]> git.saurik.com Git - bison.git/blob - src/LR0.c
3fa5ba5bda947b1bf76a52e0ece86e5d1126f681
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "getargs.h"
27 #include "reader.h"
28 #include "gram.h"
29 #include "state.h"
30 #include "complain.h"
31 #include "closure.h"
32 #include "LR0.h"
33 #include "reduce.h"
34
35 int nstates;
36 int final_state;
37 core *first_state = NULL;
38 shifts *first_shift = NULL;
39 reductions *first_reduction = NULL;
40
41 static core *this_state = NULL;
42 static core *last_state = NULL;
43 static shifts *last_shift = NULL;
44 static reductions *last_reduction = NULL;
45
46 static int nshifts;
47 static short *shift_symbol = NULL;
48
49 static short *redset = NULL;
50 static short *shiftset = NULL;
51
52 static short **kernel_base = NULL;
53 static int *kernel_size = NULL;
54 static short *kernel_items = NULL;
55
56 /* hash table for states, to recognize equivalent ones. */
57
58 #define STATE_TABLE_SIZE 1009
59 static core **state_table = NULL;
60
61 \f
62 static void
63 allocate_itemsets (void)
64 {
65 int i;
66
67 /* Count the number of occurrences of all the symbols in RITEMS.
68 Note that useless productions (hence useless nonterminals) are
69 browsed too, hence we need to allocate room for _all_ the
70 symbols. */
71 int count = 0;
72 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
73
74 for (i = 0; ritem[i]; ++i)
75 if (ritem[i] > 0)
76 {
77 count++;
78 symbol_count[ritem[i]]++;
79 }
80
81 /* See comments before new_itemsets. All the vectors of items
82 live inside KERNEL_ITEMS. The number of active items after
83 some symbol cannot be more than the number of times that symbol
84 appears as an item, which is symbol_count[symbol].
85 We allocate that much space for each symbol. */
86
87 kernel_base = XCALLOC (short *, nsyms);
88 if (count)
89 kernel_items = XCALLOC (short, count);
90
91 count = 0;
92 for (i = 0; i < nsyms; i++)
93 {
94 kernel_base[i] = kernel_items + count;
95 count += symbol_count[i];
96 }
97
98 free (symbol_count);
99 kernel_size = XCALLOC (int, nsyms);
100 }
101
102
103 static void
104 allocate_storage (void)
105 {
106 allocate_itemsets ();
107
108 shiftset = XCALLOC (short, nsyms);
109 redset = XCALLOC (short, nrules + 1);
110 state_table = XCALLOC (core *, STATE_TABLE_SIZE);
111 }
112
113
114 static void
115 free_storage (void)
116 {
117 free (shift_symbol);
118 free (redset);
119 free (shiftset);
120 free (kernel_base);
121 free (kernel_size);
122 XFREE (kernel_items);
123 free (state_table);
124 }
125
126
127
128
129 /*----------------------------------------------------------------.
130 | Find which symbols can be shifted in the current state, and for |
131 | each one record which items would be active after that shift. |
132 | Uses the contents of itemset. |
133 | |
134 | shift_symbol is set to a vector of the symbols that can be |
135 | shifted. For each symbol in the grammar, kernel_base[symbol] |
136 | points to a vector of item numbers activated if that symbol is |
137 | shifted, and kernel_size[symbol] is their numbers. |
138 `----------------------------------------------------------------*/
139
140 static void
141 new_itemsets (void)
142 {
143 int i;
144
145 if (trace_flag)
146 fprintf (stderr, "Entering new_itemsets, state = %d\n",
147 this_state->number);
148
149 for (i = 0; i < nsyms; i++)
150 kernel_size[i] = 0;
151
152 shift_symbol = XCALLOC (short, nsyms);
153 nshifts = 0;
154
155 for (i = 0; i < nitemset; ++i)
156 {
157 int symbol = ritem[itemset[i]];
158 if (symbol > 0)
159 {
160 if (!kernel_size[symbol])
161 {
162 shift_symbol[nshifts] = symbol;
163 nshifts++;
164 }
165
166 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
167 kernel_size[symbol]++;
168 }
169 }
170 }
171
172
173
174 /*-----------------------------------------------------------------.
175 | Subroutine of get_state. Create a new state for those items, if |
176 | necessary. |
177 `-----------------------------------------------------------------*/
178
179 static core *
180 new_state (int symbol)
181 {
182 core *p;
183
184 if (trace_flag)
185 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
186 this_state->number, symbol, tags[symbol]);
187
188 if (nstates >= MAXSHORT)
189 fatal (_("too many states (max %d)"), MAXSHORT);
190
191 p = CORE_ALLOC (kernel_size[symbol]);
192 p->accessing_symbol = symbol;
193 p->number = nstates;
194 p->nitems = kernel_size[symbol];
195
196 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
197
198 last_state->next = p;
199 last_state = p;
200 nstates++;
201
202 return p;
203 }
204
205
206 /*--------------------------------------------------------------.
207 | Find the state number for the state we would get to (from the |
208 | current state) by shifting symbol. Create a new state if no |
209 | equivalent one exists already. Used by append_states. |
210 `--------------------------------------------------------------*/
211
212 static int
213 get_state (int symbol)
214 {
215 int key;
216 int i;
217 core *sp;
218
219 if (trace_flag)
220 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
221 this_state->number, symbol, tags[symbol]);
222
223 /* Add up the target state's active item numbers to get a hash key.
224 */
225 key = 0;
226 for (i = 0; i < kernel_size[symbol]; ++i)
227 key += kernel_base[symbol][i];
228 key = key % STATE_TABLE_SIZE;
229 sp = state_table[key];
230
231 if (sp)
232 {
233 int found = 0;
234 while (!found)
235 {
236 if (sp->nitems == kernel_size[symbol])
237 {
238 found = 1;
239 for (i = 0; i < kernel_size[symbol]; ++i)
240 if (kernel_base[symbol][i] != sp->items[i])
241 found = 0;
242 }
243
244 if (!found)
245 {
246 if (sp->link)
247 {
248 sp = sp->link;
249 }
250 else /* bucket exhausted and no match */
251 {
252 sp = sp->link = new_state (symbol);
253 found = 1;
254 }
255 }
256 }
257 }
258 else /* bucket is empty */
259 {
260 state_table[key] = sp = new_state (symbol);
261 }
262
263 if (trace_flag)
264 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
265
266 return sp->number;
267 }
268
269 /*------------------------------------------------------------------.
270 | Use the information computed by new_itemsets to find the state |
271 | numbers reached by each shift transition from the current state. |
272 | |
273 | shiftset is set up as a vector of state numbers of those states. |
274 `------------------------------------------------------------------*/
275
276 static void
277 append_states (void)
278 {
279 int i;
280 int j;
281 int symbol;
282
283 if (trace_flag)
284 fprintf (stderr, "Entering append_states, state = %d\n",
285 this_state->number);
286
287 /* first sort shift_symbol into increasing order */
288
289 for (i = 1; i < nshifts; i++)
290 {
291 symbol = shift_symbol[i];
292 j = i;
293 while (j > 0 && shift_symbol[j - 1] > symbol)
294 {
295 shift_symbol[j] = shift_symbol[j - 1];
296 j--;
297 }
298 shift_symbol[j] = symbol;
299 }
300
301 for (i = 0; i < nshifts; i++)
302 shiftset[i] = get_state (shift_symbol[i]);
303 }
304
305
306 static void
307 new_states (void)
308 {
309 first_state = last_state = this_state = CORE_ALLOC (0);
310 nstates = 1;
311 }
312
313
314 /*------------------------------------------------------------.
315 | Save the NSHIFTS of SHIFTSET into the current linked list. |
316 `------------------------------------------------------------*/
317
318 static void
319 save_shifts (void)
320 {
321 shifts *p = shifts_new (nshifts);
322
323 p->number = this_state->number;
324
325 shortcpy (p->shifts, shiftset, nshifts);
326
327 if (last_shift)
328 last_shift->next = p;
329 else
330 first_shift = p;
331 last_shift = p;
332 }
333
334
335 /*------------------------------------------------------------------.
336 | Subroutine of augment_automaton. Create the next-to-final state, |
337 | to which a shift has already been made in the initial state. |
338 `------------------------------------------------------------------*/
339
340 static void
341 insert_start_shift (void)
342 {
343 core *statep;
344 shifts *sp;
345
346 statep = CORE_ALLOC (0);
347 statep->number = nstates;
348 statep->accessing_symbol = start_symbol;
349
350 last_state->next = statep;
351 last_state = statep;
352
353 /* Make a shift from this state to (what will be) the final state. */
354 sp = shifts_new (1);
355 sp->number = nstates++;
356 sp->shifts[0] = nstates;
357
358 last_shift->next = sp;
359 last_shift = sp;
360 }
361
362
363 /*------------------------------------------------------------------.
364 | Make sure that the initial state has a shift that accepts the |
365 | grammar's start symbol and goes to the next-to-final state, which |
366 | has a shift going to the final state, which has a shift to the |
367 | termination state. Create such states and shifts if they don't |
368 | happen to exist already. |
369 `------------------------------------------------------------------*/
370
371 static void
372 augment_automaton (void)
373 {
374 core *statep;
375 shifts *sp;
376 shifts *sp1 = NULL;
377
378 sp = first_shift;
379
380 if (!sp->nshifts)
381 {
382 /* There are no shifts for any state. Make one shift, from the
383 initial state to the next-to-final state. */
384
385 sp = shifts_new (1);
386 sp->shifts[0] = nstates;
387
388 /* Initialize the chain of shifts with sp. */
389 first_shift = sp;
390 last_shift = sp;
391
392 /* Create the next-to-final state, with shift to
393 what will be the final state. */
394 insert_start_shift ();
395 }
396 else if (sp->number == 0)
397 {
398 statep = first_state->next;
399
400 /* The states reached by shifts from FIRST_STATE are numbered
401 1..(SP->NSHIFTS). Look for one reached by START_SYMBOL. */
402 while (statep->accessing_symbol < start_symbol
403 && statep->number < sp->nshifts)
404 statep = statep->next;
405
406 if (statep->accessing_symbol == start_symbol)
407 {
408 /* We already have a next-to-final state.
409 Make sure it has a shift to what will be the final state. */
410 while (sp && sp->number < statep->number)
411 {
412 sp1 = sp;
413 sp = sp->next;
414 }
415
416 if (sp && sp->number == statep->number)
417 {
418 int i;
419 shifts *sp2 = shifts_new (sp->nshifts + 1);
420 sp2->number = statep->number;
421 sp2->shifts[0] = nstates;
422 for (i = sp->nshifts; i > 0; i--)
423 sp2->shifts[i] = sp->shifts[i - 1];
424
425 /* Patch sp2 into the chain of shifts in place of sp,
426 following sp1. */
427 sp2->next = sp->next;
428 sp1->next = sp2;
429 if (sp == last_shift)
430 last_shift = sp2;
431 XFREE (sp);
432 }
433 else
434 {
435 shifts *sp2 = shifts_new (1);
436 sp2->number = statep->number;
437 sp2->shifts[0] = nstates;
438
439 /* Patch sp2 into the chain of shifts between sp1 and sp. */
440 sp2->next = sp;
441 sp1->next = sp2;
442 if (sp == 0)
443 last_shift = sp2;
444 }
445 }
446 else
447 {
448 int i, k;
449 shifts *sp2;
450
451 /* There is no next-to-final state as yet. */
452 /* Add one more shift in first_shift,
453 going to the next-to-final state (yet to be made). */
454 sp = first_shift;
455
456 sp2 = shifts_new (sp->nshifts + 1);
457
458 /* Stick this shift into the vector at the proper place. */
459 statep = first_state->next;
460 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
461 {
462 if (statep->accessing_symbol > start_symbol && i == k)
463 sp2->shifts[k++] = nstates;
464 sp2->shifts[k] = sp->shifts[i];
465 statep = statep->next;
466 }
467 if (i == k)
468 sp2->shifts[k++] = nstates;
469
470 /* Patch sp2 into the chain of shifts
471 in place of sp, at the beginning. */
472 sp2->next = sp->next;
473 first_shift = sp2;
474 if (last_shift == sp)
475 last_shift = sp2;
476
477 XFREE (sp);
478
479 /* Create the next-to-final state, with shift to
480 what will be the final state. */
481 insert_start_shift ();
482 }
483 }
484 else
485 {
486 /* The initial state didn't even have any shifts.
487 Give it one shift, to the next-to-final state. */
488 sp = shifts_new (1);
489 sp->shifts[0] = nstates;
490
491 /* Patch sp into the chain of shifts at the beginning. */
492 sp->next = first_shift;
493 first_shift = sp;
494
495 /* Create the next-to-final state, with shift to
496 what will be the final state. */
497 insert_start_shift ();
498 }
499
500 /* Make the final state--the one that follows a shift from the
501 next-to-final state.
502 The symbol for that shift is 0 (end-of-file). */
503 statep = CORE_ALLOC (0);
504 statep->number = nstates;
505 last_state->next = statep;
506 last_state = statep;
507
508 /* Make the shift from the final state to the termination state. */
509 sp = shifts_new (1);
510 sp->number = nstates++;
511 sp->shifts[0] = nstates;
512 last_shift->next = sp;
513 last_shift = sp;
514
515 /* Note that the variable `final_state' refers to what we sometimes call
516 the termination state. */
517 final_state = nstates;
518
519 /* Make the termination state. */
520 statep = CORE_ALLOC (0);
521 statep->number = nstates++;
522 last_state->next = statep;
523 last_state = statep;
524 }
525
526
527 /*----------------------------------------------------------------.
528 | Find which rules can be used for reduction transitions from the |
529 | current state and make a reductions structure for the state to |
530 | record their rule numbers. |
531 `----------------------------------------------------------------*/
532
533 static void
534 save_reductions (void)
535 {
536 int count;
537 int i;
538
539 /* Find and count the active items that represent ends of rules. */
540
541 count = 0;
542 for (i = 0; i < nitemset; ++i)
543 {
544 int item = ritem[itemset[i]];
545 if (item < 0)
546 redset[count++] = -item;
547 }
548
549 /* Make a reductions structure and copy the data into it. */
550
551 if (count)
552 {
553 reductions *p = REDUCTIONS_ALLOC (count);
554
555 p->number = this_state->number;
556 p->nreds = count;
557
558 shortcpy (p->rules, redset, count);
559
560 if (last_reduction)
561 last_reduction->next = p;
562 else
563 first_reduction = p;
564 last_reduction = p;
565 }
566 }
567
568 \f
569 /*-------------------------------------------------------------------.
570 | Compute the nondeterministic finite state machine (see state.h for |
571 | details) from the grammar. |
572 `-------------------------------------------------------------------*/
573
574 void
575 generate_states (void)
576 {
577 allocate_storage ();
578 new_closure (nitems);
579 new_states ();
580
581 while (this_state)
582 {
583 if (trace_flag)
584 fprintf (stderr, "Processing state %d (reached by %s)\n",
585 this_state->number, tags[this_state->accessing_symbol]);
586 /* Set up ruleset and itemset for the transitions out of this
587 state. ruleset gets a 1 bit for each rule that could reduce
588 now. itemset gets a vector of all the items that could be
589 accepted next. */
590 closure (this_state->items, this_state->nitems);
591 /* record the reductions allowed out of this state */
592 save_reductions ();
593 /* find the itemsets of the states that shifts can reach */
594 new_itemsets ();
595 /* find or create the core structures for those states */
596 append_states ();
597
598 /* create the shifts structures for the shifts to those states,
599 now that the state numbers transitioning to are known */
600 save_shifts ();
601
602 /* states are queued when they are created; process them all */
603 this_state = this_state->next;
604 }
605
606 /* discard various storage */
607 free_closure ();
608 free_storage ();
609
610 /* set up initial and final states as parser wants them */
611 augment_automaton ();
612 }