]> git.saurik.com Git - bison.git/blob - src/state.h
6b0a3de1e6711a62ebd5448a531f716f6b24beff
[bison.git] / src / state.h
1 /* Type definitions for nondeterministic finite state machine for bison,
2
3 Copyright (C) 1984, 1989, 2000, 2001, 2002 Free Software
4 Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 Bison is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 Bison is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with Bison; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* These type definitions are used to represent a nondeterministic
25 finite state machine that parses the specified grammar. This
26 information is generated by the function generate_states in the
27 file LR0.
28
29 Each state of the machine is described by a set of items --
30 particular positions in particular rules -- that are the possible
31 places where parsing could continue when the machine is in this
32 state. These symbols at these items are the allowable inputs that
33 can follow now.
34
35 A core represents one state. States are numbered in the NUMBER
36 field. When generate_states is finished, the starting state is
37 state 0 and NSTATES is the number of states. (FIXME: This sentence
38 is no longer true: A transition to a state whose state number is
39 NSTATES indicates termination.) All the cores are chained together
40 and FIRST_STATE points to the first one (state 0).
41
42 For each state there is a particular symbol which must have been
43 the last thing accepted to reach that state. It is the
44 ACCESSING_SYMBOL of the core.
45
46 Each core contains a vector of NITEMS items which are the indices
47 in the RITEMS vector of the items that are selected in this state.
48
49 The two types of actions are shifts/gotos (push the lookahead token
50 and read another/goto to the state designated by a nterm) and
51 reductions (combine the last n things on the stack via a rule,
52 replace them with the symbol that the rule derives, and leave the
53 lookahead token alone). When the states are generated, these
54 actions are represented in two other lists.
55
56 Each transition structure describes the possible transitions out
57 of one state, the state whose number is in the number field. Each
58 contains a vector of numbers of the states that transitions can go
59 to. The accessing_symbol fields of those states' cores say what
60 kind of input leads to them.
61
62 A transition to state zero should be ignored: conflict resolution
63 deletes transitions by having them point to zero.
64
65 Each reductions structure describes the possible reductions at the
66 state whose number is in the number field. The data is a list of
67 nreds rules, represented by their rule numbers. first_reduction
68 points to the list of these structures.
69
70 Conflict resolution can decide that certain tokens in certain
71 states should explicitly be errors (for implementing %nonassoc).
72 For each state, the tokens that are errors for this reason are
73 recorded in an errs structure, which holds the token numbers.
74
75 There is at least one goto transition present in state zero. It
76 leads to a next-to-final state whose accessing_symbol is the
77 grammar's start symbol. The next-to-final state has one shift to
78 the final state, whose accessing_symbol is zero (end of input).
79 The final state has one shift, which goes to the termination state.
80 The reason for the extra state at the end is to placate the
81 parser's strategy of making all decisions one token ahead of its
82 actions. */
83
84 #ifndef STATE_H_
85 # define STATE_H_
86
87 # include <bitset.h>
88
89 # include "gram.h"
90 # include "symtab.h"
91
92
93 /*-------------------.
94 | Numbering states. |
95 `-------------------*/
96
97 typedef short state_number;
98 # define STATE_NUMBER_MAXIMUM SHRT_MAX
99
100 /* Be ready to map a state_number to an int. */
101 # define state_number_as_int(Tok) ((int) (Tok))
102
103
104 typedef struct state state;
105
106 /*--------------.
107 | Transitions. |
108 `--------------*/
109
110 typedef struct
111 {
112 short num;
113 state *states[1];
114 } transitions;
115
116
117 /* What is the symbol labelling the transition to
118 TRANSITIONS->states[Num]? Can be a token (amongst which the error
119 token), or non terminals in case of gotos. */
120
121 #define TRANSITION_SYMBOL(Transitions, Num) \
122 (Transitions->states[Num]->accessing_symbol)
123
124 /* Is the TRANSITIONS->states[Num] a shift? (as opposed to gotos). */
125
126 #define TRANSITION_IS_SHIFT(Transitions, Num) \
127 (ISTOKEN (TRANSITION_SYMBOL (Transitions, Num)))
128
129 /* Is the TRANSITIONS->states[Num] a goto?. */
130
131 #define TRANSITION_IS_GOTO(Transitions, Num) \
132 (!TRANSITION_IS_SHIFT (Transitions, Num))
133
134 /* Is the TRANSITIONS->states[Num] labelled by the error token? */
135
136 #define TRANSITION_IS_ERROR(Transitions, Num) \
137 (TRANSITION_SYMBOL (Transitions, Num) == errtoken->number)
138
139 /* When resolving a SR conflicts, if the reduction wins, the shift is
140 disabled. */
141
142 #define TRANSITION_DISABLE(Transitions, Num) \
143 (Transitions->states[Num] = NULL)
144
145 #define TRANSITION_IS_DISABLED(Transitions, Num) \
146 (Transitions->states[Num] == NULL)
147
148
149 /* Iterate over each transition over a token (shifts). */
150 #define FOR_EACH_SHIFT(Transitions, Iter) \
151 for (Iter = 0; \
152 Iter < Transitions->num \
153 && (TRANSITION_IS_DISABLED (Transitions, Iter) \
154 || TRANSITION_IS_SHIFT (Transitions, Iter)); \
155 ++Iter) \
156 if (!TRANSITION_IS_DISABLED (Transitions, Iter))
157
158
159 /* Return the state such SHIFTS contain a shift/goto to it on S.
160 Abort if none found. */
161 struct state *transitions_to (transitions *shifts, symbol_number s);
162
163
164 /*-------.
165 | Errs. |
166 `-------*/
167
168 typedef struct
169 {
170 short num;
171 symbol *symbols[1];
172 } errs;
173
174 errs *errs_new (int num, symbol **tokens);
175
176
177 /*-------------.
178 | Reductions. |
179 `-------------*/
180
181 typedef struct
182 {
183 short num;
184 bitset *lookaheads;
185 rule *rules[1];
186 } reductions;
187
188
189
190 /*---------.
191 | states. |
192 `---------*/
193
194 struct state
195 {
196 state_number number;
197 symbol_number accessing_symbol;
198 transitions *transitions;
199 reductions *reductions;
200 errs *errs;
201
202 /* Nonzero if no lookahead is needed to decide what to do in state S. */
203 char consistent;
204
205 /* If some conflicts were solved thanks to precedence/associativity,
206 a human readable description of the resolution. */
207 const char *solved_conflicts;
208
209 /* Its items. Must be last, since ITEMS can be arbitrarily large.
210 */
211 unsigned short nitems;
212 item_number items[1];
213 };
214
215 extern state_number nstates;
216 extern state *final_state;
217
218 /* Create a new state with ACCESSING_SYMBOL for those items. */
219 state *state_new (symbol_number accessing_symbol,
220 size_t core_size, item_number *core);
221
222 /* Set the transitions of STATE. */
223 void state_transitions_set (state *s, int num, state **trans);
224
225 /* Set the reductions of STATE. */
226 void state_reductions_set (state *s, int num, rule **reds);
227
228 int state_reduction_find (state *s, rule *r);
229
230 /* Set the errs of STATE. */
231 void state_errs_set (state *s, int num, symbol **errors);
232
233 /* Print on OUT all the lookaheads such that this STATE wants to
234 reduce R. */
235 void state_rule_lookaheads_print (state *s, rule *r, FILE *out);
236
237 /* Create/destroy the states hash table. */
238 void state_hash_new (void);
239 void state_hash_free (void);
240
241 /* Find the state associated to the CORE, and return it. If it does
242 not exist yet, return NULL. */
243 state *state_hash_lookup (size_t core_size, item_number *core);
244
245 /* Insert STATE in the state hash table. */
246 void state_hash_insert (state *s);
247
248 /* All the states, indexed by the state number. */
249 extern state **states;
250
251 /* Free all the states. */
252 void states_free (void);
253 #endif /* !STATE_H_ */