]> git.saurik.com Git - bison.git/blob - src/LR0.c
f0626fed740003df15d26eff18df1e3acc0b4248
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright (C) 1984, 1986, 1989 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "alloc.h"
27 #include "gram.h"
28 #include "state.h"
29 #include "complain.h"
30 #include "closure.h"
31
32 extern char *nullable;
33 extern short *itemset;
34 extern short *itemsetend;
35
36
37 int nstates;
38 int final_state;
39 core *first_state;
40 shifts *first_shift;
41 reductions *first_reduction;
42
43 extern void generate_states PARAMS ((void));
44
45 static core *this_state;
46 static core *last_state;
47 static shifts *last_shift;
48 static reductions *last_reduction;
49
50 static int nshifts;
51 static short *shift_symbol;
52
53 static short *redset;
54 static short *shiftset;
55
56 static short **kernel_base;
57 static short **kernel_end;
58 static short *kernel_items;
59
60 /* hash table for states, to recognize equivalent ones. */
61
62 #define STATE_TABLE_SIZE 1009
63 static core **state_table;
64
65 \f
66 static void
67 allocate_itemsets (void)
68 {
69 short *itemp;
70 int symbol;
71 int i;
72 int count;
73 short *symbol_count;
74
75 count = 0;
76 symbol_count = NEW2 (nsyms, short);
77
78 itemp = ritem;
79 symbol = *itemp++;
80 while (symbol)
81 {
82 if (symbol > 0)
83 {
84 count++;
85 symbol_count[symbol]++;
86 }
87 symbol = *itemp++;
88 }
89
90 /* See comments before new_itemsets. All the vectors of items
91 live inside KERNEL_ITEMS. The number of active items after
92 some symbol cannot be more than the number of times that symbol
93 appears as an item, which is symbol_count[symbol].
94 We allocate that much space for each symbol. */
95
96 kernel_base = NEW2 (nsyms, short *);
97 kernel_items = NEW2 (count, short);
98
99 count = 0;
100 for (i = 0; i < nsyms; i++)
101 {
102 kernel_base[i] = kernel_items + count;
103 count += symbol_count[i];
104 }
105
106 shift_symbol = symbol_count;
107 kernel_end = NEW2 (nsyms, short *);
108 }
109
110
111 static void
112 allocate_storage (void)
113 {
114 allocate_itemsets ();
115
116 shiftset = NEW2 (nsyms, short);
117 redset = NEW2 (nrules + 1, short);
118 state_table = NEW2 (STATE_TABLE_SIZE, core *);
119 }
120
121
122 static void
123 free_storage (void)
124 {
125 FREE (shift_symbol);
126 FREE (redset);
127 FREE (shiftset);
128 FREE (kernel_base);
129 FREE (kernel_end);
130 FREE (kernel_items);
131 FREE (state_table);
132 }
133
134
135
136
137 /*----------------------------------------------------------------.
138 | Find which symbols can be shifted in the current state, and for |
139 | each one record which items would be active after that shift. |
140 | Uses the contents of itemset. |
141 | |
142 | shift_symbol is set to a vector of the symbols that can be |
143 | shifted. For each symbol in the grammar, kernel_base[symbol] |
144 | points to a vector of item numbers activated if that symbol is |
145 | shifted, and kernel_end[symbol] points after the end of that |
146 | vector. |
147 `----------------------------------------------------------------*/
148
149 static void
150 new_itemsets (void)
151 {
152 int i;
153 int shiftcount;
154 short *isp;
155 short *ksp;
156 int symbol;
157
158 #if TRACE
159 fprintf (stderr, "Entering new_itemsets\n");
160 #endif
161
162 for (i = 0; i < nsyms; i++)
163 kernel_end[i] = NULL;
164
165 shiftcount = 0;
166
167 isp = itemset;
168
169 while (isp < itemsetend)
170 {
171 i = *isp++;
172 symbol = ritem[i];
173 if (symbol > 0)
174 {
175 ksp = kernel_end[symbol];
176
177 if (!ksp)
178 {
179 shift_symbol[shiftcount++] = symbol;
180 ksp = kernel_base[symbol];
181 }
182
183 *ksp++ = i + 1;
184 kernel_end[symbol] = ksp;
185 }
186 }
187
188 nshifts = shiftcount;
189 }
190
191
192
193 /*-----------------------------------------------------------------.
194 | Subroutine of get_state. Create a new state for those items, if |
195 | necessary. |
196 `-----------------------------------------------------------------*/
197
198 static core *
199 new_state (int symbol)
200 {
201 int n;
202 core *p;
203 short *isp1;
204 short *isp2;
205 short *iend;
206
207 #if TRACE
208 fprintf (stderr, "Entering new_state, symbol = %d\n", symbol);
209 #endif
210
211 if (nstates >= MAXSHORT)
212 fatal (_("too many states (max %d)"), MAXSHORT);
213
214 isp1 = kernel_base[symbol];
215 iend = kernel_end[symbol];
216 n = iend - isp1;
217
218 p =
219 (core *) xmalloc ((unsigned) (sizeof (core) + (n - 1) * sizeof (short)));
220 p->accessing_symbol = symbol;
221 p->number = nstates;
222 p->nitems = n;
223
224 isp2 = p->items;
225 while (isp1 < iend)
226 *isp2++ = *isp1++;
227
228 last_state->next = p;
229 last_state = p;
230
231 nstates++;
232
233 return p;
234 }
235
236
237 /*--------------------------------------------------------------.
238 | Find the state number for the state we would get to (from the |
239 | current state) by shifting symbol. Create a new state if no |
240 | equivalent one exists already. Used by append_states. |
241 `--------------------------------------------------------------*/
242
243 static int
244 get_state (int symbol)
245 {
246 int key;
247 short *isp1;
248 short *isp2;
249 short *iend;
250 core *sp;
251 int found;
252
253 int n;
254
255 #if TRACE
256 fprintf (stderr, "Entering get_state, symbol = %d\n", symbol);
257 #endif
258
259 isp1 = kernel_base[symbol];
260 iend = kernel_end[symbol];
261 n = iend - isp1;
262
263 /* add up the target state's active item numbers to get a hash key */
264 key = 0;
265 while (isp1 < iend)
266 key += *isp1++;
267
268 key = key % STATE_TABLE_SIZE;
269
270 sp = state_table[key];
271
272 if (sp)
273 {
274 found = 0;
275 while (!found)
276 {
277 if (sp->nitems == n)
278 {
279 found = 1;
280 isp1 = kernel_base[symbol];
281 isp2 = sp->items;
282
283 while (found && isp1 < iend)
284 {
285 if (*isp1++ != *isp2++)
286 found = 0;
287 }
288 }
289
290 if (!found)
291 {
292 if (sp->link)
293 {
294 sp = sp->link;
295 }
296 else /* bucket exhausted and no match */
297 {
298 sp = sp->link = new_state (symbol);
299 found = 1;
300 }
301 }
302 }
303 }
304 else /* bucket is empty */
305 {
306 state_table[key] = sp = new_state (symbol);
307 }
308
309 return sp->number;
310 }
311
312 /*------------------------------------------------------------------.
313 | Use the information computed by new_itemsets to find the state |
314 | numbers reached by each shift transition from the current state. |
315 | |
316 | shiftset is set up as a vector of state numbers of those states. |
317 `------------------------------------------------------------------*/
318
319 static void
320 append_states (void)
321 {
322 int i;
323 int j;
324 int symbol;
325
326 #if TRACE
327 fprintf (stderr, "Entering append_states\n");
328 #endif
329
330 /* first sort shift_symbol into increasing order */
331
332 for (i = 1; i < nshifts; i++)
333 {
334 symbol = shift_symbol[i];
335 j = i;
336 while (j > 0 && shift_symbol[j - 1] > symbol)
337 {
338 shift_symbol[j] = shift_symbol[j - 1];
339 j--;
340 }
341 shift_symbol[j] = symbol;
342 }
343
344 for (i = 0; i < nshifts; i++)
345 {
346 symbol = shift_symbol[i];
347 shiftset[i] = get_state (symbol);
348 }
349 }
350
351
352 static void
353 new_states (void)
354 {
355 core *p;
356
357 p = (core *) xmalloc ((unsigned) (sizeof (core) - sizeof (short)));
358 first_state = last_state = this_state = p;
359 nstates = 1;
360 }
361
362
363 static void
364 save_shifts (void)
365 {
366 shifts *p;
367 short *sp1;
368 short *sp2;
369 short *send;
370
371 p = (shifts *) xmalloc ((unsigned) (sizeof (shifts) +
372 (nshifts - 1) * sizeof (short)));
373
374 p->number = this_state->number;
375 p->nshifts = nshifts;
376
377 sp1 = shiftset;
378 sp2 = p->shifts;
379 send = shiftset + nshifts;
380
381 while (sp1 < send)
382 *sp2++ = *sp1++;
383
384 if (last_shift)
385 {
386 last_shift->next = p;
387 last_shift = p;
388 }
389 else
390 {
391 first_shift = p;
392 last_shift = p;
393 }
394 }
395
396
397 /*------------------------------------------------------------------.
398 | Subroutine of augment_automaton. Create the next-to-final state, |
399 | to which a shift has already been made in the initial state. |
400 `------------------------------------------------------------------*/
401
402 static void
403 insert_start_shift (void)
404 {
405 core *statep;
406 shifts *sp;
407
408 statep = (core *) xmalloc ((unsigned) (sizeof (core) - sizeof (short)));
409 statep->number = nstates;
410 statep->accessing_symbol = start_symbol;
411
412 last_state->next = statep;
413 last_state = statep;
414
415 /* Make a shift from this state to (what will be) the final state. */
416 sp = NEW (shifts);
417 sp->number = nstates++;
418 sp->nshifts = 1;
419 sp->shifts[0] = nstates;
420
421 last_shift->next = sp;
422 last_shift = sp;
423 }
424
425
426 /*------------------------------------------------------------------.
427 | Make sure that the initial state has a shift that accepts the |
428 | grammar's start symbol and goes to the next-to-final state, which |
429 | has a shift going to the final state, which has a shift to the |
430 | termination state. Create such states and shifts if they don't |
431 | happen to exist already. |
432 `------------------------------------------------------------------*/
433
434 static void
435 augment_automaton (void)
436 {
437 int i;
438 int k;
439 core *statep;
440 shifts *sp;
441 shifts *sp2;
442 shifts *sp1 = NULL;
443
444 sp = first_shift;
445
446 if (sp)
447 {
448 if (sp->number == 0)
449 {
450 k = sp->nshifts;
451 statep = first_state->next;
452
453 /* The states reached by shifts from first_state are numbered 1...K.
454 Look for one reached by start_symbol. */
455 while (statep->accessing_symbol < start_symbol
456 && statep->number < k)
457 statep = statep->next;
458
459 if (statep->accessing_symbol == start_symbol)
460 {
461 /* We already have a next-to-final state.
462 Make sure it has a shift to what will be the final state. */
463 k = statep->number;
464
465 while (sp && sp->number < k)
466 {
467 sp1 = sp;
468 sp = sp->next;
469 }
470
471 if (sp && sp->number == k)
472 {
473 sp2 = (shifts *) xmalloc ((unsigned) (sizeof (shifts)
474 +
475 sp->nshifts *
476 sizeof (short)));
477 sp2->number = k;
478 sp2->nshifts = sp->nshifts + 1;
479 sp2->shifts[0] = nstates;
480 for (i = sp->nshifts; i > 0; i--)
481 sp2->shifts[i] = sp->shifts[i - 1];
482
483 /* Patch sp2 into the chain of shifts in place of sp,
484 following sp1. */
485 sp2->next = sp->next;
486 sp1->next = sp2;
487 if (sp == last_shift)
488 last_shift = sp2;
489 FREE (sp);
490 }
491 else
492 {
493 sp2 = NEW (shifts);
494 sp2->number = k;
495 sp2->nshifts = 1;
496 sp2->shifts[0] = nstates;
497
498 /* Patch sp2 into the chain of shifts between sp1 and sp. */
499 sp2->next = sp;
500 sp1->next = sp2;
501 if (sp == 0)
502 last_shift = sp2;
503 }
504 }
505 else
506 {
507 /* There is no next-to-final state as yet. */
508 /* Add one more shift in first_shift,
509 going to the next-to-final state (yet to be made). */
510 sp = first_shift;
511
512 sp2 = (shifts *) xmalloc (sizeof (shifts)
513 + sp->nshifts * sizeof (short));
514 sp2->nshifts = sp->nshifts + 1;
515
516 /* Stick this shift into the vector at the proper place. */
517 statep = first_state->next;
518 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
519 {
520 if (statep->accessing_symbol > start_symbol && i == k)
521 sp2->shifts[k++] = nstates;
522 sp2->shifts[k] = sp->shifts[i];
523 statep = statep->next;
524 }
525 if (i == k)
526 sp2->shifts[k++] = nstates;
527
528 /* Patch sp2 into the chain of shifts
529 in place of sp, at the beginning. */
530 sp2->next = sp->next;
531 first_shift = sp2;
532 if (last_shift == sp)
533 last_shift = sp2;
534
535 FREE (sp);
536
537 /* Create the next-to-final state, with shift to
538 what will be the final state. */
539 insert_start_shift ();
540 }
541 }
542 else
543 {
544 /* The initial state didn't even have any shifts.
545 Give it one shift, to the next-to-final state. */
546 sp = NEW (shifts);
547 sp->nshifts = 1;
548 sp->shifts[0] = nstates;
549
550 /* Patch sp into the chain of shifts at the beginning. */
551 sp->next = first_shift;
552 first_shift = sp;
553
554 /* Create the next-to-final state, with shift to
555 what will be the final state. */
556 insert_start_shift ();
557 }
558 }
559 else
560 {
561 /* There are no shifts for any state.
562 Make one shift, from the initial state to the next-to-final state. */
563
564 sp = NEW (shifts);
565 sp->nshifts = 1;
566 sp->shifts[0] = nstates;
567
568 /* Initialize the chain of shifts with sp. */
569 first_shift = sp;
570 last_shift = sp;
571
572 /* Create the next-to-final state, with shift to
573 what will be the final state. */
574 insert_start_shift ();
575 }
576
577 /* Make the final state--the one that follows a shift from the
578 next-to-final state.
579 The symbol for that shift is 0 (end-of-file). */
580 statep = (core *) xmalloc ((unsigned) (sizeof (core) - sizeof (short)));
581 statep->number = nstates;
582 last_state->next = statep;
583 last_state = statep;
584
585 /* Make the shift from the final state to the termination state. */
586 sp = NEW (shifts);
587 sp->number = nstates++;
588 sp->nshifts = 1;
589 sp->shifts[0] = nstates;
590 last_shift->next = sp;
591 last_shift = sp;
592
593 /* Note that the variable `final_state' refers to what we sometimes call
594 the termination state. */
595 final_state = nstates;
596
597 /* Make the termination state. */
598 statep = (core *) xmalloc ((unsigned) (sizeof (core) - sizeof (short)));
599 statep->number = nstates++;
600 last_state->next = statep;
601 last_state = statep;
602 }
603
604
605 /*----------------------------------------------------------------.
606 | Find which rules can be used for reduction transitions from the |
607 | current state and make a reductions structure for the state to |
608 | record their rule numbers. |
609 `----------------------------------------------------------------*/
610
611 static void
612 save_reductions (void)
613 {
614 short *isp;
615 short *rp1;
616 short *rp2;
617 int item;
618 int count;
619 reductions *p;
620
621 short *rend;
622
623 /* Find and count the active items that represent ends of rules. */
624
625 count = 0;
626 for (isp = itemset; isp < itemsetend; isp++)
627 {
628 item = ritem[*isp];
629 if (item < 0)
630 redset[count++] = -item;
631 }
632
633 /* Make a reductions structure and copy the data into it. */
634
635 if (count)
636 {
637 p = (reductions *) xmalloc ((unsigned) (sizeof (reductions) +
638 (count - 1) * sizeof (short)));
639
640 p->number = this_state->number;
641 p->nreds = count;
642
643 rp1 = redset;
644 rp2 = p->rules;
645 rend = rp1 + count;
646
647 for (/* nothing */; rp1 < rend; ++rp1, ++rp2)
648 *rp2 = *rp1;
649
650 if (last_reduction)
651 {
652 last_reduction->next = p;
653 last_reduction = p;
654 }
655 else
656 {
657 first_reduction = p;
658 last_reduction = p;
659 }
660 }
661 }
662
663 \f
664 /*-------------------------------------------------------------------.
665 | Compute the nondeterministic finite state machine (see state.h for |
666 | details) from the grammar. |
667 `-------------------------------------------------------------------*/
668
669 void
670 generate_states (void)
671 {
672 allocate_storage ();
673 new_closure (nitems);
674 new_states ();
675
676 while (this_state)
677 {
678 /* Set up ruleset and itemset for the transitions out of this
679 state. ruleset gets a 1 bit for each rule that could reduce
680 now. itemset gets a vector of all the items that could be
681 accepted next. */
682 closure (this_state->items, this_state->nitems);
683 /* record the reductions allowed out of this state */
684 save_reductions ();
685 /* find the itemsets of the states that shifts can reach */
686 new_itemsets ();
687 /* find or create the core structures for those states */
688 append_states ();
689
690 /* create the shifts structures for the shifts to those states,
691 now that the state numbers transitioning to are known */
692 if (nshifts > 0)
693 save_shifts ();
694
695 /* states are queued when they are created; process them all */
696 this_state = this_state->next;
697 }
698
699 /* discard various storage */
700 free_closure ();
701 free_storage ();
702
703 /* set up initial and final states as parser wants them */
704 augment_automaton ();
705 }