]> git.saurik.com Git - bison.git/blob - src/LR0.c
d402d910b3c55c8eb0d01c07d2506e0bdeabe06f
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "bitset.h"
27 #include "quotearg.h"
28 #include "symtab.h"
29 #include "gram.h"
30 #include "getargs.h"
31 #include "reader.h"
32 #include "gram.h"
33 #include "state.h"
34 #include "complain.h"
35 #include "closure.h"
36 #include "LR0.h"
37 #include "lalr.h"
38 #include "reduce.h"
39
40 typedef struct state_list_s
41 {
42 struct state_list_s *next;
43 state_t *state;
44 } state_list_t;
45
46 static state_list_t *first_state = NULL;
47 static state_list_t *last_state = NULL;
48
49 static void
50 state_list_append (state_t *state)
51 {
52 state_list_t *node = XMALLOC (state_list_t, 1);
53 node->next = NULL;
54 node->state = state;
55
56 if (!first_state)
57 first_state = node;
58 if (last_state)
59 last_state->next = node;
60 last_state = node;
61 }
62
63 static int nshifts;
64 static symbol_number_t *shift_symbol = NULL;
65
66 static short *redset = NULL;
67 static state_number_t *shiftset = NULL;
68
69 static item_number_t **kernel_base = NULL;
70 static int *kernel_size = NULL;
71 static item_number_t *kernel_items = NULL;
72
73 \f
74 static void
75 allocate_itemsets (void)
76 {
77 int i, r;
78 item_number_t *rhsp;
79
80 /* Count the number of occurrences of all the symbols in RITEMS.
81 Note that useless productions (hence useless nonterminals) are
82 browsed too, hence we need to allocate room for _all_ the
83 symbols. */
84 int count = 0;
85 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
86
87 for (r = 1; r < nrules + 1; ++r)
88 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
89 {
90 count++;
91 symbol_count[*rhsp]++;
92 }
93
94 /* See comments before new_itemsets. All the vectors of items
95 live inside KERNEL_ITEMS. The number of active items after
96 some symbol cannot be more than the number of times that symbol
97 appears as an item, which is SYMBOL_COUNT[SYMBOL].
98 We allocate that much space for each symbol. */
99
100 kernel_base = XCALLOC (item_number_t *, nsyms);
101 if (count)
102 kernel_items = XCALLOC (item_number_t, count);
103
104 count = 0;
105 for (i = 0; i < nsyms; i++)
106 {
107 kernel_base[i] = kernel_items + count;
108 count += symbol_count[i];
109 }
110
111 free (symbol_count);
112 kernel_size = XCALLOC (int, nsyms);
113 }
114
115
116 static void
117 allocate_storage (void)
118 {
119 allocate_itemsets ();
120
121 shiftset = XCALLOC (state_number_t, nsyms);
122 redset = XCALLOC (short, nrules + 1);
123 state_hash_new ();
124 shift_symbol = XCALLOC (symbol_number_t, nsyms);
125 }
126
127
128 static void
129 free_storage (void)
130 {
131 free (shift_symbol);
132 free (redset);
133 free (shiftset);
134 free (kernel_base);
135 free (kernel_size);
136 XFREE (kernel_items);
137 state_hash_free ();
138 }
139
140
141
142
143 /*---------------------------------------------------------------.
144 | Find which symbols can be shifted in STATE, and for each one |
145 | record which items would be active after that shift. Uses the |
146 | contents of itemset. |
147 | |
148 | shift_symbol is set to a vector of the symbols that can be |
149 | shifted. For each symbol in the grammar, kernel_base[symbol] |
150 | points to a vector of item numbers activated if that symbol is |
151 | shifted, and kernel_size[symbol] is their numbers. |
152 `---------------------------------------------------------------*/
153
154 static void
155 new_itemsets (state_t *state)
156 {
157 int i;
158
159 if (trace_flag)
160 fprintf (stderr, "Entering new_itemsets, state = %d\n",
161 state->number);
162
163 for (i = 0; i < nsyms; i++)
164 kernel_size[i] = 0;
165
166 nshifts = 0;
167
168 for (i = 0; i < nritemset; ++i)
169 if (ritem[itemset[i]] >= 0)
170 {
171 symbol_number_t symbol
172 = item_number_as_symbol_number (ritem[itemset[i]]);
173 if (!kernel_size[symbol])
174 {
175 shift_symbol[nshifts] = symbol;
176 nshifts++;
177 }
178
179 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
180 kernel_size[symbol]++;
181 }
182 }
183
184
185
186 /*-----------------------------------------------------------------.
187 | Subroutine of get_state. Create a new state for those items, if |
188 | necessary. |
189 `-----------------------------------------------------------------*/
190
191 static state_t *
192 new_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
193 {
194 state_t *res;
195
196 if (trace_flag)
197 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
198 nstates, symbol, symbol_tag_get (symbols[symbol]));
199
200 res = state_new (symbol, core_size, core);
201 state_hash_insert (res);
202
203 /* If this is the eoftoken, and this is not the initial state, then
204 this is the final state. */
205 if (symbol == 0 && first_state)
206 final_state = res;
207
208 state_list_append (res);
209 return res;
210 }
211
212
213 /*--------------------------------------------------------------.
214 | Find the state number for the state we would get to (from the |
215 | current state) by shifting symbol. Create a new state if no |
216 | equivalent one exists already. Used by append_states. |
217 `--------------------------------------------------------------*/
218
219 static state_number_t
220 get_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
221 {
222 state_t *sp;
223
224 if (trace_flag)
225 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
226 symbol, symbol_tag_get (symbols[symbol]));
227
228 sp = state_hash_lookup (core_size, core);
229 if (!sp)
230 sp = new_state (symbol, core_size, core);
231
232 if (trace_flag)
233 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
234
235 return sp->number;
236 }
237
238 /*------------------------------------------------------------------.
239 | Use the information computed by new_itemsets to find the state |
240 | numbers reached by each shift transition from STATE. |
241 | |
242 | SHIFTSET is set up as a vector of state numbers of those states. |
243 `------------------------------------------------------------------*/
244
245 static void
246 append_states (state_t *state)
247 {
248 int i;
249 int j;
250 symbol_number_t symbol;
251
252 if (trace_flag)
253 fprintf (stderr, "Entering append_states, state = %d\n",
254 state->number);
255
256 /* first sort shift_symbol into increasing order */
257
258 for (i = 1; i < nshifts; i++)
259 {
260 symbol = shift_symbol[i];
261 j = i;
262 while (j > 0 && shift_symbol[j - 1] > symbol)
263 {
264 shift_symbol[j] = shift_symbol[j - 1];
265 j--;
266 }
267 shift_symbol[j] = symbol;
268 }
269
270 for (i = 0; i < nshifts; i++)
271 {
272 symbol = shift_symbol[i];
273 shiftset[i] = get_state (symbol,
274 kernel_size[symbol], kernel_base[symbol]);
275 }
276 }
277
278
279 static void
280 new_states (void)
281 {
282 /* The 0 at the lhs is the index of the item of this initial rule. */
283 kernel_base[0][0] = 0;
284 kernel_size[0] = 1;
285 state_list_append (new_state (0, kernel_size[0], kernel_base[0]));
286 }
287
288
289
290 /*----------------------------------------------------------------.
291 | Find which rules can be used for reduction transitions from the |
292 | current state and make a reductions structure for the state to |
293 | record their rule numbers. |
294 `----------------------------------------------------------------*/
295
296 static void
297 save_reductions (state_t *state)
298 {
299 int count = 0;
300 int i;
301
302 /* If this is the final state, we want it to have no reductions at
303 all, although it has one for `START_SYMBOL EOF .'. */
304 if (final_state && state->number == final_state->number)
305 return;
306
307 /* Find and count the active items that represent ends of rules. */
308 for (i = 0; i < nritemset; ++i)
309 {
310 int item = ritem[itemset[i]];
311 if (item < 0)
312 redset[count++] = -item;
313 }
314
315 /* Make a reductions structure and copy the data into it. */
316 state_reductions_set (state, count, redset);
317 }
318
319 \f
320 /*---------------.
321 | Build STATES. |
322 `---------------*/
323
324 static void
325 set_states (void)
326 {
327 states = XCALLOC (state_t *, nstates);
328
329 while (first_state)
330 {
331 state_list_t *this = first_state;
332
333 /* Pessimization, but simplification of the code: make sure all
334 the states have a shifts, errs, and reductions, even if
335 reduced to 0. */
336 state_t *state = this->state;
337 if (!state->shifts)
338 state_shifts_set (state, 0, 0);
339 if (!state->errs)
340 state->errs = errs_new (0);
341 if (!state->reductions)
342 state_reductions_set (state, 0, 0);
343
344 states[state->number] = state;
345
346 first_state = this->next;
347 free (this);
348 }
349 first_state = NULL;
350 last_state = NULL;
351 }
352
353
354 /*-------------------------------------------------------------------.
355 | Compute the nondeterministic finite state machine (see state.h for |
356 | details) from the grammar. |
357 `-------------------------------------------------------------------*/
358
359 void
360 generate_states (void)
361 {
362 state_list_t *list = NULL;
363 allocate_storage ();
364 new_closure (nritems);
365 new_states ();
366 list = first_state;
367
368 while (list)
369 {
370 state_t *state = list->state;
371 if (trace_flag)
372 fprintf (stderr, "Processing state %d (reached by %s)\n",
373 state->number,
374 symbol_tag_get (symbols[state->accessing_symbol]));
375 /* Set up ruleset and itemset for the transitions out of this
376 state. ruleset gets a 1 bit for each rule that could reduce
377 now. itemset gets a vector of all the items that could be
378 accepted next. */
379 closure (state->items, state->nitems);
380 /* Record the reductions allowed out of this state. */
381 save_reductions (state);
382 /* Find the itemsets of the states that shifts can reach. */
383 new_itemsets (state);
384 /* Find or create the core structures for those states. */
385 append_states (state);
386
387 /* Create the shifts structures for the shifts to those states,
388 now that the state numbers transitioning to are known. */
389 state_shifts_set (state, nshifts, shiftset);
390
391 /* States are queued when they are created; process them all.
392 */
393 list = list->next;
394 }
395
396 /* discard various storage */
397 free_closure ();
398 free_storage ();
399
400 /* Set up STATES. */
401 set_states ();
402 }