]> git.saurik.com Git - bison.git/blob - src/LR0.c
e3db49aa4562f30cd1dd756bb9805641ebd67bb5
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "gram.h"
27 #include "state.h"
28 #include "complain.h"
29 #include "closure.h"
30 #include "LR0.h"
31
32
33 int nstates;
34 int final_state;
35 core *first_state = NULL;
36 shifts *first_shift = NULL;
37 reductions *first_reduction = NULL;
38
39 static core *this_state = NULL;
40 static core *last_state = NULL;
41 static shifts *last_shift = NULL;
42 static reductions *last_reduction = NULL;
43
44 static int nshifts;
45 static short *shift_symbol = NULL;
46
47 static short *redset = NULL;
48 static short *shiftset = NULL;
49
50 static short **kernel_base = NULL;
51 static short **kernel_end = NULL;
52 static short *kernel_items = NULL;
53
54 /* hash table for states, to recognize equivalent ones. */
55
56 #define STATE_TABLE_SIZE 1009
57 static core **state_table = NULL;
58
59 \f
60 static void
61 allocate_itemsets (void)
62 {
63 short *itemp = NULL;
64 int symbol;
65 int i;
66 int count;
67 short *symbol_count = NULL;
68
69 count = 0;
70 symbol_count = XCALLOC (short, nsyms);
71
72 itemp = ritem;
73 symbol = *itemp++;
74 while (symbol)
75 {
76 if (symbol > 0)
77 {
78 count++;
79 symbol_count[symbol]++;
80 }
81 symbol = *itemp++;
82 }
83
84 /* See comments before new_itemsets. All the vectors of items
85 live inside KERNEL_ITEMS. The number of active items after
86 some symbol cannot be more than the number of times that symbol
87 appears as an item, which is symbol_count[symbol].
88 We allocate that much space for each symbol. */
89
90 kernel_base = XCALLOC (short *, nsyms);
91 if (count)
92 kernel_items = XCALLOC (short, count);
93
94 count = 0;
95 for (i = 0; i < nsyms; i++)
96 {
97 kernel_base[i] = kernel_items + count;
98 count += symbol_count[i];
99 }
100
101 shift_symbol = symbol_count;
102 kernel_end = XCALLOC (short *, nsyms);
103 }
104
105
106 static void
107 allocate_storage (void)
108 {
109 allocate_itemsets ();
110
111 shiftset = XCALLOC (short, nsyms);
112 redset = XCALLOC (short, nrules + 1);
113 state_table = XCALLOC (core *, STATE_TABLE_SIZE);
114 }
115
116
117 static void
118 free_storage (void)
119 {
120 XFREE (shift_symbol);
121 XFREE (redset);
122 XFREE (shiftset);
123 XFREE (kernel_base);
124 XFREE (kernel_end);
125 XFREE (kernel_items);
126 XFREE (state_table);
127 }
128
129
130
131
132 /*----------------------------------------------------------------.
133 | Find which symbols can be shifted in the current state, and for |
134 | each one record which items would be active after that shift. |
135 | Uses the contents of itemset. |
136 | |
137 | shift_symbol is set to a vector of the symbols that can be |
138 | shifted. For each symbol in the grammar, kernel_base[symbol] |
139 | points to a vector of item numbers activated if that symbol is |
140 | shifted, and kernel_end[symbol] points after the end of that |
141 | vector. |
142 `----------------------------------------------------------------*/
143
144 static void
145 new_itemsets (void)
146 {
147 int i;
148 int shiftcount;
149 short *isp;
150 short *ksp;
151 int symbol;
152
153 #if TRACE
154 fprintf (stderr, "Entering new_itemsets, state = %d\n",
155 this_state->number);
156 #endif
157
158 for (i = 0; i < nsyms; i++)
159 kernel_end[i] = NULL;
160
161 shiftcount = 0;
162
163 isp = itemset;
164
165 while (isp < itemsetend)
166 {
167 i = *isp++;
168 symbol = ritem[i];
169 if (symbol > 0)
170 {
171 ksp = kernel_end[symbol];
172
173 if (!ksp)
174 {
175 shift_symbol[shiftcount++] = symbol;
176 ksp = kernel_base[symbol];
177 }
178
179 *ksp++ = i + 1;
180 kernel_end[symbol] = ksp;
181 }
182 }
183
184 nshifts = shiftcount;
185 }
186
187
188
189 /*-----------------------------------------------------------------.
190 | Subroutine of get_state. Create a new state for those items, if |
191 | necessary. |
192 `-----------------------------------------------------------------*/
193
194 static core *
195 new_state (int symbol)
196 {
197 int n;
198 core *p;
199 short *isp1;
200 short *isp2;
201 short *iend;
202
203 #if TRACE
204 fprintf (stderr, "Entering new_state, symbol = %d, state = %d\n",
205 symbol, nstates);
206 #endif
207
208 if (nstates >= MAXSHORT)
209 fatal (_("too many states (max %d)"), MAXSHORT);
210
211 isp1 = kernel_base[symbol];
212 iend = kernel_end[symbol];
213 n = iend - isp1;
214
215 p = CORE_ALLOC (n);
216 p->accessing_symbol = symbol;
217 p->number = nstates;
218 p->nitems = n;
219
220 isp2 = p->items;
221 while (isp1 < iend)
222 *isp2++ = *isp1++;
223
224 last_state->next = p;
225 last_state = p;
226
227 nstates++;
228
229 return p;
230 }
231
232
233 /*--------------------------------------------------------------.
234 | Find the state number for the state we would get to (from the |
235 | current state) by shifting symbol. Create a new state if no |
236 | equivalent one exists already. Used by append_states. |
237 `--------------------------------------------------------------*/
238
239 static int
240 get_state (int symbol)
241 {
242 int key;
243 short *isp1;
244 short *isp2;
245 short *iend;
246 core *sp;
247 int found;
248
249 int n;
250
251 #if TRACE
252 fprintf (stderr, "Entering get_state, symbol = %d\n", symbol);
253 #endif
254
255 isp1 = kernel_base[symbol];
256 iend = kernel_end[symbol];
257 n = iend - isp1;
258
259 /* add up the target state's active item numbers to get a hash key */
260 key = 0;
261 while (isp1 < iend)
262 key += *isp1++;
263
264 key = key % STATE_TABLE_SIZE;
265
266 sp = state_table[key];
267
268 if (sp)
269 {
270 found = 0;
271 while (!found)
272 {
273 if (sp->nitems == n)
274 {
275 found = 1;
276 isp1 = kernel_base[symbol];
277 isp2 = sp->items;
278
279 while (found && isp1 < iend)
280 {
281 if (*isp1++ != *isp2++)
282 found = 0;
283 }
284 }
285
286 if (!found)
287 {
288 if (sp->link)
289 {
290 sp = sp->link;
291 }
292 else /* bucket exhausted and no match */
293 {
294 sp = sp->link = new_state (symbol);
295 found = 1;
296 }
297 }
298 }
299 }
300 else /* bucket is empty */
301 {
302 state_table[key] = sp = new_state (symbol);
303 }
304
305 return sp->number;
306 }
307
308 /*------------------------------------------------------------------.
309 | Use the information computed by new_itemsets to find the state |
310 | numbers reached by each shift transition from the current state. |
311 | |
312 | shiftset is set up as a vector of state numbers of those states. |
313 `------------------------------------------------------------------*/
314
315 static void
316 append_states (void)
317 {
318 int i;
319 int j;
320 int symbol;
321
322 #if TRACE
323 fprintf (stderr, "Entering append_states\n");
324 #endif
325
326 /* first sort shift_symbol into increasing order */
327
328 for (i = 1; i < nshifts; i++)
329 {
330 symbol = shift_symbol[i];
331 j = i;
332 while (j > 0 && shift_symbol[j - 1] > symbol)
333 {
334 shift_symbol[j] = shift_symbol[j - 1];
335 j--;
336 }
337 shift_symbol[j] = symbol;
338 }
339
340 for (i = 0; i < nshifts; i++)
341 {
342 symbol = shift_symbol[i];
343 shiftset[i] = get_state (symbol);
344 }
345 }
346
347
348 static void
349 new_states (void)
350 {
351 core *p;
352
353 p = CORE_ALLOC (0);
354 first_state = last_state = this_state = p;
355 nstates = 1;
356 }
357
358
359 static void
360 save_shifts (void)
361 {
362 shifts *p;
363 short *sp1;
364 short *sp2;
365 short *send;
366
367 p = SHIFTS_ALLOC (nshifts);
368
369 p->number = this_state->number;
370 p->nshifts = nshifts;
371
372 sp1 = shiftset;
373 sp2 = p->shifts;
374 send = shiftset + nshifts;
375
376 while (sp1 < send)
377 *sp2++ = *sp1++;
378
379 if (last_shift)
380 {
381 last_shift->next = p;
382 last_shift = p;
383 }
384 else
385 {
386 first_shift = p;
387 last_shift = p;
388 }
389 }
390
391
392 /*------------------------------------------------------------------.
393 | Subroutine of augment_automaton. Create the next-to-final state, |
394 | to which a shift has already been made in the initial state. |
395 `------------------------------------------------------------------*/
396
397 static void
398 insert_start_shift (void)
399 {
400 core *statep;
401 shifts *sp;
402
403 statep = CORE_ALLOC (0);
404 statep->number = nstates;
405 statep->accessing_symbol = start_symbol;
406
407 last_state->next = statep;
408 last_state = statep;
409
410 /* Make a shift from this state to (what will be) the final state. */
411 sp = SHIFTS_ALLOC (1);
412 sp->number = nstates++;
413 sp->nshifts = 1;
414 sp->shifts[0] = nstates;
415
416 last_shift->next = sp;
417 last_shift = sp;
418 }
419
420
421 /*------------------------------------------------------------------.
422 | Make sure that the initial state has a shift that accepts the |
423 | grammar's start symbol and goes to the next-to-final state, which |
424 | has a shift going to the final state, which has a shift to the |
425 | termination state. Create such states and shifts if they don't |
426 | happen to exist already. |
427 `------------------------------------------------------------------*/
428
429 static void
430 augment_automaton (void)
431 {
432 int i;
433 int k;
434 core *statep;
435 shifts *sp;
436 shifts *sp2;
437 shifts *sp1 = NULL;
438
439 sp = first_shift;
440
441 if (sp)
442 {
443 if (sp->number == 0)
444 {
445 k = sp->nshifts;
446 statep = first_state->next;
447
448 /* The states reached by shifts from first_state are numbered 1...K.
449 Look for one reached by start_symbol. */
450 while (statep->accessing_symbol < start_symbol
451 && statep->number < k)
452 statep = statep->next;
453
454 if (statep->accessing_symbol == start_symbol)
455 {
456 /* We already have a next-to-final state.
457 Make sure it has a shift to what will be the final state. */
458 k = statep->number;
459
460 while (sp && sp->number < k)
461 {
462 sp1 = sp;
463 sp = sp->next;
464 }
465
466 if (sp && sp->number == k)
467 {
468 sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
469 sp2->number = k;
470 sp2->nshifts = sp->nshifts + 1;
471 sp2->shifts[0] = nstates;
472 for (i = sp->nshifts; i > 0; i--)
473 sp2->shifts[i] = sp->shifts[i - 1];
474
475 /* Patch sp2 into the chain of shifts in place of sp,
476 following sp1. */
477 sp2->next = sp->next;
478 sp1->next = sp2;
479 if (sp == last_shift)
480 last_shift = sp2;
481 XFREE (sp);
482 }
483 else
484 {
485 sp2 = SHIFTS_ALLOC (1);
486 sp2->number = k;
487 sp2->nshifts = 1;
488 sp2->shifts[0] = nstates;
489
490 /* Patch sp2 into the chain of shifts between sp1 and sp. */
491 sp2->next = sp;
492 sp1->next = sp2;
493 if (sp == 0)
494 last_shift = sp2;
495 }
496 }
497 else
498 {
499 /* There is no next-to-final state as yet. */
500 /* Add one more shift in first_shift,
501 going to the next-to-final state (yet to be made). */
502 sp = first_shift;
503
504 sp2 = SHIFTS_ALLOC (sp->nshifts + 1);
505 sp2->nshifts = sp->nshifts + 1;
506
507 /* Stick this shift into the vector at the proper place. */
508 statep = first_state->next;
509 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
510 {
511 if (statep->accessing_symbol > start_symbol && i == k)
512 sp2->shifts[k++] = nstates;
513 sp2->shifts[k] = sp->shifts[i];
514 statep = statep->next;
515 }
516 if (i == k)
517 sp2->shifts[k++] = nstates;
518
519 /* Patch sp2 into the chain of shifts
520 in place of sp, at the beginning. */
521 sp2->next = sp->next;
522 first_shift = sp2;
523 if (last_shift == sp)
524 last_shift = sp2;
525
526 XFREE (sp);
527
528 /* Create the next-to-final state, with shift to
529 what will be the final state. */
530 insert_start_shift ();
531 }
532 }
533 else
534 {
535 /* The initial state didn't even have any shifts.
536 Give it one shift, to the next-to-final state. */
537 sp = SHIFTS_ALLOC (1);
538 sp->nshifts = 1;
539 sp->shifts[0] = nstates;
540
541 /* Patch sp into the chain of shifts at the beginning. */
542 sp->next = first_shift;
543 first_shift = sp;
544
545 /* Create the next-to-final state, with shift to
546 what will be the final state. */
547 insert_start_shift ();
548 }
549 }
550 else
551 {
552 /* There are no shifts for any state.
553 Make one shift, from the initial state to the next-to-final state. */
554
555 sp = SHIFTS_ALLOC (1);
556 sp->nshifts = 1;
557 sp->shifts[0] = nstates;
558
559 /* Initialize the chain of shifts with sp. */
560 first_shift = sp;
561 last_shift = sp;
562
563 /* Create the next-to-final state, with shift to
564 what will be the final state. */
565 insert_start_shift ();
566 }
567
568 /* Make the final state--the one that follows a shift from the
569 next-to-final state.
570 The symbol for that shift is 0 (end-of-file). */
571 statep = CORE_ALLOC (0);
572 statep->number = nstates;
573 last_state->next = statep;
574 last_state = statep;
575
576 /* Make the shift from the final state to the termination state. */
577 sp = SHIFTS_ALLOC (1);
578 sp->number = nstates++;
579 sp->nshifts = 1;
580 sp->shifts[0] = nstates;
581 last_shift->next = sp;
582 last_shift = sp;
583
584 /* Note that the variable `final_state' refers to what we sometimes call
585 the termination state. */
586 final_state = nstates;
587
588 /* Make the termination state. */
589 statep = CORE_ALLOC (0);
590 statep->number = nstates++;
591 last_state->next = statep;
592 last_state = statep;
593 }
594
595
596 /*----------------------------------------------------------------.
597 | Find which rules can be used for reduction transitions from the |
598 | current state and make a reductions structure for the state to |
599 | record their rule numbers. |
600 `----------------------------------------------------------------*/
601
602 static void
603 save_reductions (void)
604 {
605 short *isp;
606 short *rp1;
607 short *rp2;
608 int item;
609 int count;
610 reductions *p;
611
612 short *rend;
613
614 /* Find and count the active items that represent ends of rules. */
615
616 count = 0;
617 for (isp = itemset; isp < itemsetend; isp++)
618 {
619 item = ritem[*isp];
620 if (item < 0)
621 redset[count++] = -item;
622 }
623
624 /* Make a reductions structure and copy the data into it. */
625
626 if (count)
627 {
628 p = REDUCTIONS_ALLOC (count);
629
630 p->number = this_state->number;
631 p->nreds = count;
632
633 rp1 = redset;
634 rp2 = p->rules;
635 rend = rp1 + count;
636
637 for (/* nothing */; rp1 < rend; ++rp1, ++rp2)
638 *rp2 = *rp1;
639
640 if (last_reduction)
641 {
642 last_reduction->next = p;
643 last_reduction = p;
644 }
645 else
646 {
647 first_reduction = p;
648 last_reduction = p;
649 }
650 }
651 }
652
653 \f
654 /*-------------------------------------------------------------------.
655 | Compute the nondeterministic finite state machine (see state.h for |
656 | details) from the grammar. |
657 `-------------------------------------------------------------------*/
658
659 void
660 generate_states (void)
661 {
662 allocate_storage ();
663 new_closure (nitems);
664 new_states ();
665
666 while (this_state)
667 {
668 /* Set up ruleset and itemset for the transitions out of this
669 state. ruleset gets a 1 bit for each rule that could reduce
670 now. itemset gets a vector of all the items that could be
671 accepted next. */
672 closure (this_state->items, this_state->nitems);
673 /* record the reductions allowed out of this state */
674 save_reductions ();
675 /* find the itemsets of the states that shifts can reach */
676 new_itemsets ();
677 /* find or create the core structures for those states */
678 append_states ();
679
680 /* create the shifts structures for the shifts to those states,
681 now that the state numbers transitioning to are known */
682 if (nshifts > 0)
683 save_shifts ();
684
685 /* states are queued when they are created; process them all */
686 this_state = this_state->next;
687 }
688
689 /* discard various storage */
690 free_closure ();
691 free_storage ();
692
693 /* set up initial and final states as parser wants them */
694 augment_automaton ();
695 }