]> git.saurik.com Git - bison.git/blob - src/tables.c
84afd1cd2a138a33b96c78af55bb4789a8d6f5b4
[bison.git] / src / tables.c
1 /* Output the generated parsing program for bison,
2 Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of Bison, the GNU Compiler Compiler.
6
7 Bison is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 Bison is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with Bison; see the file COPYING. If not, write to the Free
19 Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "system.h"
24 #include "bitsetv.h"
25 #include "quotearg.h"
26 #include "getargs.h"
27 #include "files.h"
28 #include "gram.h"
29 #include "complain.h"
30 #include "lalr.h"
31 #include "reader.h"
32 #include "symtab.h"
33 #include "conflicts.h"
34 #include "tables.h"
35
36 /* Several tables will be indexed both by state and nonterminal
37 numbers. We call `vector' such a thing (= either a state or a
38 symbol number.
39
40 Of course vector_number_t ought to be wide enough to contain
41 state_number_t and symbol_number_t. */
42 typedef short vector_number_t;
43 #define VECTOR_NUMBER_MAX ((vector_number_t) SHRT_MAX)
44 #define VECTOR_NUMBER_MIN ((vector_number_t) SHRT_MIN)
45 #define state_number_to_vector_number(State) \
46 ((vector_number_t) State)
47 #define symbol_number_to_vector_number(Symbol) \
48 ((vector_number_t) (state_number_as_int (nstates) + Symbol - ntokens))
49
50 int nvectors;
51
52
53 /* FROMS and TOS are indexed by vector_number_t.
54
55 If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an
56 array of state numbers of the non defaulted GOTO on VECTOR.
57
58 If VECTOR is a state, TOS[VECTOR] is the array of actions to do on
59 the (array of) symbols FROMS[VECTOR].
60
61 In both cases, TALLY[VECTOR] is the size of the arrays
62 FROMS[VECTOR], TOS[VECTOR]; and WIDTH[VECTOR] =
63 (FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE =
64 TALLY[VECTOR].
65
66 FROMS therefore contains symbol_number_t and action_number_t,
67 TOS state_number_t and action_number_t,
68 TALLY sizes,
69 WIDTH differences of FROMS.
70
71 Let base_t be the type of FROMS, TOS, and WIDTH. */
72 #define BASE_MAX ((base_t) INT_MAX)
73 #define BASE_MIN ((base_t) INT_MIN)
74
75 static base_t **froms = NULL;
76 static base_t **tos = NULL;
77 static unsigned int **conflict_tos = NULL;
78 static short *tally = NULL;
79 static base_t *width = NULL;
80
81
82 /* For a given state, N = ACTROW[SYMBOL]:
83
84 If N = 0, stands for `run the default action'.
85 If N = MIN, stands for `raise a parse error'.
86 If N > 0, stands for `shift SYMBOL and go to n'.
87 If N < 0, stands for `reduce -N'. */
88 typedef short action_t;
89 #define ACTION_MAX ((action_t) SHRT_MAX)
90 #define ACTION_MIN ((action_t) SHRT_MIN)
91
92 static action_t *actrow = NULL;
93
94 /* FROMS and TOS are reordered to be compressed. ORDER[VECTOR] is the
95 new vector number of VECTOR. We skip `empty' vectors (i.e.,
96 TALLY[VECTOR] = 0), and call these `entries'. */
97 static vector_number_t *order = NULL;
98 static int nentries;
99
100 base_t *base = NULL;
101 /* A distinguished value of BASE, negative infinite. During the
102 computation equals to BASE_MIN, later mapped to BASE_NINF to
103 keep parser tables small. */
104 base_t base_ninf = 0;
105 static base_t *pos = NULL;
106
107 static unsigned int *conflrow = NULL;
108 unsigned int *conflict_table = NULL;
109 unsigned int *conflict_list = NULL;
110 int conflict_list_cnt;
111 static int conflict_list_free;
112
113 /* TABLE_SIZE is the allocated size of both TABLE and CHECK. We start
114 with more or less the original hard-coded value (which was
115 SHRT_MAX). */
116 static size_t table_size = 32768;
117 base_t *table = NULL;
118 base_t *check = NULL;
119 /* The value used in TABLE to denote explicit parse errors
120 (%nonassoc), a negative infinite. First defaults to ACTION_MIN,
121 but in order to keep small tables, renumbered as TABLE_ERROR, which
122 is the smallest (non error) value minus 1. */
123 base_t table_ninf = 0;
124 static int lowzero;
125 int high;
126
127 state_number_t *yydefgoto;
128 rule_number_t *yydefact;
129
130 /*----------------------------------------------------------------.
131 | If TABLE (and CHECK) appear to be small to be addressed at |
132 | DESIRED, grow them. Note that TABLE[DESIRED] is to be used, so |
133 | the desired size is at least DESIRED + 1. |
134 `----------------------------------------------------------------*/
135
136 static void
137 table_grow (size_t desired)
138 {
139 size_t old_size = table_size;
140
141 while (table_size <= desired)
142 table_size *= 2;
143
144 if (trace_flag & trace_resource)
145 fprintf (stderr, "growing table and check from: %d to %d\n",
146 old_size, table_size);
147
148 table = XREALLOC (table, base_t, table_size);
149 check = XREALLOC (check, base_t, table_size);
150 conflict_table = XREALLOC (conflict_table, unsigned int, table_size);
151
152 for (/* Nothing. */; old_size < table_size; ++old_size)
153 {
154 table[old_size] = 0;
155 check[old_size] = -1;
156 }
157 }
158
159
160
161
162 /*-------------------------------------------------------------------.
163 | For GLR parsers, for each conflicted token in STATE, as indicated |
164 | by non-zero entries in CONFLROW, create a list of possible |
165 | reductions that are alternatives to the shift or reduction |
166 | currently recorded for that token in STATE. Store the alternative |
167 | reductions followed by a 0 in CONFLICT_LIST, updating |
168 | CONFLICT_LIST_CNT, and storing an index to the start of the list |
169 | back into CONFLROW. |
170 `-------------------------------------------------------------------*/
171
172 static void
173 conflict_row (state_t *state)
174 {
175 int i, j;
176 reductions_t *reds = state->reductions;
177
178 if (! glr_parser)
179 return;
180
181 for (j = 0; j < ntokens; j += 1)
182 if (conflrow[j])
183 {
184 conflrow[j] = conflict_list_cnt;
185
186 /* Find all reductions for token J, and record all that do not
187 match ACTROW[J]. */
188 for (i = 0; i < reds->num; i += 1)
189 if (bitset_test (reds->lookaheads[i], j)
190 && (actrow[j]
191 != rule_number_as_item_number (reds->rules[i]->number)))
192 {
193 assert (conflict_list_free > 0);
194 conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
195 conflict_list_cnt += 1;
196 conflict_list_free -= 1;
197 }
198
199 /* Leave a 0 at the end. */
200 assert (conflict_list_free > 0);
201 conflict_list_cnt += 1;
202 conflict_list_free -= 1;
203 }
204 }
205
206
207 /*------------------------------------------------------------------.
208 | Decide what to do for each type of token if seen as the lookahead |
209 | token in specified state. The value returned is used as the |
210 | default action (yydefact) for the state. In addition, ACTROW is |
211 | filled with what to do for each kind of token, index by symbol |
212 | number, with zero meaning do the default action. The value |
213 | ACTION_MIN, a very negative number, means this situation is an |
214 | error. The parser recognizes this value specially. |
215 | |
216 | This is where conflicts are resolved. The loop over lookahead |
217 | rules considered lower-numbered rules last, and the last rule |
218 | considered that likes a token gets to handle it. |
219 | |
220 | For GLR parsers, also sets CONFLROW[SYM] to an index into |
221 | CONFLICT_LIST iff there is an unresolved conflict (s/r or r/r) |
222 | with symbol SYM. The default reduction is not used for a symbol |
223 | that has any such conflicts. |
224 `------------------------------------------------------------------*/
225
226 static rule_t *
227 action_row (state_t *state)
228 {
229 int i;
230 rule_t *default_rule = NULL;
231 reductions_t *redp = state->reductions;
232 transitions_t *transitions = state->transitions;
233 errs_t *errp = state->errs;
234 /* Set to nonzero to inhibit having any default reduction. */
235 int nodefault = 0;
236 int conflicted = 0;
237
238 for (i = 0; i < ntokens; i++)
239 actrow[i] = conflrow[i] = 0;
240
241 if (redp->lookaheads)
242 {
243 int j;
244 bitset_iterator biter;
245 /* loop over all the rules available here which require
246 lookahead (in reverse order to give precedence to the first
247 rule) */
248 for (i = redp->num - 1; i >= 0; --i)
249 /* and find each token which the rule finds acceptable
250 to come next */
251 BITSET_FOR_EACH (biter, redp->lookaheads[i], j, 0)
252 {
253 /* and record this rule as the rule to use if that
254 token follows. */
255 if (actrow[j] != 0)
256 conflicted = conflrow[j] = 1;
257 actrow[j] = rule_number_as_item_number (redp->rules[i]->number);
258 }
259 }
260
261 /* Now see which tokens are allowed for shifts in this state. For
262 them, record the shift as the thing to do. So shift is preferred
263 to reduce. */
264 FOR_EACH_SHIFT (transitions, i)
265 {
266 symbol_number_t symbol = TRANSITION_SYMBOL (transitions, i);
267 state_t *shift_state = transitions->states[i];
268
269 if (actrow[symbol] != 0)
270 conflicted = conflrow[symbol] = 1;
271 actrow[symbol] = state_number_as_int (shift_state->number);
272
273 /* Do not use any default reduction if there is a shift for
274 error */
275 if (symbol == errtoken->number)
276 nodefault = 1;
277 }
278
279 /* See which tokens are an explicit error in this state (due to
280 %nonassoc). For them, record ACTION_MIN as the action. */
281 for (i = 0; i < errp->num; i++)
282 {
283 symbol_t *symbol = errp->symbols[i];
284 actrow[symbol->number] = ACTION_MIN;
285 }
286
287 /* Now find the most common reduction and make it the default action
288 for this state. */
289
290 if (redp->num >= 1 && !nodefault)
291 {
292 if (state->consistent)
293 default_rule = redp->rules[0];
294 else
295 {
296 int max = 0;
297 for (i = 0; i < redp->num; i++)
298 {
299 int count = 0;
300 rule_t *rule = redp->rules[i];
301 symbol_number_t j;
302
303 for (j = 0; j < ntokens; j++)
304 if (actrow[j] == rule_number_as_item_number (rule->number))
305 count++;
306
307 if (count > max)
308 {
309 max = count;
310 default_rule = rule;
311 }
312 }
313
314 /* GLR parsers need space for conflict lists, so we can't
315 default conflicted entries. For non-conflicted entries
316 or as long as we are not building a GLR parser,
317 actions that match the default are replaced with zero,
318 which means "use the default". */
319
320 if (max > 0)
321 {
322 int j;
323 for (j = 0; j < ntokens; j++)
324 if (actrow[j] == rule_number_as_item_number (default_rule->number)
325 && ! (glr_parser && conflrow[j]))
326 actrow[j] = 0;
327 }
328 }
329 }
330
331 /* If have no default rule, the default is an error.
332 So replace any action which says "error" with "use default". */
333
334 if (!default_rule)
335 for (i = 0; i < ntokens; i++)
336 if (actrow[i] == ACTION_MIN)
337 actrow[i] = 0;
338
339 if (conflicted)
340 conflict_row (state);
341
342 return default_rule;
343 }
344
345
346 /*--------------------------------------------.
347 | Set FROMS, TOS, TALLY and WIDTH for STATE. |
348 `--------------------------------------------*/
349
350 static void
351 save_row (state_number_t state)
352 {
353 symbol_number_t i;
354 int count;
355 base_t *sp = NULL;
356 base_t *sp1 = NULL;
357 base_t *sp2 = NULL;
358 unsigned int *sp3 = NULL;
359
360 /* Number of non default actions in STATE. */
361 count = 0;
362 for (i = 0; i < ntokens; i++)
363 if (actrow[i] != 0)
364 count++;
365
366 if (count == 0)
367 return;
368
369 /* Allocate non defaulted actions. */
370 froms[state] = sp1 = sp = XCALLOC (base_t, count);
371 tos[state] = sp2 = XCALLOC (base_t, count);
372 if (glr_parser)
373 conflict_tos[state] = sp3 = XCALLOC (unsigned int, count);
374 else
375 conflict_tos[state] = NULL;
376
377 /* Store non defaulted actions. */
378 for (i = 0; i < ntokens; i++)
379 if (actrow[i] != 0)
380 {
381 *sp1++ = i;
382 *sp2++ = actrow[i];
383 if (glr_parser)
384 *sp3++ = conflrow[i];
385 }
386
387 tally[state] = count;
388 width[state] = sp1[-1] - sp[0] + 1;
389 }
390
391
392 /*------------------------------------------------------------------.
393 | Figure out the actions for the specified state, indexed by |
394 | lookahead token type. |
395 | |
396 | The YYDEFACT table is output now. The detailed info is saved for |
397 | putting into YYTABLE later. |
398 `------------------------------------------------------------------*/
399
400 static void
401 token_actions (void)
402 {
403 state_number_t i;
404 symbol_number_t j;
405 rule_number_t r;
406
407 int nconflict = glr_parser ? conflicts_total_count () : 0;
408
409 yydefact = XCALLOC (rule_number_t, nstates);
410
411 actrow = XCALLOC (action_t, ntokens);
412 conflrow = XCALLOC (unsigned int, ntokens);
413
414 conflict_list = XCALLOC (unsigned int, 1 + 2 * nconflict);
415 conflict_list_free = 2 * nconflict;
416 conflict_list_cnt = 1;
417
418 /* Find the rules which are reduced. */
419 if (!glr_parser)
420 for (r = 0; r < nrules; ++r)
421 rules[r].useful = false;
422
423 for (i = 0; i < nstates; ++i)
424 {
425 rule_t *default_rule = action_row (states[i]);
426 yydefact[i] = default_rule ? default_rule->number + 1 : 0;
427 save_row (i);
428
429 /* Now that the parser was computed, we can find which rules are
430 really reduced, and which are not because of SR or RR
431 conflicts. */
432 if (!glr_parser)
433 {
434 for (j = 0; j < ntokens; ++j)
435 if (actrow[j] < 0 && actrow[j] != ACTION_MIN)
436 rules[item_number_as_rule_number (actrow[j])].useful = true;
437 if (yydefact[i])
438 rules[yydefact[i] - 1].useful = true;
439 }
440 }
441
442 free (actrow);
443 free (conflrow);
444 }
445
446
447 /*------------------------------------------------------------------.
448 | Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], |
449 | i.e., the information related to non defaulted GOTO on the nterm |
450 | SYMBOL. |
451 | |
452 | DEFAULT_STATE is the principal destination on SYMBOL, i.e., the |
453 | default GOTO destination on SYMBOL. |
454 `------------------------------------------------------------------*/
455
456 static void
457 save_column (symbol_number_t symbol, state_number_t default_state)
458 {
459 int i;
460 base_t *sp;
461 base_t *sp1;
462 base_t *sp2;
463 int count;
464 vector_number_t symno = symbol_number_to_vector_number (symbol);
465
466 goto_number_t begin = goto_map[symbol];
467 goto_number_t end = goto_map[symbol + 1];
468
469 /* Number of non default GOTO. */
470 count = 0;
471 for (i = begin; i < end; i++)
472 if (to_state[i] != default_state)
473 count++;
474
475 if (count == 0)
476 return;
477
478 /* Allocate room for non defaulted gotos. */
479 froms[symno] = sp1 = sp = XCALLOC (base_t, count);
480 tos[symno] = sp2 = XCALLOC (base_t, count);
481
482 /* Store the state numbers of the non defaulted gotos. */
483 for (i = begin; i < end; i++)
484 if (to_state[i] != default_state)
485 {
486 *sp1++ = from_state[i];
487 *sp2++ = to_state[i];
488 }
489
490 tally[symno] = count;
491 width[symno] = sp1[-1] - sp[0] + 1;
492 }
493
494
495 /*----------------------------------------------------------------.
496 | Return `the' most common destination GOTO on SYMBOL (a nterm). |
497 `----------------------------------------------------------------*/
498
499 static state_number_t
500 default_goto (symbol_number_t symbol, short state_count[])
501 {
502 state_number_t s;
503 int i;
504 goto_number_t m = goto_map[symbol];
505 goto_number_t n = goto_map[symbol + 1];
506 state_number_t default_state = (state_number_t) -1;
507 int max = 0;
508
509 if (m == n)
510 return (state_number_t) -1;
511
512 for (s = 0; s < nstates; s++)
513 state_count[s] = 0;
514
515 for (i = m; i < n; i++)
516 state_count[to_state[i]]++;
517
518 for (s = 0; s < nstates; s++)
519 if (state_count[s] > max)
520 {
521 max = state_count[s];
522 default_state = s;
523 }
524
525 return default_state;
526 }
527
528
529 /*-------------------------------------------------------------------.
530 | Figure out what to do after reducing with each rule, depending on |
531 | the saved state from before the beginning of parsing the data that |
532 | matched this rule. |
533 | |
534 | The YYDEFGOTO table is output now. The detailed info is saved for |
535 | putting into YYTABLE later. |
536 `-------------------------------------------------------------------*/
537
538 static void
539 goto_actions (void)
540 {
541 symbol_number_t i;
542 short *state_count = XCALLOC (short, nstates);
543 yydefgoto = XMALLOC (state_number_t, nvars);
544
545 /* For a given nterm I, STATE_COUNT[S] is the number of times there
546 is a GOTO to S on I. */
547 for (i = ntokens; i < nsyms; ++i)
548 {
549 state_number_t default_state = default_goto (i, state_count);
550 save_column (i, default_state);
551 yydefgoto[i - ntokens] = default_state;
552 }
553 free (state_count);
554 }
555
556
557 /*------------------------------------------------------------------.
558 | Compute ORDER, a reordering of vectors, in order to decide how to |
559 | pack the actions and gotos information into yytable. |
560 `------------------------------------------------------------------*/
561
562 static void
563 sort_actions (void)
564 {
565 int i;
566
567 nentries = 0;
568
569 for (i = 0; i < nvectors; i++)
570 if (tally[i] > 0)
571 {
572 int k;
573 int t = tally[i];
574 int w = width[i];
575 int j = nentries - 1;
576
577 while (j >= 0 && (width[order[j]] < w))
578 j--;
579
580 while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
581 j--;
582
583 for (k = nentries - 1; k > j; k--)
584 order[k + 1] = order[k];
585
586 order[j + 1] = i;
587 nentries++;
588 }
589 }
590
591
592 /* If VECTOR is a state which actions (reflected by FROMS, TOS, TALLY
593 and WIDTH of VECTOR) are common to a previous state, return this
594 state number.
595
596 In any other case, return -1. */
597
598 static state_number_t
599 matching_state (vector_number_t vector)
600 {
601 vector_number_t i = order[vector];
602 int t;
603 int w;
604 int prev;
605
606 /* If VECTOR is a nterm, return -1. */
607 if (i >= (int) nstates)
608 return -1;
609
610 t = tally[i];
611 w = width[i];
612
613 /* If VECTOR has GLR conflicts, return -1 */
614 if (conflict_tos[i] != NULL)
615 {
616 int j;
617 for (j = 0; j < t; j += 1)
618 if (conflict_tos[i][j] != 0)
619 return -1;
620 }
621
622 for (prev = vector - 1; prev >= 0; prev--)
623 {
624 vector_number_t j = order[prev];
625 int k;
626 int match = 1;
627
628 /* Given how ORDER was computed, if the WIDTH or TALLY is
629 different, there cannot be a matching state. */
630 if (width[j] != w || tally[j] != t)
631 return -1;
632
633 for (k = 0; match && k < t; k++)
634 if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k]
635 || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
636 match = 0;
637
638 if (match)
639 return j;
640 }
641
642 return -1;
643 }
644
645
646 static base_t
647 pack_vector (vector_number_t vector)
648 {
649 vector_number_t i = order[vector];
650 int j;
651 int t = tally[i];
652 int loc = 0;
653 base_t *from = froms[i];
654 base_t *to = tos[i];
655 unsigned int *conflict_to = conflict_tos[i];
656
657 assert (t);
658
659 for (j = lowzero - from[0]; j < (int) table_size; j++)
660 {
661 int k;
662 int ok = 1;
663
664 for (k = 0; ok && k < t; k++)
665 {
666 loc = j + state_number_as_int (from[k]);
667 if (loc >= (int) table_size)
668 table_grow (loc);
669
670 if (table[loc] != 0)
671 ok = 0;
672 }
673
674 for (k = 0; ok && k < vector; k++)
675 if (pos[k] == j)
676 ok = 0;
677
678 if (ok)
679 {
680 for (k = 0; k < t; k++)
681 {
682 loc = j + from[k];
683 table[loc] = to[k];
684 if (glr_parser && conflict_to != NULL)
685 conflict_table[loc] = conflict_to[k];
686 check[loc] = from[k];
687 }
688
689 while (table[lowzero] != 0)
690 lowzero++;
691
692 if (loc > high)
693 high = loc;
694
695 if (j < BASE_MIN || BASE_MAX < j)
696 fatal ("base_t too small to hold %d\n", j);
697 return j;
698 }
699 }
700 #define pack_vector_succeeded 0
701 assert (pack_vector_succeeded);
702 return 0;
703 }
704
705
706 /*-------------------------------------------------------------.
707 | Remap the negative infinite in TAB from NINF to the greatest |
708 | possible smallest value. Return it. |
709 | |
710 | In most case this allows us to use shorts instead of ints in |
711 | parsers. |
712 `-------------------------------------------------------------*/
713
714 static base_t
715 table_ninf_remap (base_t tab[], size_t size, base_t ninf)
716 {
717 base_t res = 0;
718 size_t i;
719
720 for (i = 0; i < size; i++)
721 if (tab[i] < res && tab[i] != ninf)
722 res = tab[i];
723
724 --res;
725
726 for (i = 0; i < size; i++)
727 if (tab[i] == ninf)
728 tab[i] = res;
729
730 return res;
731 }
732
733 static void
734 pack_table (void)
735 {
736 int i;
737
738 base = XCALLOC (base_t, nvectors);
739 pos = XCALLOC (base_t, nentries);
740 table = XCALLOC (base_t, table_size);
741 conflict_table = XCALLOC (unsigned int, table_size);
742 check = XCALLOC (base_t, table_size);
743
744 lowzero = 0;
745 high = 0;
746
747 for (i = 0; i < nvectors; i++)
748 base[i] = BASE_MIN;
749
750 for (i = 0; i < (int) table_size; i++)
751 check[i] = -1;
752
753 for (i = 0; i < nentries; i++)
754 {
755 state_number_t state = matching_state (i);
756 base_t place;
757
758 if (state < 0)
759 /* A new set of state actions, or a nonterminal. */
760 place = pack_vector (i);
761 else
762 /* Action of I were already coded for STATE. */
763 place = base[state];
764
765 pos[i] = place;
766 base[order[i]] = place;
767 }
768
769 /* Use the greatest possible negative infinites. */
770 base_ninf = table_ninf_remap (base, nvectors, BASE_MIN);
771 table_ninf = table_ninf_remap (table, high + 1, ACTION_MIN);
772
773 free (pos);
774 }
775
776 \f
777
778 /*-----------------------------------------------------------------.
779 | Compute and output yydefact, yydefgoto, yypact, yypgoto, yytable |
780 | and yycheck. |
781 `-----------------------------------------------------------------*/
782
783 void
784 tables_generate (void)
785 {
786 int i;
787
788 /* That's a poor way to make sure the sizes are properly corelated,
789 in particular the signedness is not taking into account, but it's
790 not useless. */
791 assert (sizeof (nvectors) >= sizeof (nstates));
792 assert (sizeof (nvectors) >= sizeof (nvars));
793
794 nvectors = state_number_as_int (nstates) + nvars;
795
796 froms = XCALLOC (base_t *, nvectors);
797 tos = XCALLOC (base_t *, nvectors);
798 conflict_tos = XCALLOC (unsigned int *, nvectors);
799 tally = XCALLOC (short, nvectors);
800 width = XCALLOC (base_t, nvectors);
801
802 token_actions ();
803
804 goto_actions ();
805 XFREE (goto_map + ntokens);
806 XFREE (from_state);
807 XFREE (to_state);
808
809 order = XCALLOC (vector_number_t, nvectors);
810 sort_actions ();
811 pack_table ();
812 free (order);
813
814 free (tally);
815 free (width);
816
817 for (i = 0; i < nvectors; i++)
818 {
819 XFREE (froms[i]);
820 XFREE (tos[i]);
821 XFREE (conflict_tos[i]);
822 }
823
824 free (froms);
825 free (tos);
826 free (conflict_tos);
827 }
828
829
830 /*-------------------------.
831 | Free the parser tables. |
832 `-------------------------*/
833
834 void
835 tables_free (void)
836 {
837 free (base);
838 free (conflict_table);
839 free (conflict_list);
840 free (table);
841 free (check);
842 free (yydefgoto);
843 free (yydefact);
844 }