]> git.saurik.com Git - bison.git/blob - src/LR0.c
7770ecbc32b16ebc624787bcbd727c3a10cd0b4a
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "getargs.h"
27 #include "reader.h"
28 #include "gram.h"
29 #include "state.h"
30 #include "complain.h"
31 #include "closure.h"
32 #include "LR0.h"
33 #include "lalr.h"
34 #include "reduce.h"
35
36 int nstates;
37 int final_state;
38 state_t *first_state = NULL;
39 shifts *first_shift = NULL;
40
41 static state_t *this_state = NULL;
42 static state_t *last_state = NULL;
43 static shifts *last_shift = NULL;
44
45 static int nshifts;
46 static short *shift_symbol = NULL;
47
48 static short *redset = NULL;
49 static short *shiftset = NULL;
50
51 static short **kernel_base = NULL;
52 static int *kernel_size = NULL;
53 static short *kernel_items = NULL;
54
55 /* hash table for states, to recognize equivalent ones. */
56
57 #define STATE_HASH_SIZE 1009
58 static state_t **state_hash = NULL;
59
60 \f
61 static void
62 allocate_itemsets (void)
63 {
64 int i;
65
66 /* Count the number of occurrences of all the symbols in RITEMS.
67 Note that useless productions (hence useless nonterminals) are
68 browsed too, hence we need to allocate room for _all_ the
69 symbols. */
70 int count = 0;
71 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
72
73 for (i = 0; ritem[i]; ++i)
74 if (ritem[i] > 0)
75 {
76 count++;
77 symbol_count[ritem[i]]++;
78 }
79
80 /* See comments before new_itemsets. All the vectors of items
81 live inside KERNEL_ITEMS. The number of active items after
82 some symbol cannot be more than the number of times that symbol
83 appears as an item, which is symbol_count[symbol].
84 We allocate that much space for each symbol. */
85
86 kernel_base = XCALLOC (short *, nsyms);
87 if (count)
88 kernel_items = XCALLOC (short, count);
89
90 count = 0;
91 for (i = 0; i < nsyms; i++)
92 {
93 kernel_base[i] = kernel_items + count;
94 count += symbol_count[i];
95 }
96
97 free (symbol_count);
98 kernel_size = XCALLOC (int, nsyms);
99 }
100
101
102 static void
103 allocate_storage (void)
104 {
105 allocate_itemsets ();
106
107 shiftset = XCALLOC (short, nsyms);
108 redset = XCALLOC (short, nrules + 1);
109 state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
110 }
111
112
113 static void
114 free_storage (void)
115 {
116 free (shift_symbol);
117 free (redset);
118 free (shiftset);
119 free (kernel_base);
120 free (kernel_size);
121 XFREE (kernel_items);
122 free (state_hash);
123 }
124
125
126
127
128 /*----------------------------------------------------------------.
129 | Find which symbols can be shifted in the current state, and for |
130 | each one record which items would be active after that shift. |
131 | Uses the contents of itemset. |
132 | |
133 | shift_symbol is set to a vector of the symbols that can be |
134 | shifted. For each symbol in the grammar, kernel_base[symbol] |
135 | points to a vector of item numbers activated if that symbol is |
136 | shifted, and kernel_size[symbol] is their numbers. |
137 `----------------------------------------------------------------*/
138
139 static void
140 new_itemsets (void)
141 {
142 int i;
143
144 if (trace_flag)
145 fprintf (stderr, "Entering new_itemsets, state = %d\n",
146 this_state->number);
147
148 for (i = 0; i < nsyms; i++)
149 kernel_size[i] = 0;
150
151 shift_symbol = XCALLOC (short, nsyms);
152 nshifts = 0;
153
154 for (i = 0; i < nitemset; ++i)
155 {
156 int symbol = ritem[itemset[i]];
157 if (symbol > 0)
158 {
159 if (!kernel_size[symbol])
160 {
161 shift_symbol[nshifts] = symbol;
162 nshifts++;
163 }
164
165 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
166 kernel_size[symbol]++;
167 }
168 }
169 }
170
171
172
173 /*-----------------------------------------------------------------.
174 | Subroutine of get_state. Create a new state for those items, if |
175 | necessary. |
176 `-----------------------------------------------------------------*/
177
178 static state_t *
179 new_state (int symbol)
180 {
181 state_t *p;
182
183 if (trace_flag)
184 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
185 this_state->number, symbol, tags[symbol]);
186
187 if (nstates >= MAXSHORT)
188 fatal (_("too many states (max %d)"), MAXSHORT);
189
190 p = STATE_ALLOC (kernel_size[symbol]);
191 p->accessing_symbol = symbol;
192 p->number = nstates;
193 p->nitems = kernel_size[symbol];
194
195 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
196
197 last_state->next = p;
198 last_state = p;
199 nstates++;
200
201 return p;
202 }
203
204
205 /*--------------------------------------------------------------.
206 | Find the state number for the state we would get to (from the |
207 | current state) by shifting symbol. Create a new state if no |
208 | equivalent one exists already. Used by append_states. |
209 `--------------------------------------------------------------*/
210
211 static int
212 get_state (int symbol)
213 {
214 int key;
215 int i;
216 state_t *sp;
217
218 if (trace_flag)
219 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
220 this_state->number, symbol, tags[symbol]);
221
222 /* Add up the target state's active item numbers to get a hash key.
223 */
224 key = 0;
225 for (i = 0; i < kernel_size[symbol]; ++i)
226 key += kernel_base[symbol][i];
227 key = key % STATE_HASH_SIZE;
228 sp = state_hash[key];
229
230 if (sp)
231 {
232 int found = 0;
233 while (!found)
234 {
235 if (sp->nitems == kernel_size[symbol])
236 {
237 found = 1;
238 for (i = 0; i < kernel_size[symbol]; ++i)
239 if (kernel_base[symbol][i] != sp->items[i])
240 found = 0;
241 }
242
243 if (!found)
244 {
245 if (sp->link)
246 {
247 sp = sp->link;
248 }
249 else /* bucket exhausted and no match */
250 {
251 sp = sp->link = new_state (symbol);
252 found = 1;
253 }
254 }
255 }
256 }
257 else /* bucket is empty */
258 {
259 state_hash[key] = sp = new_state (symbol);
260 }
261
262 if (trace_flag)
263 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
264
265 return sp->number;
266 }
267
268 /*------------------------------------------------------------------.
269 | Use the information computed by new_itemsets to find the state |
270 | numbers reached by each shift transition from the current state. |
271 | |
272 | shiftset is set up as a vector of state numbers of those states. |
273 `------------------------------------------------------------------*/
274
275 static void
276 append_states (void)
277 {
278 int i;
279 int j;
280 int symbol;
281
282 if (trace_flag)
283 fprintf (stderr, "Entering append_states, state = %d\n",
284 this_state->number);
285
286 /* first sort shift_symbol into increasing order */
287
288 for (i = 1; i < nshifts; i++)
289 {
290 symbol = shift_symbol[i];
291 j = i;
292 while (j > 0 && shift_symbol[j - 1] > symbol)
293 {
294 shift_symbol[j] = shift_symbol[j - 1];
295 j--;
296 }
297 shift_symbol[j] = symbol;
298 }
299
300 for (i = 0; i < nshifts; i++)
301 shiftset[i] = get_state (shift_symbol[i]);
302 }
303
304
305 static void
306 new_states (void)
307 {
308 first_state = last_state = this_state = STATE_ALLOC (0);
309 nstates = 1;
310 }
311
312
313 /*------------------------------------------------------------.
314 | Save the NSHIFTS of SHIFTSET into the current linked list. |
315 `------------------------------------------------------------*/
316
317 static void
318 save_shifts (void)
319 {
320 shifts *p = shifts_new (nshifts);
321
322 p->number = this_state->number;
323
324 shortcpy (p->shifts, shiftset, nshifts);
325
326 if (last_shift)
327 last_shift->next = p;
328 else
329 first_shift = p;
330 last_shift = p;
331 }
332
333
334 /*------------------------------------------------------------------.
335 | Subroutine of augment_automaton. Create the next-to-final state, |
336 | to which a shift has already been made in the initial state. |
337 | |
338 | The task of this state consists in shifting (actually, it's a |
339 | goto, but shifts and gotos are both stored in SHIFTS) the start |
340 | symbols, hence the name. |
341 `------------------------------------------------------------------*/
342
343 static void
344 insert_start_shifting_state (void)
345 {
346 state_t *statep;
347 shifts *sp;
348
349 statep = STATE_ALLOC (0);
350 statep->number = nstates;
351
352 /* The distinctive feature of this state from the
353 eof_shifting_state, is that it is labeled as post-start-symbol
354 shifting. I fail to understand why this state, and the
355 post-start-start can't be merged into one. But it does fail if
356 you try. --akim */
357 statep->accessing_symbol = start_symbol;
358
359 last_state->next = statep;
360 last_state = statep;
361
362 /* Make a shift from this state to (what will be) the final state. */
363 sp = shifts_new (1);
364 sp->number = nstates++;
365 sp->shifts[0] = nstates;
366
367 last_shift->next = sp;
368 last_shift = sp;
369 }
370
371
372 /*-----------------------------------------------------------------.
373 | Subroutine of augment_automaton. Create the final state, which |
374 | shifts `0', the end of file. The initial state shifts the start |
375 | symbol, and goes to here. |
376 `-----------------------------------------------------------------*/
377
378 static void
379 insert_eof_shifting_state (void)
380 {
381 state_t *statep;
382 shifts *sp;
383
384 /* Make the final state--the one that follows a shift from the
385 next-to-final state.
386 The symbol for that shift is 0 (end-of-file). */
387 statep = STATE_ALLOC (0);
388 statep->number = nstates;
389
390 last_state->next = statep;
391 last_state = statep;
392
393 /* Make the shift from the final state to the termination state. */
394 sp = shifts_new (1);
395 sp->number = nstates++;
396 sp->shifts[0] = nstates;
397
398 last_shift->next = sp;
399 last_shift = sp;
400 }
401
402
403 /*---------------------------------------------------------------.
404 | Subroutine of augment_automaton. Create the accepting state. |
405 `---------------------------------------------------------------*/
406
407 static void
408 insert_accepting_state (void)
409 {
410 state_t *statep;
411
412 /* Note that the variable `final_state' refers to what we sometimes
413 call the termination state. */
414 final_state = nstates;
415
416 /* Make the termination state. */
417 statep = STATE_ALLOC (0);
418 statep->number = nstates++;
419 last_state->next = statep;
420 last_state = statep;
421 }
422
423
424
425
426
427 /*------------------------------------------------------------------.
428 | Make sure that the initial state has a shift that accepts the |
429 | grammar's start symbol and goes to the next-to-final state, which |
430 | has a shift going to the final state, which has a shift to the |
431 | termination state. Create such states and shifts if they don't |
432 | happen to exist already. |
433 `------------------------------------------------------------------*/
434
435 static void
436 augment_automaton (void)
437 {
438 if (!first_shift->nshifts)
439 {
440 /* There are no shifts for any state. Make one shift, from the
441 initial state to the next-to-final state. */
442
443 shifts *sp = shifts_new (1);
444 sp->shifts[0] = nstates;
445
446 /* Initialize the chain of shifts with sp. */
447 first_shift = sp;
448 last_shift = sp;
449
450 /* Create the next-to-final state, with shift to
451 what will be the final state. */
452 insert_start_shifting_state ();
453 }
454 else if (first_shift->number == 0)
455 {
456 state_t *statep = first_state->next;
457 shifts *sp = first_shift;
458 shifts *sp1 = NULL;
459 /* The states reached by shifts from FIRST_STATE are numbered
460 1..(SP->NSHIFTS). Look for one reached by START_SYMBOL. */
461 while (statep->accessing_symbol != start_symbol
462 && statep->number < sp->nshifts)
463 statep = statep->next;
464
465 if (statep->accessing_symbol == start_symbol)
466 {
467 /* We already have a next-to-final state.
468 Make sure it has a shift to what will be the final state. */
469 while (sp && sp->number < statep->number)
470 {
471 sp1 = sp;
472 sp = sp->next;
473 }
474
475 if (sp && sp->number == statep->number)
476 {
477 int i;
478 shifts *sp2 = shifts_new (sp->nshifts + 1);
479 sp2->number = statep->number;
480 sp2->shifts[0] = nstates;
481 for (i = sp->nshifts; i > 0; i--)
482 sp2->shifts[i] = sp->shifts[i - 1];
483
484 /* Patch sp2 into the chain of shifts in place of sp,
485 following sp1. */
486 sp2->next = sp->next;
487 sp1->next = sp2;
488 if (sp == last_shift)
489 last_shift = sp2;
490 XFREE (sp);
491 }
492 else
493 {
494 shifts *sp2 = shifts_new (1);
495 sp2->number = statep->number;
496 sp2->shifts[0] = nstates;
497
498 /* Patch sp2 into the chain of shifts between sp1 and sp. */
499 sp2->next = sp;
500 sp1->next = sp2;
501 if (sp == 0)
502 last_shift = sp2;
503 }
504 }
505 else
506 {
507 int i, k;
508 shifts *sp2;
509 sp = first_shift;
510
511 /* There is no next-to-final state as yet. */
512 /* Add one more shift in first_shift,
513 going to the next-to-final state (yet to be made). */
514 sp2 = shifts_new (sp->nshifts + 1);
515
516 /* Stick this shift into the vector at the proper place. */
517 statep = first_state->next;
518 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
519 {
520 if (statep->accessing_symbol > start_symbol && i == k)
521 sp2->shifts[k++] = nstates;
522 sp2->shifts[k] = sp->shifts[i];
523 statep = statep->next;
524 }
525 if (i == k)
526 sp2->shifts[k++] = nstates;
527
528 /* Patch sp2 into the chain of shifts
529 in place of sp, at the beginning. */
530 sp2->next = sp->next;
531 first_shift = sp2;
532 if (last_shift == sp)
533 last_shift = sp2;
534
535 XFREE (sp);
536
537 /* Create the next-to-final state, with shift to
538 what will be the final state. */
539 insert_start_shifting_state ();
540 }
541 }
542 else
543 {
544 /* The initial state didn't even have any shifts.
545 Give it one shift, to the next-to-final state. */
546 shifts *sp = shifts_new (1);
547 sp->shifts[0] = nstates;
548
549 /* Patch sp into the chain of shifts at the beginning. */
550 sp->next = first_shift;
551 first_shift = sp;
552
553 /* Create the next-to-final state, with shift to
554 what will be the final state. */
555 insert_start_shifting_state ();
556 }
557
558 insert_eof_shifting_state ();
559 insert_accepting_state ();
560 }
561
562
563 /*----------------------------------------------------------------.
564 | Find which rules can be used for reduction transitions from the |
565 | current state and make a reductions structure for the state to |
566 | record their rule numbers. |
567 `----------------------------------------------------------------*/
568
569 static void
570 save_reductions (void)
571 {
572 int count;
573 int i;
574
575 /* Find and count the active items that represent ends of rules. */
576
577 count = 0;
578 for (i = 0; i < nitemset; ++i)
579 {
580 int item = ritem[itemset[i]];
581 if (item < 0)
582 redset[count++] = -item;
583 }
584
585 /* Make a reductions structure and copy the data into it. */
586
587 if (count)
588 {
589 reductions *p = REDUCTIONS_ALLOC (count);
590 p->nreds = count;
591 shortcpy (p->rules, redset, count);
592
593 this_state->reductions = p;
594 }
595 }
596
597 \f
598 /*-------------------------------------------------------------------.
599 | Compute the nondeterministic finite state machine (see state.h for |
600 | details) from the grammar. |
601 `-------------------------------------------------------------------*/
602
603 void
604 generate_states (void)
605 {
606 allocate_storage ();
607 new_closure (nitems);
608 new_states ();
609
610 while (this_state)
611 {
612 if (trace_flag)
613 fprintf (stderr, "Processing state %d (reached by %s)\n",
614 this_state->number, tags[this_state->accessing_symbol]);
615 /* Set up ruleset and itemset for the transitions out of this
616 state. ruleset gets a 1 bit for each rule that could reduce
617 now. itemset gets a vector of all the items that could be
618 accepted next. */
619 closure (this_state->items, this_state->nitems);
620 /* record the reductions allowed out of this state */
621 save_reductions ();
622 /* find the itemsets of the states that shifts can reach */
623 new_itemsets ();
624 /* find or create the core structures for those states */
625 append_states ();
626
627 /* create the shifts structures for the shifts to those states,
628 now that the state numbers transitioning to are known */
629 save_shifts ();
630
631 /* states are queued when they are created; process them all */
632 this_state = this_state->next;
633 }
634
635 /* discard various storage */
636 free_closure ();
637 free_storage ();
638
639 /* set up initial and final states as parser wants them */
640 augment_automaton ();
641 }