t symbol, short state_count[])
+{
+ state_number_t s;
+ int i;
+ goto_number_t m = goto_map[symbol];
+ goto_number_t n = goto_map[symbol + 1];
+ state_number_t default_state = (state_number_t) -1;
+ int max = 0;
+
+ if (m == n)
+ return (state_number_t) -1;
+
+ for (s = 0; s < nstates; s++)
+ state_count[s] = 0;
+
+ for (i = m; i < n; i++)
+ state_count[to_state[i]]++;
+
+ for (s = 0; s < nstates; s++)
+ if (state_count[s] > max)
+ {
+ max = state_count[s];
+ default_state = s;
+ }
+
+ return default_state;
+}
+
+
+/*-------------------------------------------------------------------.
+| Figure out what to do after reducing with each rule, depending on |
+| the saved state from before the beginning of parsing the data that |
+| matched this rule. |
+| |
+| The YYDEFGOTO table is output now. The detailed info is saved for |
+| putting into YYTABLE later. |
+`-------------------------------------------------------------------*/
+
+static void
+goto_actions (void)
+{
+ symbol_number_t i;
+ short *state_count = XCALLOC (short, nstates);
+ yydefgoto = XMALLOC (state_number_t, nvars);
+
+ /* For a given nterm I, STATE_COUNT[S] is the number of times there
+ is a GOTO to S on I. */
+ for (i = ntokens; i < nsyms; ++i)
+ {
+ state_number_t default_state = default_goto (i, state_count);
+ save_column (i, default_state);
+ yydefgoto[i - ntokens] = default_state;
+ }
+ free (state_count);
+}
+
+
+/*------------------------------------------------------------------.
+| Compute ORDER, a reordering of vectors, in order to decide how to |
+| pack the actions and gotos information into yytable. |
+`------------------------------------------------------------------*/
+
+static void
+sort_actions (void)
+{
+ int i;
+
+ nentries = 0;
+
+ for (i = 0; i < nvectors; i++)
+ if (tally[i] > 0)
+ {
+ int k;
+ int t = tally[i];
+ int w = width[i];
+ int j = nentries - 1;
+
+ while (j >= 0 && (width[order[j]] < w))
+ j--;
+
+ while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
+ j--;
+
+ for (k = nentries - 1; k > j; k--)
+ order[k + 1] = order[k];
+
+ order[j + 1] = i;
+ nentries++;
+ }
+}
+
+
+/* If VECTOR is a state which actions (reflected by FROMS, TOS, TALLY
+ and WIDTH of VECTOR) are common to a previous state, return this
+ state number.
+
+ In any other case, return -1. */
+
+static state_number_t
+matching_state (vector_number_t vector)
+{
+ vector_number_t i = order[vector];
+ int t;
+ int w;
+ int prev;
+
+ /* If VECTOR is a nterm, return -1. */
+ if (i >= (int) nstates)
+ return -1;
+
+ t = tally[i];
+ w = width[i];
+
+ for (prev = vector - 1; prev >= 0; prev--)
+ {
+ vector_number_t j = order[prev];
+ int k;
+ int match = 1;
+
+ /* Given how ORDER was computed, if the WIDTH or TALLY is
+ different, there cannot be a matching state. */
+ if (width[j] != w || tally[j] != t)
+ return -1;
+
+ for (k = 0; match && k < t; k++)
+ if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k])
+ match = 0;
+
+ if (match)
+ return j;
+ }
+
+ return -1;
+}
+
+
+static base_t
+pack_vector (vector_number_t vector)
+{
+ vector_number_t i = order[vector];
+ int j;
+ int t = tally[i];
+ int loc = 0;
+ base_t *from = froms[i];
+ base_t *to = tos[i];
+ unsigned int *conflict_to = conflict_tos[i];
+
+ assert (t);
+
+ for (j = lowzero - from[0]; j < (int) table_size; j++)
+ {
+ int k;
+ int ok = 1;
+
+ for (k = 0; ok && k < t; k++)
+ {
+ loc = j + state_number_as_int (from[k]);
+ if (loc > (int) table_size)
+ table_grow (loc);
+
+ if (table[loc] != 0)
+ ok = 0;
+ }
+
+ for (k = 0; ok && k < vector; k++)
+ if (pos[k] == j)
+ ok = 0;
+
+ if (ok)
+ {
+ for (k = 0; k < t; k++)
+ {
+ loc = j + from[k];
+ table[loc] = to[k];
+ if (glr_parser && conflict_to != NULL)
+ conflict_table[loc] = conflict_to[k];
+ check[loc] = from[k];
+ }
+
+ while (table[lowzero] != 0)
+ lowzero++;
+
+ if (loc > high)
+ high = loc;
+
+ if (j < BASE_MIN || BASE_MAX < j)
+ fatal ("base_t too small to hold %d\n", j);
+ return j;
+ }
+ }
+#define pack_vector_succeeded 0
+ assert (pack_vector_succeeded);
+ return 0;
+}
+
+
+/*-------------------------------------------------------------.
+| Remap the negative infinite in TAB from NINF to the greatest |
+| possible smallest value. Return it. |
+| |
+| In most case this allows us to use shorts instead of ints in |
+| parsers. |
+`-------------------------------------------------------------*/
+
+static base_t
+table_ninf_remap (base_t tab[], size_t size, base_t ninf)
+{
+ base_t res = 0;
+ size_t i;
+
+ for (i = 0; i < size; i++)
+ if (tab[i] < res && tab[i] != ninf)
+ res = base[i];
+
+ --res;
+
+ for (i = 0; i < size; i++)
+ if (tab[i] == ninf)
+ tab[i] = res;
+
+ return res;
+}
+
+static void
+pack_table (void)
+{
+ int i;
+
+ base = XCALLOC (base_t, nvectors);
+ pos = XCALLOC (base_t, nentries);
+ table = XCALLOC (base_t, table_size);
+ if (glr_parser)
+ conflict_table = XCALLOC (unsigned int, table_size);
+ check = XCALLOC (base_t, table_size);
+
+ lowzero = 0;
+ high = 0;
+
+ for (i = 0; i < nvectors; i++)
+ base[i] = BASE_MIN;
+
+ for (i = 0; i < (int) table_size; i++)
+ check[i] = -1;
+
+ for (i = 0; i < nentries; i++)
+ {
+ state_number_t state = matching_state (i);
+ base_t place;
+
+ if (state < 0)
+ /* A new set of state actions, or a nonterminal. */
+ place = pack_vector (i);
+ else
+ /* Action of I were already coded for STATE. */
+ place = base[state];
+
+ pos[i] = place;
+ base[order[i]] = place;
+ }
+
+ /* Use the greatest possible negative infinites. */
+ base_ninf = table_ninf_remap (base, nvectors, BASE_MIN);
+ table_ninf = table_ninf_remap (table, high + 1, ACTION_MIN);
+
+ for (i = 0; i < nvectors; i++)
+ {
+ XFREE (froms[i]);
+ XFREE (tos[i]);
+ XFREE (conflict_tos[i]);
+ }
+
+ free (froms);
+ free (tos);
+ free (conflict_tos);
+ free (pos);
+}
+
+\f
+
+/*-----------------------------------------------------------------.
+| Compute and output yydefact, yydefgoto, yypact, yypgoto, yytable |
+| and yycheck. |
+`-----------------------------------------------------------------*/
+
+void
+tables_generate (void)
+{
+ /* That's a poor way to make sure the sizes are properly corelated,
+ in particular the signedness is not taking into account, but it's
+ not useless. */
+ assert (sizeof (nvectors) >= sizeof (nstates));
+ assert (sizeof (nvectors) >= sizeof (nvars));
+
+ nvectors = state_number_as_int (nstates) + nvars;
+
+ froms = XCALLOC (base_t *, nvectors);
+ tos = XCALLOC (base_t *, nvectors);
+ conflict_tos = XCALLOC (unsigned int *, nvectors);
+ tally = XCALLOC (short, nvectors);
+ width = XCALLOC (base_t, nvectors);
+
+ token_actions ();
+ bitsetv_free (LA);
+ free (LArule);
+
+ goto_actions ();
+ XFREE (goto_map + ntokens);
+ XFREE (from_state);
+ XFREE (to_state);
+
+ order = XCALLOC (vector_number_t, nvectors);
+ sort_actions ();
+ pack_table ();
+ free (order);
+
+ free (tally);
+ free (width);
+}
+
+
+/*-------------------------.
+| Free the parser tables. |
+`-------------------------*/
+
+void
+tables_free (void)
+{
+ free (base);
+ free (conflict_table);
+ free (conflict_list);
+ free (table);
+ free (check);
+ free (yydefgoto);
+ free (yydefact);
+}