]> git.saurik.com Git - bison.git/blob - src/LR0.c
4ea292a9cf03e48286103ce729f9d5d15dfde93c
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "getargs.h"
27 #include "reader.h"
28 #include "gram.h"
29 #include "state.h"
30 #include "complain.h"
31 #include "closure.h"
32 #include "LR0.h"
33 #include "lalr.h"
34 #include "reduce.h"
35
36 int nstates;
37 int final_state;
38 static state_t *first_state = NULL;
39
40 static state_t *this_state = NULL;
41 static state_t *last_state = NULL;
42
43 static int nshifts;
44 static short *shift_symbol = NULL;
45
46 static short *redset = NULL;
47 static short *shiftset = NULL;
48
49 static short **kernel_base = NULL;
50 static int *kernel_size = NULL;
51 static short *kernel_items = NULL;
52
53 /* hash table for states, to recognize equivalent ones. */
54
55 #define STATE_HASH_SIZE 1009
56 static state_t **state_hash = NULL;
57
58 \f
59 static void
60 allocate_itemsets (void)
61 {
62 int i;
63
64 /* Count the number of occurrences of all the symbols in RITEMS.
65 Note that useless productions (hence useless nonterminals) are
66 browsed too, hence we need to allocate room for _all_ the
67 symbols. */
68 int count = 0;
69 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
70
71 for (i = 0; ritem[i]; ++i)
72 if (ritem[i] > 0)
73 {
74 count++;
75 symbol_count[ritem[i]]++;
76 }
77
78 /* See comments before new_itemsets. All the vectors of items
79 live inside KERNEL_ITEMS. The number of active items after
80 some symbol cannot be more than the number of times that symbol
81 appears as an item, which is symbol_count[symbol].
82 We allocate that much space for each symbol. */
83
84 kernel_base = XCALLOC (short *, nsyms);
85 if (count)
86 kernel_items = XCALLOC (short, count);
87
88 count = 0;
89 for (i = 0; i < nsyms; i++)
90 {
91 kernel_base[i] = kernel_items + count;
92 count += symbol_count[i];
93 }
94
95 free (symbol_count);
96 kernel_size = XCALLOC (int, nsyms);
97 }
98
99
100 static void
101 allocate_storage (void)
102 {
103 allocate_itemsets ();
104
105 shiftset = XCALLOC (short, nsyms);
106 redset = XCALLOC (short, nrules + 1);
107 state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
108 }
109
110
111 static void
112 free_storage (void)
113 {
114 free (shift_symbol);
115 free (redset);
116 free (shiftset);
117 free (kernel_base);
118 free (kernel_size);
119 XFREE (kernel_items);
120 free (state_hash);
121 }
122
123
124
125
126 /*----------------------------------------------------------------.
127 | Find which symbols can be shifted in the current state, and for |
128 | each one record which items would be active after that shift. |
129 | Uses the contents of itemset. |
130 | |
131 | shift_symbol is set to a vector of the symbols that can be |
132 | shifted. For each symbol in the grammar, kernel_base[symbol] |
133 | points to a vector of item numbers activated if that symbol is |
134 | shifted, and kernel_size[symbol] is their numbers. |
135 `----------------------------------------------------------------*/
136
137 static void
138 new_itemsets (void)
139 {
140 int i;
141
142 if (trace_flag)
143 fprintf (stderr, "Entering new_itemsets, state = %d\n",
144 this_state->number);
145
146 for (i = 0; i < nsyms; i++)
147 kernel_size[i] = 0;
148
149 shift_symbol = XCALLOC (short, nsyms);
150 nshifts = 0;
151
152 for (i = 0; i < nitemset; ++i)
153 {
154 int symbol = ritem[itemset[i]];
155 if (symbol > 0)
156 {
157 if (!kernel_size[symbol])
158 {
159 shift_symbol[nshifts] = symbol;
160 nshifts++;
161 }
162
163 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
164 kernel_size[symbol]++;
165 }
166 }
167 }
168
169
170
171 /*-----------------------------------------------------------------.
172 | Subroutine of get_state. Create a new state for those items, if |
173 | necessary. |
174 `-----------------------------------------------------------------*/
175
176 static state_t *
177 new_state (int symbol)
178 {
179 state_t *p;
180
181 if (trace_flag)
182 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
183 this_state->number, symbol, tags[symbol]);
184
185 if (nstates >= MAXSHORT)
186 fatal (_("too many states (max %d)"), MAXSHORT);
187
188 p = STATE_ALLOC (kernel_size[symbol]);
189 p->accessing_symbol = symbol;
190 p->number = nstates;
191 p->nitems = kernel_size[symbol];
192
193 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
194
195 last_state->next = p;
196 last_state = p;
197 nstates++;
198
199 return p;
200 }
201
202
203 /*--------------------------------------------------------------.
204 | Find the state number for the state we would get to (from the |
205 | current state) by shifting symbol. Create a new state if no |
206 | equivalent one exists already. Used by append_states. |
207 `--------------------------------------------------------------*/
208
209 static int
210 get_state (int symbol)
211 {
212 int key;
213 int i;
214 state_t *sp;
215
216 if (trace_flag)
217 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
218 this_state->number, symbol, tags[symbol]);
219
220 /* Add up the target state's active item numbers to get a hash key.
221 */
222 key = 0;
223 for (i = 0; i < kernel_size[symbol]; ++i)
224 key += kernel_base[symbol][i];
225 key = key % STATE_HASH_SIZE;
226 sp = state_hash[key];
227
228 if (sp)
229 {
230 int found = 0;
231 while (!found)
232 {
233 if (sp->nitems == kernel_size[symbol])
234 {
235 found = 1;
236 for (i = 0; i < kernel_size[symbol]; ++i)
237 if (kernel_base[symbol][i] != sp->items[i])
238 found = 0;
239 }
240
241 if (!found)
242 {
243 if (sp->link)
244 {
245 sp = sp->link;
246 }
247 else /* bucket exhausted and no match */
248 {
249 sp = sp->link = new_state (symbol);
250 found = 1;
251 }
252 }
253 }
254 }
255 else /* bucket is empty */
256 {
257 state_hash[key] = sp = new_state (symbol);
258 }
259
260 if (trace_flag)
261 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
262
263 return sp->number;
264 }
265
266 /*------------------------------------------------------------------.
267 | Use the information computed by new_itemsets to find the state |
268 | numbers reached by each shift transition from the current state. |
269 | |
270 | shiftset is set up as a vector of state numbers of those states. |
271 `------------------------------------------------------------------*/
272
273 static void
274 append_states (void)
275 {
276 int i;
277 int j;
278 int symbol;
279
280 if (trace_flag)
281 fprintf (stderr, "Entering append_states, state = %d\n",
282 this_state->number);
283
284 /* first sort shift_symbol into increasing order */
285
286 for (i = 1; i < nshifts; i++)
287 {
288 symbol = shift_symbol[i];
289 j = i;
290 while (j > 0 && shift_symbol[j - 1] > symbol)
291 {
292 shift_symbol[j] = shift_symbol[j - 1];
293 j--;
294 }
295 shift_symbol[j] = symbol;
296 }
297
298 for (i = 0; i < nshifts; i++)
299 shiftset[i] = get_state (shift_symbol[i]);
300 }
301
302
303 static void
304 new_states (void)
305 {
306 first_state = last_state = this_state = STATE_ALLOC (0);
307 nstates = 1;
308 }
309
310
311 /*------------------------------------------------------------.
312 | Save the NSHIFTS of SHIFTSET into the current linked list. |
313 `------------------------------------------------------------*/
314
315 static void
316 save_shifts (void)
317 {
318 shifts *p = shifts_new (nshifts);
319
320 p->number = this_state->number;
321 shortcpy (p->shifts, shiftset, nshifts);
322 this_state->shifts = p;
323 }
324
325
326 /*------------------------------------------------------------------.
327 | Subroutine of augment_automaton. Create the next-to-final state, |
328 | to which a shift has already been made in the initial state. |
329 | |
330 | The task of this state consists in shifting (actually, it's a |
331 | goto, but shifts and gotos are both stored in SHIFTS) the start |
332 | symbols, hence the name. |
333 `------------------------------------------------------------------*/
334
335 static void
336 insert_start_shifting_state (void)
337 {
338 state_t *statep;
339 shifts *sp;
340
341 statep = STATE_ALLOC (0);
342 statep->number = nstates;
343
344 /* The distinctive feature of this state from the
345 eof_shifting_state, is that it is labeled as post-start-symbol
346 shifting. I fail to understand why this state, and the
347 post-start-start can't be merged into one. But it does fail if
348 you try. --akim */
349 statep->accessing_symbol = start_symbol;
350
351 last_state->next = statep;
352 last_state = statep;
353
354 /* Make a shift from this state to (what will be) the final state. */
355 sp = shifts_new (1);
356 statep->shifts = sp;
357 sp->number = nstates++;
358 sp->shifts[0] = nstates;
359 }
360
361
362 /*-----------------------------------------------------------------.
363 | Subroutine of augment_automaton. Create the final state, which |
364 | shifts `0', the end of file. The initial state shifts the start |
365 | symbol, and goes to here. |
366 `-----------------------------------------------------------------*/
367
368 static void
369 insert_eof_shifting_state (void)
370 {
371 state_t *statep;
372 shifts *sp;
373
374 /* Make the final state--the one that follows a shift from the
375 next-to-final state.
376 The symbol for that shift is 0 (end-of-file). */
377 statep = STATE_ALLOC (0);
378 statep->number = nstates;
379
380 last_state->next = statep;
381 last_state = statep;
382
383 /* Make the shift from the final state to the termination state. */
384 sp = shifts_new (1);
385 statep->shifts = sp;
386 sp->number = nstates++;
387 sp->shifts[0] = nstates;
388 }
389
390
391 /*---------------------------------------------------------------.
392 | Subroutine of augment_automaton. Create the accepting state. |
393 `---------------------------------------------------------------*/
394
395 static void
396 insert_accepting_state (void)
397 {
398 state_t *statep;
399
400 /* Note that the variable `final_state' refers to what we sometimes
401 call the termination state. */
402 final_state = nstates;
403
404 /* Make the termination state. */
405 statep = STATE_ALLOC (0);
406 statep->number = nstates++;
407 last_state->next = statep;
408 last_state = statep;
409 }
410
411
412
413
414
415 /*------------------------------------------------------------------.
416 | Make sure that the initial state has a shift that accepts the |
417 | grammar's start symbol and goes to the next-to-final state, which |
418 | has a shift going to the final state, which has a shift to the |
419 | termination state. Create such states and shifts if they don't |
420 | happen to exist already. |
421 `------------------------------------------------------------------*/
422
423 static void
424 augment_automaton (void)
425 {
426 if (!first_state->shifts->nshifts)
427 {
428 /* The first state has no shifts. Make one shift, from the
429 initial state to the next-to-final state. */
430
431 shifts *sp = shifts_new (1);
432 first_state->shifts = sp;
433 sp->shifts[0] = nstates;
434
435 /* Create the next-to-final state, with shift to
436 what will be the final state. */
437 insert_start_shifting_state ();
438 }
439 else
440 {
441 state_t *statep = first_state->next;
442 /* The states reached by shifts from FIRST_STATE are numbered
443 1..(SP->NSHIFTS). Look for one reached by START_SYMBOL.
444 This is typical of `start: start ... ;': there is a state
445 with the item `start: start . ...'. We want to add a `shift
446 on EOF to eof-shifting state here. */
447 while (statep->accessing_symbol != start_symbol
448 && statep->number < first_state->shifts->nshifts)
449 statep = statep->next;
450
451 if (statep->accessing_symbol == start_symbol)
452 {
453 /* We already have STATEP, a next-to-final state for `start:
454 start . ...'. Make sure it has a shift to what will be
455 the final state. */
456 int i;
457
458 /* Find the shift of the inital state that leads to STATEP. */
459 shifts *sp = statep->shifts;
460
461 shifts *sp1 = shifts_new (sp->nshifts + 1);
462 sp1->number = statep->number;
463 statep->shifts = sp1;
464 sp1->shifts[0] = nstates;
465 for (i = sp->nshifts; i > 0; i--)
466 sp1->shifts[i] = sp->shifts[i - 1];
467
468 XFREE (sp);
469
470 insert_eof_shifting_state ();
471 }
472 else
473 {
474 /* There is no state for `start: start . ...'. */
475 int i, k;
476 shifts *sp = first_state->shifts;
477 shifts *sp1 = NULL;
478
479 /* Add one more shift to the initial state, going to the
480 next-to-final state (yet to be made). */
481 sp1 = shifts_new (sp->nshifts + 1);
482 first_state->shifts = sp1;
483 /* Stick this shift into the vector at the proper place. */
484 statep = first_state->next;
485 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
486 {
487 if (statep->accessing_symbol > start_symbol && i == k)
488 sp1->shifts[k++] = nstates;
489 sp1->shifts[k] = sp->shifts[i];
490 statep = statep->next;
491 }
492 if (i == k)
493 sp1->shifts[k++] = nstates;
494
495 XFREE (sp);
496
497 /* Create the next-to-final state, with shift to what will
498 be the final state. Corresponds to `start: start . ...'. */
499 insert_start_shifting_state ();
500 }
501 }
502
503 insert_accepting_state ();
504 }
505
506
507 /*----------------------------------------------------------------.
508 | Find which rules can be used for reduction transitions from the |
509 | current state and make a reductions structure for the state to |
510 | record their rule numbers. |
511 `----------------------------------------------------------------*/
512
513 static void
514 save_reductions (void)
515 {
516 int count;
517 int i;
518
519 /* Find and count the active items that represent ends of rules. */
520
521 count = 0;
522 for (i = 0; i < nitemset; ++i)
523 {
524 int item = ritem[itemset[i]];
525 if (item < 0)
526 redset[count++] = -item;
527 }
528
529 /* Make a reductions structure and copy the data into it. */
530
531 if (count)
532 {
533 reductions *p = REDUCTIONS_ALLOC (count);
534 p->nreds = count;
535 shortcpy (p->rules, redset, count);
536
537 this_state->reductions = p;
538 }
539 }
540
541 \f
542 /*--------------------.
543 | Build STATE_TABLE. |
544 `--------------------*/
545
546 static void
547 set_state_table (void)
548 {
549 /* NSTATES + 1 because lookahead for the pseudo state number NSTATES
550 might be used (see conflicts.c). It is too opaque for me to
551 provide a probably less hacky implementation. --akim */
552 state_table = XCALLOC (state_t *, nstates + 1);
553
554 {
555 state_t *sp;
556 for (sp = first_state; sp; sp = sp->next)
557 state_table[sp->number] = sp;
558 }
559
560 /* Pessimization, but simplification of the code: make sure all the
561 states have a shifts, even if reduced to 0 shifts. */
562 {
563 int i;
564 for (i = 0; i < nstates; i++)
565 if (!state_table[i]->shifts)
566 state_table[i]->shifts = shifts_new (0);
567 }
568
569 /* Initializing the lookaheads members. Please note that it must be
570 performed after having set some of the other members which are
571 used below. Change with extreme caution. */
572 {
573 int i;
574 int count = 0;
575 for (i = 0; i < nstates; i++)
576 {
577 int k;
578 reductions *rp = state_table[i]->reductions;
579 shifts *sp = state_table[i]->shifts;
580
581 state_table[i]->lookaheads = count;
582
583 if (rp
584 && (rp->nreds > 1 || (sp->nshifts && SHIFT_IS_SHIFT (sp, 0))))
585 count += rp->nreds;
586 else
587 state_table[i]->consistent = 1;
588
589 for (k = 0; k < sp->nshifts; k++)
590 if (SHIFT_IS_ERROR (sp, k))
591 {
592 state_table[i]->consistent = 0;
593 break;
594 }
595 }
596
597 /* Seems to be needed by conflicts.c. */
598 state_table[nstates] = STATE_ALLOC (0);
599 state_table[nstates]->lookaheads = count;
600 }
601 }
602
603 /*-------------------------------------------------------------------.
604 | Compute the nondeterministic finite state machine (see state.h for |
605 | details) from the grammar. |
606 `-------------------------------------------------------------------*/
607
608 void
609 generate_states (void)
610 {
611 allocate_storage ();
612 new_closure (nitems);
613 new_states ();
614
615 while (this_state)
616 {
617 if (trace_flag)
618 fprintf (stderr, "Processing state %d (reached by %s)\n",
619 this_state->number, tags[this_state->accessing_symbol]);
620 /* Set up ruleset and itemset for the transitions out of this
621 state. ruleset gets a 1 bit for each rule that could reduce
622 now. itemset gets a vector of all the items that could be
623 accepted next. */
624 closure (this_state->items, this_state->nitems);
625 /* record the reductions allowed out of this state */
626 save_reductions ();
627 /* find the itemsets of the states that shifts can reach */
628 new_itemsets ();
629 /* find or create the core structures for those states */
630 append_states ();
631
632 /* create the shifts structures for the shifts to those states,
633 now that the state numbers transitioning to are known */
634 save_shifts ();
635
636 /* states are queued when they are created; process them all */
637 this_state = this_state->next;
638 }
639
640 /* discard various storage */
641 free_closure ();
642 free_storage ();
643
644 /* set up initial and final states as parser wants them */
645 augment_automaton ();
646
647 /* Set up STATE_TABLE. */
648 set_state_table ();
649 }