]>
git.saurik.com Git - bison.git/blob - src/LR0.c
65c9ec07f5313d4b4d02f5ba941c08813da8c020
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of Bison, the GNU Compiler Compiler.
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
39 unsigned int nstates
= 0;
40 /* Initialize the final state to -1, otherwise, it might be set to 0
41 by default, and since we don't compute the reductions of the final
42 state, we end up not computing the reductions of the initial state,
43 which is of course needed.
45 FINAL_STATE is properly set by new_state when it recognizes the
46 accessing symbol: EOF. */
48 static state_t
*first_state
= NULL
;
50 static state_t
*this_state
= NULL
;
51 static state_t
*last_state
= NULL
;
54 static short *shift_symbol
= NULL
;
56 static short *redset
= NULL
;
57 static short *shiftset
= NULL
;
59 static item_number_t
**kernel_base
= NULL
;
60 static int *kernel_size
= NULL
;
61 static item_number_t
*kernel_items
= NULL
;
63 /* hash table for states, to recognize equivalent ones. */
65 #define STATE_HASH_SIZE 1009
66 static state_t
**state_hash
= NULL
;
70 allocate_itemsets (void)
75 /* Count the number of occurrences of all the symbols in RITEMS.
76 Note that useless productions (hence useless nonterminals) are
77 browsed too, hence we need to allocate room for _all_ the
80 short *symbol_count
= XCALLOC (short, nsyms
+ nuseless_nonterminals
);
82 for (r
= 1; r
< nrules
+ 1; ++r
)
83 for (rhsp
= rules
[r
].rhs
; *rhsp
>= 0; ++rhsp
)
86 symbol_count
[*rhsp
]++;
89 /* See comments before new_itemsets. All the vectors of items
90 live inside KERNEL_ITEMS. The number of active items after
91 some symbol cannot be more than the number of times that symbol
92 appears as an item, which is symbol_count[symbol].
93 We allocate that much space for each symbol. */
95 kernel_base
= XCALLOC (item_number_t
*, nsyms
);
97 kernel_items
= XCALLOC (item_number_t
, count
);
100 for (i
= 0; i
< nsyms
; i
++)
102 kernel_base
[i
] = kernel_items
+ count
;
103 count
+= symbol_count
[i
];
107 kernel_size
= XCALLOC (int, nsyms
);
112 allocate_storage (void)
114 allocate_itemsets ();
116 shiftset
= XCALLOC (short, nsyms
);
117 redset
= XCALLOC (short, nrules
+ 1);
118 state_hash
= XCALLOC (state_t
*, STATE_HASH_SIZE
);
119 shift_symbol
= XCALLOC (short, nsyms
);
131 XFREE (kernel_items
);
138 /*----------------------------------------------------------------.
139 | Find which symbols can be shifted in the current state, and for |
140 | each one record which items would be active after that shift. |
141 | Uses the contents of itemset. |
143 | shift_symbol is set to a vector of the symbols that can be |
144 | shifted. For each symbol in the grammar, kernel_base[symbol] |
145 | points to a vector of item numbers activated if that symbol is |
146 | shifted, and kernel_size[symbol] is their numbers. |
147 `----------------------------------------------------------------*/
155 fprintf (stderr
, "Entering new_itemsets, state = %d\n",
158 for (i
= 0; i
< nsyms
; i
++)
163 for (i
= 0; i
< nritemset
; ++i
)
165 int symbol
= ritem
[itemset
[i
]];
168 if (!kernel_size
[symbol
])
170 shift_symbol
[nshifts
] = symbol
;
174 kernel_base
[symbol
][kernel_size
[symbol
]] = itemset
[i
] + 1;
175 kernel_size
[symbol
]++;
182 /*-----------------------------------------------------------------.
183 | Subroutine of get_state. Create a new state for those items, if |
185 `-----------------------------------------------------------------*/
188 new_state (int symbol
)
193 fprintf (stderr
, "Entering new_state, state = %d, symbol = %d (%s)\n",
194 nstates
, symbol
, quotearg_style (escape_quoting_style
,
195 symbols
[symbol
]->tag
));
197 if (nstates
>= SHRT_MAX
)
198 fatal (_("too many states (max %d)"), SHRT_MAX
);
200 p
= STATE_ALLOC (kernel_size
[symbol
]);
201 p
->accessing_symbol
= symbol
;
203 p
->nitems
= kernel_size
[symbol
];
205 memcpy (p
->items
, kernel_base
[symbol
],
206 kernel_size
[symbol
] * sizeof (kernel_base
[symbol
][0]));
208 /* If this is the eoftoken, and this is not the initial state, then
209 this is the final state. */
210 if (symbol
== 0 && first_state
)
211 final_state
= p
->number
;
216 last_state
->next
= p
;
225 /*--------------------------------------------------------------.
226 | Find the state number for the state we would get to (from the |
227 | current state) by shifting symbol. Create a new state if no |
228 | equivalent one exists already. Used by append_states. |
229 `--------------------------------------------------------------*/
232 get_state (int symbol
)
239 fprintf (stderr
, "Entering get_state, state = %d, symbol = %d (%s)\n",
240 this_state
->number
, symbol
, quotearg_style (escape_quoting_style
,
241 symbols
[symbol
]->tag
));
243 /* Add up the target state's active item numbers to get a hash key.
246 for (i
= 0; i
< kernel_size
[symbol
]; ++i
)
247 key
+= kernel_base
[symbol
][i
];
248 key
= key
% STATE_HASH_SIZE
;
249 sp
= state_hash
[key
];
256 if (sp
->nitems
== kernel_size
[symbol
])
259 for (i
= 0; i
< kernel_size
[symbol
]; ++i
)
260 if (kernel_base
[symbol
][i
] != sp
->items
[i
])
270 else /* bucket exhausted and no match */
272 sp
= sp
->link
= new_state (symbol
);
278 else /* bucket is empty */
280 state_hash
[key
] = sp
= new_state (symbol
);
284 fprintf (stderr
, "Exiting get_state => %d\n", sp
->number
);
289 /*------------------------------------------------------------------.
290 | Use the information computed by new_itemsets to find the state |
291 | numbers reached by each shift transition from the current state. |
293 | shiftset is set up as a vector of state numbers of those states. |
294 `------------------------------------------------------------------*/
304 fprintf (stderr
, "Entering append_states, state = %d\n",
307 /* first sort shift_symbol into increasing order */
309 for (i
= 1; i
< nshifts
; i
++)
311 symbol
= shift_symbol
[i
];
313 while (j
> 0 && shift_symbol
[j
- 1] > symbol
)
315 shift_symbol
[j
] = shift_symbol
[j
- 1];
318 shift_symbol
[j
] = symbol
;
321 for (i
= 0; i
< nshifts
; i
++)
322 shiftset
[i
] = get_state (shift_symbol
[i
]);
329 /* The 0 at the lhs is the index of the item of this initial rule. */
330 kernel_base
[0][0] = 0;
332 this_state
= new_state (0);
336 /*------------------------------------------------------------.
337 | Save the NSHIFTS of SHIFTSET into the current linked list. |
338 `------------------------------------------------------------*/
343 shifts
*p
= shifts_new (nshifts
);
344 memcpy (p
->shifts
, shiftset
, nshifts
* sizeof (shiftset
[0]));
345 this_state
->shifts
= p
;
349 /*----------------------------------------------------------------.
350 | Find which rules can be used for reduction transitions from the |
351 | current state and make a reductions structure for the state to |
352 | record their rule numbers. |
353 `----------------------------------------------------------------*/
356 save_reductions (void)
361 /* If this is the final state, we want it to have no reductions at
362 all, although it has one for `START_SYMBOL EOF .'. */
363 if (this_state
->number
== final_state
)
366 /* Find and count the active items that represent ends of rules. */
367 for (i
= 0; i
< nritemset
; ++i
)
369 int item
= ritem
[itemset
[i
]];
371 redset
[count
++] = -item
;
374 /* Make a reductions structure and copy the data into it. */
375 this_state
->reductions
= reductions_new (count
);
376 memcpy (this_state
->reductions
->rules
, redset
, count
* sizeof (redset
[0]));
388 states
= XCALLOC (state_t
*, nstates
);
390 for (sp
= first_state
; sp
; sp
= sp
->next
)
392 /* Pessimization, but simplification of the code: make sure all
393 the states have a shifts, errs, and reductions, even if
396 sp
->shifts
= shifts_new (0);
398 sp
->errs
= errs_new (0);
400 sp
->reductions
= reductions_new (0);
402 states
[sp
->number
] = sp
;
406 /*-------------------------------------------------------------------.
407 | Compute the nondeterministic finite state machine (see state.h for |
408 | details) from the grammar. |
409 `-------------------------------------------------------------------*/
412 generate_states (void)
415 new_closure (nritems
);
421 fprintf (stderr
, "Processing state %d (reached by %s)\n",
423 quotearg_style (escape_quoting_style
,
424 symbols
[this_state
->accessing_symbol
]->tag
));
425 /* Set up ruleset and itemset for the transitions out of this
426 state. ruleset gets a 1 bit for each rule that could reduce
427 now. itemset gets a vector of all the items that could be
429 closure (this_state
->items
, this_state
->nitems
);
430 /* record the reductions allowed out of this state */
432 /* find the itemsets of the states that shifts can reach */
434 /* find or create the core structures for those states */
437 /* create the shifts structures for the shifts to those states,
438 now that the state numbers transitioning to are known */
441 /* states are queued when they are created; process them all */
442 this_state
= this_state
->next
;
445 /* discard various storage */