]>
git.saurik.com Git - bison.git/blob - src/LR0.c
3f06fedff43954323552cf510b349f92b72a515b
   1 /* Generate the nondeterministic finite state machine for bison, 
   2    Copyright 1984, 1986, 1989, 2000, 2001  Free Software Foundation, Inc. 
   4    This file is part of Bison, the GNU Compiler Compiler. 
   6    Bison is free software; you can redistribute it and/or modify 
   7    it under the terms of the GNU General Public License as published by 
   8    the Free Software Foundation; either version 2, or (at your option) 
  11    Bison is distributed in the hope that it will be useful, 
  12    but WITHOUT ANY WARRANTY; without even the implied warranty of 
  13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  14    GNU General Public License for more details. 
  16    You should have received a copy of the GNU General Public License 
  17    along with Bison; see the file COPYING.  If not, write to 
  18    the Free Software Foundation, Inc., 59 Temple Place - Suite 330, 
  19    Boston, MA 02111-1307, USA.  */ 
  22 /* See comments in state.h for the data structures that represent it. 
  23    The entry point is generate_states.  */ 
  38 /* Initialize the final state to -1, otherwise, it might be set to 0 
  39    by default, and since we don't compute the reductions of the final 
  40    state, we end up not computing the reductions of the initial state, 
  41    which is of course needed. 
  43    FINAL_STATE is properly set by new_state when it recognizes the 
  44    accessing symbol: EOF.  */ 
  46 static state_t 
*first_state 
= NULL
; 
  48 static state_t 
*this_state 
= NULL
; 
  49 static state_t 
*last_state 
= NULL
; 
  52 static short *shift_symbol 
= NULL
; 
  54 static short *redset 
= NULL
; 
  55 static short *shiftset 
= NULL
; 
  57 static short **kernel_base 
= NULL
; 
  58 static int *kernel_size 
= NULL
; 
  59 static short *kernel_items 
= NULL
; 
  61 /* hash table for states, to recognize equivalent ones.  */ 
  63 #define STATE_HASH_SIZE 1009 
  64 static state_t 
**state_hash 
= NULL
; 
  68 allocate_itemsets (void) 
  72   /* Count the number of occurrences of all the symbols in RITEMS. 
  73      Note that useless productions (hence useless nonterminals) are 
  74      browsed too, hence we need to allocate room for _all_ the 
  77   short *symbol_count 
= XCALLOC (short, nsyms 
+ nuseless_nonterminals
); 
  79   for (i 
= 0; i 
< nritems
; ++i
) 
  83         symbol_count
[ritem
[i
]]++; 
  86   /* See comments before new_itemsets.  All the vectors of items 
  87      live inside KERNEL_ITEMS.  The number of active items after 
  88      some symbol cannot be more than the number of times that symbol 
  89      appears as an item, which is symbol_count[symbol]. 
  90      We allocate that much space for each symbol.  */ 
  92   kernel_base 
= XCALLOC (short *, nsyms
); 
  94     kernel_items 
= XCALLOC (short, count
); 
  97   for (i 
= 0; i 
< nsyms
; i
++) 
  99       kernel_base
[i
] = kernel_items 
+ count
; 
 100       count 
+= symbol_count
[i
]; 
 104   kernel_size 
= XCALLOC (int, nsyms
); 
 109 allocate_storage (void) 
 111   allocate_itemsets (); 
 113   shiftset 
= XCALLOC (short, nsyms
); 
 114   redset 
= XCALLOC (short, nrules 
+ 1); 
 115   state_hash 
= XCALLOC (state_t 
*, STATE_HASH_SIZE
); 
 127   XFREE (kernel_items
); 
 134 /*----------------------------------------------------------------. 
 135 | Find which symbols can be shifted in the current state, and for | 
 136 | each one record which items would be active after that shift.   | 
 137 | Uses the contents of itemset.                                   | 
 139 | shift_symbol is set to a vector of the symbols that can be      | 
 140 | shifted.  For each symbol in the grammar, kernel_base[symbol]   | 
 141 | points to a vector of item numbers activated if that symbol is  | 
 142 | shifted, and kernel_size[symbol] is their numbers.              | 
 143 `----------------------------------------------------------------*/ 
 151     fprintf (stderr
, "Entering new_itemsets, state = %d\n", 
 154   for (i 
= 0; i 
< nsyms
; i
++) 
 157   shift_symbol 
= XCALLOC (short, nsyms
); 
 160   for (i 
= 0; i 
< nitemset
; ++i
) 
 162       int symbol 
= ritem
[itemset
[i
]]; 
 165           if (!kernel_size
[symbol
]) 
 167               shift_symbol
[nshifts
] = symbol
; 
 171           kernel_base
[symbol
][kernel_size
[symbol
]] = itemset
[i
] + 1; 
 172           kernel_size
[symbol
]++; 
 179 /*-----------------------------------------------------------------. 
 180 | Subroutine of get_state.  Create a new state for those items, if | 
 182 `-----------------------------------------------------------------*/ 
 185 new_state (int symbol
) 
 190     fprintf (stderr
, "Entering new_state, state = %d, symbol = %d (%s)\n", 
 191              this_state
->number
, symbol
, symbols
[symbol
]->tag
); 
 193   if (nstates 
>= MAXSHORT
) 
 194     fatal (_("too many states (max %d)"), MAXSHORT
); 
 196   p 
= STATE_ALLOC (kernel_size
[symbol
]); 
 197   p
->accessing_symbol 
= symbol
; 
 199   p
->nitems 
= kernel_size
[symbol
]; 
 201   shortcpy (p
->items
, kernel_base
[symbol
], kernel_size
[symbol
]); 
 203   last_state
->next 
= p
; 
 207   /* If this is the eoftoken, then this is the final state. */ 
 209     final_state 
= p
->number
; 
 215 /*--------------------------------------------------------------. 
 216 | Find the state number for the state we would get to (from the | 
 217 | current state) by shifting symbol.  Create a new state if no  | 
 218 | equivalent one exists already.  Used by append_states.        | 
 219 `--------------------------------------------------------------*/ 
 222 get_state (int symbol
) 
 229     fprintf (stderr
, "Entering get_state, state = %d, symbol = %d (%s)\n", 
 230              this_state
->number
, symbol
, symbols
[symbol
]->tag
); 
 232   /* Add up the target state's active item numbers to get a hash key. 
 235   for (i 
= 0; i 
< kernel_size
[symbol
]; ++i
) 
 236     key 
+= kernel_base
[symbol
][i
]; 
 237   key 
= key 
% STATE_HASH_SIZE
; 
 238   sp 
= state_hash
[key
]; 
 245           if (sp
->nitems 
== kernel_size
[symbol
]) 
 248               for (i 
= 0; i 
< kernel_size
[symbol
]; ++i
) 
 249                 if (kernel_base
[symbol
][i
] != sp
->items
[i
]) 
 259               else              /* bucket exhausted and no match */ 
 261                   sp 
= sp
->link 
= new_state (symbol
); 
 267   else                          /* bucket is empty */ 
 269       state_hash
[key
] = sp 
= new_state (symbol
); 
 273     fprintf (stderr
, "Exiting get_state => %d\n", sp
->number
); 
 278 /*------------------------------------------------------------------. 
 279 | Use the information computed by new_itemsets to find the state    | 
 280 | numbers reached by each shift transition from the current state.  | 
 282 | shiftset is set up as a vector of state numbers of those states.  | 
 283 `------------------------------------------------------------------*/ 
 293     fprintf (stderr
, "Entering append_states, state = %d\n", 
 296   /* first sort shift_symbol into increasing order */ 
 298   for (i 
= 1; i 
< nshifts
; i
++) 
 300       symbol 
= shift_symbol
[i
]; 
 302       while (j 
> 0 && shift_symbol
[j 
- 1] > symbol
) 
 304           shift_symbol
[j
] = shift_symbol
[j 
- 1]; 
 307       shift_symbol
[j
] = symbol
; 
 310   for (i 
= 0; i 
< nshifts
; i
++) 
 311     shiftset
[i
] = get_state (shift_symbol
[i
]); 
 318   first_state 
= last_state 
= this_state 
= STATE_ALLOC (0); 
 323 /*------------------------------------------------------------. 
 324 | Save the NSHIFTS of SHIFTSET into the current linked list.  | 
 325 `------------------------------------------------------------*/ 
 330   shifts 
*p 
= shifts_new (nshifts
); 
 331   shortcpy (p
->shifts
, shiftset
, nshifts
); 
 332   this_state
->shifts 
= p
; 
 336 /*----------------------------------------------------------------. 
 337 | Find which rules can be used for reduction transitions from the | 
 338 | current state and make a reductions structure for the state to  | 
 339 | record their rule numbers.                                      | 
 340 `----------------------------------------------------------------*/ 
 343 save_reductions (void) 
 348   /* If this is the final state, we want it to have no reductions at 
 349      all, although it has one for `START_SYMBOL EOF .'.  */ 
 350   if (this_state
->number 
== final_state
) 
 353   /* Find and count the active items that represent ends of rules. */ 
 354   for (i 
= 0; i 
< nitemset
; ++i
) 
 356       int item 
= ritem
[itemset
[i
]]; 
 358         redset
[count
++] = -item
; 
 361   /* Make a reductions structure and copy the data into it.  */ 
 362   this_state
->reductions 
= reductions_new (count
); 
 363   shortcpy (this_state
->reductions
->rules
, redset
, count
); 
 367 /*--------------------. 
 369 `--------------------*/ 
 375   states 
= XCALLOC (state_t 
*, nstates
); 
 377   for (sp 
= first_state
; sp
; sp 
= sp
->next
) 
 379       /* Pessimization, but simplification of the code: make sure all 
 380          the states have a shifts, errs, and reductions, even if 
 383         sp
->shifts 
= shifts_new (0); 
 385         sp
->errs 
= errs_new (0); 
 387         sp
->reductions 
= reductions_new (0); 
 389       states
[sp
->number
] = sp
; 
 393 /*-------------------------------------------------------------------. 
 394 | Compute the nondeterministic finite state machine (see state.h for | 
 395 | details) from the grammar.                                         | 
 396 `-------------------------------------------------------------------*/ 
 399 generate_states (void) 
 402   new_closure (nritems
); 
 408         fprintf (stderr
, "Processing state %d (reached by %s)\n", 
 410                  symbols
[this_state
->accessing_symbol
]->tag
); 
 411       /* Set up ruleset and itemset for the transitions out of this 
 412          state.  ruleset gets a 1 bit for each rule that could reduce 
 413          now.  itemset gets a vector of all the items that could be 
 415       closure (this_state
->items
, this_state
->nitems
); 
 416       /* record the reductions allowed out of this state */ 
 418       /* find the itemsets of the states that shifts can reach */ 
 420       /* find or create the core structures for those states */ 
 423       /* create the shifts structures for the shifts to those states, 
 424          now that the state numbers transitioning to are known */ 
 427       /* states are queued when they are created; process them all */ 
 428       this_state 
= this_state
->next
; 
 431   /* discard various storage */