]> git.saurik.com Git - bison.git/blob - src/reduce.c
60c7c2e8f0a8d93f5e7deda289bcadf5f507d5d2
[bison.git] / src / reduce.c
1 /* Grammar reduction for Bison.
2 Copyright (C) 1988, 1989, 2000 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Reduce the grammar: Find and eliminate unreachable terminals,
23 nonterminals, and productions. David S. Bakin. */
24
25 /* Don't eliminate unreachable terminals: They may be used by the
26 user's parser. */
27
28 #include "system.h"
29 #include "getargs.h"
30 #include "files.h"
31 #include "gram.h"
32 #include "xalloc.h"
33 #include "complain.h"
34 #include "reduce.h"
35 #include "reader.h"
36 #include "getargs.h"
37
38 typedef unsigned *BSet;
39 typedef short *rule;
40
41
42 /* N is set of all nonterminals which are not useless. P is set of
43 all rules which have no useless nonterminals in their RHS. V is
44 the set of all accessible symbols. */
45
46 static BSet N, P, V, V1;
47
48 static int nuseful_productions;
49 static int nuseless_productions;
50 static int nuseful_nonterminals;
51 static int nuseless_nonterminals;
52 \f
53 static bool
54 bits_equal (BSet L, BSet R, int n)
55 {
56 int i;
57
58 for (i = n - 1; i >= 0; i--)
59 if (L[i] != R[i])
60 return FALSE;
61 return TRUE;
62 }
63
64
65 static int
66 nbits (unsigned i)
67 {
68 int count = 0;
69
70 while (i != 0)
71 {
72 i ^= (i & ((unsigned) (-(int) i)));
73 ++count;
74 }
75 return count;
76 }
77
78
79 static int
80 bits_size (BSet S, int n)
81 {
82 int i, count = 0;
83
84 for (i = n - 1; i >= 0; i--)
85 count += nbits (S[i]);
86 return count;
87 }
88 \f
89 /*-------------------------------------------------------------------.
90 | Another way to do this would be with a set for each production and |
91 | then do subset tests against N0, but even for the C grammar the |
92 | whole reducing process takes only 2 seconds on my 8Mhz AT. |
93 `-------------------------------------------------------------------*/
94
95 static bool
96 useful_production (int i, BSet N0)
97 {
98 rule r;
99 short n;
100
101 /* A production is useful if all of the nonterminals in its appear
102 in the set of useful nonterminals. */
103
104 for (r = &ritem[rrhs[i]]; *r > 0; r++)
105 if (ISVAR (n = *r))
106 if (!BITISSET (N0, n - ntokens))
107 return FALSE;
108 return TRUE;
109 }
110
111
112 /*---------------------------------------------------------.
113 | Remember that rules are 1-origin, symbols are 0-origin. |
114 `---------------------------------------------------------*/
115
116 static void
117 useless_nonterminals (void)
118 {
119 BSet Np, Ns;
120 int i, n;
121
122 /* N is set as built. Np is set being built this iteration. P is
123 set of all productions which have a RHS all in N. */
124
125 Np = XCALLOC (unsigned, WORDSIZE (nvars));
126
127 /* The set being computed is a set of nonterminals which can derive
128 the empty string or strings consisting of all terminals. At each
129 iteration a nonterminal is added to the set if there is a
130 production with that nonterminal as its LHS for which all the
131 nonterminals in its RHS are already in the set. Iterate until
132 the set being computed remains unchanged. Any nonterminals not
133 in the set at that point are useless in that they will never be
134 used in deriving a sentence of the language.
135
136 This iteration doesn't use any special traversal over the
137 productions. A set is kept of all productions for which all the
138 nonterminals in the RHS are in useful. Only productions not in
139 this set are scanned on each iteration. At the end, this set is
140 saved to be used when finding useful productions: only
141 productions in this set will appear in the final grammar. */
142
143 n = 0;
144 while (1)
145 {
146 for (i = WORDSIZE (nvars) - 1; i >= 0; i--)
147 Np[i] = N[i];
148 for (i = 1; i <= nrules; i++)
149 {
150 if (!BITISSET (P, i))
151 {
152 if (useful_production (i, N))
153 {
154 SETBIT (Np, rlhs[i] - ntokens);
155 SETBIT (P, i);
156 }
157 }
158 }
159 if (bits_equal (N, Np, WORDSIZE (nvars)))
160 break;
161 Ns = Np;
162 Np = N;
163 N = Ns;
164 }
165 XFREE (N);
166 N = Np;
167 }
168
169
170 static void
171 inaccessable_symbols (void)
172 {
173 BSet Vp, Vs, Pp;
174 int i, n;
175 short t;
176 rule r;
177
178 /* Find out which productions are reachable and which symbols are
179 used. Starting with an empty set of productions and a set of
180 symbols which only has the start symbol in it, iterate over all
181 productions until the set of productions remains unchanged for an
182 iteration. For each production which has a LHS in the set of
183 reachable symbols, add the production to the set of reachable
184 productions, and add all of the nonterminals in the RHS of the
185 production to the set of reachable symbols.
186
187 Consider only the (partially) reduced grammar which has only
188 nonterminals in N and productions in P.
189
190 The result is the set P of productions in the reduced grammar,
191 and the set V of symbols in the reduced grammar.
192
193 Although this algorithm also computes the set of terminals which
194 are reachable, no terminal will be deleted from the grammar. Some
195 terminals might not be in the grammar but might be generated by
196 semantic routines, and so the user might want them available with
197 specified numbers. (Is this true?) However, the nonreachable
198 terminals are printed (if running in verbose mode) so that the
199 user can know. */
200
201 Vp = XCALLOC (unsigned, WORDSIZE (nsyms));
202 Pp = XCALLOC (unsigned, WORDSIZE (nrules + 1));
203
204 /* If the start symbol isn't useful, then nothing will be useful. */
205 if (!BITISSET (N, start_symbol - ntokens))
206 goto end_iteration;
207
208 SETBIT (V, start_symbol);
209
210 n = 0;
211 while (1)
212 {
213 for (i = WORDSIZE (nsyms) - 1; i >= 0; i--)
214 Vp[i] = V[i];
215 for (i = 1; i <= nrules; i++)
216 {
217 if (!BITISSET (Pp, i) && BITISSET (P, i) && BITISSET (V, rlhs[i]))
218 {
219 for (r = &ritem[rrhs[i]]; *r >= 0; r++)
220 {
221 if (ISTOKEN (t = *r) || BITISSET (N, t - ntokens))
222 {
223 SETBIT (Vp, t);
224 }
225 }
226 SETBIT (Pp, i);
227 }
228 }
229 if (bits_equal (V, Vp, WORDSIZE (nsyms)))
230 {
231 break;
232 }
233 Vs = Vp;
234 Vp = V;
235 V = Vs;
236 }
237 end_iteration:
238
239 XFREE (V);
240 V = Vp;
241
242 /* Tokens 0, 1, and 2 are internal to Bison. Consider them useful. */
243 SETBIT (V, 0); /* end-of-input token */
244 SETBIT (V, 1); /* error token */
245 SETBIT (V, 2); /* some undefined token */
246
247 XFREE (P);
248 P = Pp;
249
250 nuseful_productions = bits_size (P, WORDSIZE (nrules + 1));
251 nuseless_productions = nrules - nuseful_productions;
252
253 nuseful_nonterminals = 0;
254 for (i = ntokens; i < nsyms; i++)
255 if (BITISSET (V, i))
256 nuseful_nonterminals++;
257 nuseless_nonterminals = nvars - nuseful_nonterminals;
258
259 /* A token that was used in %prec should not be warned about. */
260 for (i = 1; i < nrules; i++)
261 if (rprecsym[i] != 0)
262 SETBIT (V1, rprecsym[i]);
263 }
264
265 static void
266 reduce_grammar_tables (void)
267 {
268 /* This is turned off because we would need to change the numbers
269 in the case statements in the actions file. */
270 #if 0
271 /* remove useless productions */
272 if (nuseless_productions > 0)
273 {
274 short np, pn, ni, pi;
275
276 np = 0;
277 ni = 0;
278 for (pn = 1; pn <= nrules; pn++)
279 {
280 if (BITISSET (P, pn))
281 {
282 np++;
283 if (pn != np)
284 {
285 rlhs[np] = rlhs[pn];
286 rline[np] = rline[pn];
287 rprec[np] = rprec[pn];
288 rassoc[np] = rassoc[pn];
289 rrhs[np] = rrhs[pn];
290 if (rrhs[np] != ni)
291 {
292 pi = rrhs[np];
293 rrhs[np] = ni;
294 while (ritem[pi] >= 0)
295 ritem[ni++] = ritem[pi++];
296 ritem[ni++] = -np;
297 }
298 }
299 else
300 {
301 while (ritem[ni++] >= 0);
302 }
303 }
304 }
305 ritem[ni] = 0;
306 nrules -= nuseless_productions;
307 nitems = ni;
308
309 /* Is it worth it to reduce the amount of memory for the
310 grammar? Probably not. */
311
312 }
313 #endif /* 0 */
314 /* Disable useless productions,
315 since they may contain useless nonterms
316 that would get mapped below to -1 and confuse everyone. */
317 if (nuseless_productions > 0)
318 {
319 int pn;
320
321 for (pn = 1; pn <= nrules; pn++)
322 {
323 if (!BITISSET (P, pn))
324 {
325 rlhs[pn] = -1;
326 }
327 }
328 }
329
330 /* remove useless symbols */
331 if (nuseless_nonterminals > 0)
332 {
333
334 int i, n;
335 /* short j; JF unused */
336 short *nontermmap;
337 rule r;
338
339 /* Create a map of nonterminal number to new nonterminal
340 number. -1 in the map means it was useless and is being
341 eliminated. */
342
343 nontermmap = XCALLOC (short, nvars) - ntokens;
344 for (i = ntokens; i < nsyms; i++)
345 nontermmap[i] = -1;
346
347 n = ntokens;
348 for (i = ntokens; i < nsyms; i++)
349 if (BITISSET (V, i))
350 nontermmap[i] = n++;
351
352 /* Shuffle elements of tables indexed by symbol number. */
353
354 for (i = ntokens; i < nsyms; i++)
355 {
356 n = nontermmap[i];
357 if (n >= 0)
358 {
359 sassoc[n] = sassoc[i];
360 sprec[n] = sprec[i];
361 tags[n] = tags[i];
362 }
363 else
364 {
365 free (tags[i]);
366 }
367 }
368
369 /* Replace all symbol numbers in valid data structures. */
370
371 for (i = 1; i <= nrules; i++)
372 {
373 /* Ignore the rules disabled above. */
374 if (rlhs[i] >= 0)
375 rlhs[i] = nontermmap[rlhs[i]];
376 if (ISVAR (rprecsym[i]))
377 /* Can this happen? */
378 rprecsym[i] = nontermmap[rprecsym[i]];
379 }
380
381 for (r = ritem; *r; r++)
382 if (ISVAR (*r))
383 *r = nontermmap[*r];
384
385 start_symbol = nontermmap[start_symbol];
386
387 nsyms -= nuseless_nonterminals;
388 nvars -= nuseless_nonterminals;
389
390 free (&nontermmap[ntokens]);
391 }
392 }
393
394 static void
395 print_results (void)
396 {
397 int i;
398 /* short j; JF unused */
399 rule r;
400 bool b;
401
402 if (nuseless_nonterminals > 0)
403 {
404 fprintf (foutput, _("Useless nonterminals:\n\n"));
405 for (i = ntokens; i < nsyms; i++)
406 if (!BITISSET (V, i))
407 fprintf (foutput, " %s\n", tags[i]);
408 }
409 b = FALSE;
410 for (i = 0; i < ntokens; i++)
411 {
412 if (!BITISSET (V, i) && !BITISSET (V1, i))
413 {
414 if (!b)
415 {
416 fprintf (foutput, _("\n\nTerminals which are not used:\n\n"));
417 b = TRUE;
418 }
419 fprintf (foutput, " %s\n", tags[i]);
420 }
421 }
422
423 if (nuseless_productions > 0)
424 {
425 fprintf (foutput, _("\n\nUseless rules:\n\n"));
426 for (i = 1; i <= nrules; i++)
427 {
428 if (!BITISSET (P, i))
429 {
430 fprintf (foutput, "#%-4d ", i);
431 fprintf (foutput, "%s :\t", tags[rlhs[i]]);
432 for (r = &ritem[rrhs[i]]; *r >= 0; r++)
433 {
434 fprintf (foutput, " %s", tags[*r]);
435 }
436 fprintf (foutput, ";\n");
437 }
438 }
439 }
440 if (nuseless_nonterminals > 0 || nuseless_productions > 0 || b)
441 fprintf (foutput, "\n\n");
442 }
443 \f
444 #if 0 /* XXX currently unused. */
445 static void
446 dump_grammar (void)
447 {
448 int i;
449 rule r;
450
451 fprintf (foutput,
452 "ntokens = %d, nvars = %d, nsyms = %d, nrules = %d, nitems = %d\n\n",
453 ntokens, nvars, nsyms, nrules, nitems);
454 fprintf (foutput, _("Variables\n---------\n\n"));
455 fprintf (foutput, _("Value Sprec Sassoc Tag\n"));
456 for (i = ntokens; i < nsyms; i++)
457 fprintf (foutput, "%5d %5d %5d %s\n", i, sprec[i], sassoc[i], tags[i]);
458 fprintf (foutput, "\n\n");
459 fprintf (foutput, _("Rules\n-----\n\n"));
460 for (i = 1; i <= nrules; i++)
461 {
462 fprintf (foutput, "%-5d(%5d%5d)%5d : (@%-5d)",
463 i, rprec[i], rassoc[i], rlhs[i], rrhs[i]);
464 for (r = &ritem[rrhs[i]]; *r > 0; r++)
465 fprintf (foutput, "%5d", *r);
466 fprintf (foutput, " [%d]\n", -(*r));
467 }
468 fprintf (foutput, "\n\n");
469 fprintf (foutput, _("Rules interpreted\n-----------------\n\n"));
470 for (i = 1; i <= nrules; i++)
471 {
472 fprintf (foutput, "%-5d %s :", i, tags[rlhs[i]]);
473 for (r = &ritem[rrhs[i]]; *r > 0; r++)
474 fprintf (foutput, " %s", tags[*r]);
475 fprintf (foutput, "\n");
476 }
477 fprintf (foutput, "\n\n");
478 }
479
480 #endif
481
482
483 static void
484 print_notices (void)
485 {
486 if (yacc_flag && nuseless_productions)
487 fprintf (stderr, _("%d rules never reduced\n"), nuseless_productions);
488
489 fprintf (stderr, _("%s contains "), infile);
490
491 if (nuseless_nonterminals > 0)
492 {
493 fprintf (stderr, _("%d useless nonterminal%s"),
494 nuseless_nonterminals,
495 (nuseless_nonterminals == 1 ? "" : "s"));
496 }
497 if (nuseless_nonterminals > 0 && nuseless_productions > 0)
498 fprintf (stderr, _(" and "));
499
500 if (nuseless_productions > 0)
501 {
502 fprintf (stderr, _("%d useless rule%s"),
503 nuseless_productions, (nuseless_productions == 1 ? "" : "s"));
504 }
505 fprintf (stderr, "\n");
506 fflush (stderr);
507 }
508 \f
509 void
510 reduce_grammar (void)
511 {
512 bool reduced;
513
514 /* Allocate the global sets used to compute the reduced grammar */
515
516 N = XCALLOC (unsigned, WORDSIZE (nvars));
517 P = XCALLOC (unsigned, WORDSIZE (nrules + 1));
518 V = XCALLOC (unsigned, WORDSIZE (nsyms));
519 V1 = XCALLOC (unsigned, WORDSIZE (nsyms));
520
521 useless_nonterminals ();
522 inaccessable_symbols ();
523
524 reduced = (bool) (nuseless_nonterminals + nuseless_productions > 0);
525
526 if (verbose_flag)
527 print_results ();
528
529 if (reduced == FALSE)
530 goto done_reducing;
531
532 print_notices ();
533
534 if (!BITISSET (N, start_symbol - ntokens))
535 fatal (_("Start symbol %s does not derive any sentence"),
536 tags[start_symbol]);
537
538 reduce_grammar_tables ();
539 #if 0
540 if (verbose_flag)
541 {
542 fprintf (foutput, "REDUCED GRAMMAR\n\n");
543 dump_grammar ();
544 }
545 #endif
546
547 if (statistics_flag)
548 fprintf (stderr, _("reduced %s defines %d terminal%s, %d nonterminal%s\
549 , and %d production%s.\n"),
550 infile,
551 ntokens,
552 (ntokens == 1 ? "" : "s"),
553 nvars,
554 (nvars == 1 ? "" : "s"),
555 nrules,
556 (nrules == 1 ? "" : "s"));
557
558 done_reducing:
559 /* Free the global sets used to compute the reduced grammar */
560
561 XFREE (N);
562 XFREE (V);
563 XFREE (P);
564 }