]> git.saurik.com Git - bison.git/blob - src/LR0.c
2dbd91e453e5d1bf5f495f558167ac79e26b8f9f
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "getargs.h"
27 #include "reader.h"
28 #include "gram.h"
29 #include "state.h"
30 #include "complain.h"
31 #include "closure.h"
32 #include "LR0.h"
33 #include "lalr.h"
34 #include "reduce.h"
35
36 int nstates;
37 int final_state;
38 state_t *first_state = NULL;
39 shifts *first_shift = NULL;
40
41 static state_t *this_state = NULL;
42 static state_t *last_state = NULL;
43 static shifts *last_shift = NULL;
44
45 static int nshifts;
46 static short *shift_symbol = NULL;
47
48 static short *redset = NULL;
49 static short *shiftset = NULL;
50
51 static short **kernel_base = NULL;
52 static int *kernel_size = NULL;
53 static short *kernel_items = NULL;
54
55 /* hash table for states, to recognize equivalent ones. */
56
57 #define STATE_HASH_SIZE 1009
58 static state_t **state_hash = NULL;
59
60 \f
61 static void
62 allocate_itemsets (void)
63 {
64 int i;
65
66 /* Count the number of occurrences of all the symbols in RITEMS.
67 Note that useless productions (hence useless nonterminals) are
68 browsed too, hence we need to allocate room for _all_ the
69 symbols. */
70 int count = 0;
71 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
72
73 for (i = 0; ritem[i]; ++i)
74 if (ritem[i] > 0)
75 {
76 count++;
77 symbol_count[ritem[i]]++;
78 }
79
80 /* See comments before new_itemsets. All the vectors of items
81 live inside KERNEL_ITEMS. The number of active items after
82 some symbol cannot be more than the number of times that symbol
83 appears as an item, which is symbol_count[symbol].
84 We allocate that much space for each symbol. */
85
86 kernel_base = XCALLOC (short *, nsyms);
87 if (count)
88 kernel_items = XCALLOC (short, count);
89
90 count = 0;
91 for (i = 0; i < nsyms; i++)
92 {
93 kernel_base[i] = kernel_items + count;
94 count += symbol_count[i];
95 }
96
97 free (symbol_count);
98 kernel_size = XCALLOC (int, nsyms);
99 }
100
101
102 static void
103 allocate_storage (void)
104 {
105 allocate_itemsets ();
106
107 shiftset = XCALLOC (short, nsyms);
108 redset = XCALLOC (short, nrules + 1);
109 state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
110 }
111
112
113 static void
114 free_storage (void)
115 {
116 free (shift_symbol);
117 free (redset);
118 free (shiftset);
119 free (kernel_base);
120 free (kernel_size);
121 XFREE (kernel_items);
122 free (state_hash);
123 }
124
125
126
127
128 /*----------------------------------------------------------------.
129 | Find which symbols can be shifted in the current state, and for |
130 | each one record which items would be active after that shift. |
131 | Uses the contents of itemset. |
132 | |
133 | shift_symbol is set to a vector of the symbols that can be |
134 | shifted. For each symbol in the grammar, kernel_base[symbol] |
135 | points to a vector of item numbers activated if that symbol is |
136 | shifted, and kernel_size[symbol] is their numbers. |
137 `----------------------------------------------------------------*/
138
139 static void
140 new_itemsets (void)
141 {
142 int i;
143
144 if (trace_flag)
145 fprintf (stderr, "Entering new_itemsets, state = %d\n",
146 this_state->number);
147
148 for (i = 0; i < nsyms; i++)
149 kernel_size[i] = 0;
150
151 shift_symbol = XCALLOC (short, nsyms);
152 nshifts = 0;
153
154 for (i = 0; i < nitemset; ++i)
155 {
156 int symbol = ritem[itemset[i]];
157 if (symbol > 0)
158 {
159 if (!kernel_size[symbol])
160 {
161 shift_symbol[nshifts] = symbol;
162 nshifts++;
163 }
164
165 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
166 kernel_size[symbol]++;
167 }
168 }
169 }
170
171
172
173 /*-----------------------------------------------------------------.
174 | Subroutine of get_state. Create a new state for those items, if |
175 | necessary. |
176 `-----------------------------------------------------------------*/
177
178 static state_t *
179 new_state (int symbol)
180 {
181 state_t *p;
182
183 if (trace_flag)
184 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
185 this_state->number, symbol, tags[symbol]);
186
187 if (nstates >= MAXSHORT)
188 fatal (_("too many states (max %d)"), MAXSHORT);
189
190 p = STATE_ALLOC (kernel_size[symbol]);
191 p->accessing_symbol = symbol;
192 p->number = nstates;
193 p->nitems = kernel_size[symbol];
194
195 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
196
197 last_state->next = p;
198 last_state = p;
199 nstates++;
200
201 return p;
202 }
203
204
205 /*--------------------------------------------------------------.
206 | Find the state number for the state we would get to (from the |
207 | current state) by shifting symbol. Create a new state if no |
208 | equivalent one exists already. Used by append_states. |
209 `--------------------------------------------------------------*/
210
211 static int
212 get_state (int symbol)
213 {
214 int key;
215 int i;
216 state_t *sp;
217
218 if (trace_flag)
219 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
220 this_state->number, symbol, tags[symbol]);
221
222 /* Add up the target state's active item numbers to get a hash key.
223 */
224 key = 0;
225 for (i = 0; i < kernel_size[symbol]; ++i)
226 key += kernel_base[symbol][i];
227 key = key % STATE_HASH_SIZE;
228 sp = state_hash[key];
229
230 if (sp)
231 {
232 int found = 0;
233 while (!found)
234 {
235 if (sp->nitems == kernel_size[symbol])
236 {
237 found = 1;
238 for (i = 0; i < kernel_size[symbol]; ++i)
239 if (kernel_base[symbol][i] != sp->items[i])
240 found = 0;
241 }
242
243 if (!found)
244 {
245 if (sp->link)
246 {
247 sp = sp->link;
248 }
249 else /* bucket exhausted and no match */
250 {
251 sp = sp->link = new_state (symbol);
252 found = 1;
253 }
254 }
255 }
256 }
257 else /* bucket is empty */
258 {
259 state_hash[key] = sp = new_state (symbol);
260 }
261
262 if (trace_flag)
263 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
264
265 return sp->number;
266 }
267
268 /*------------------------------------------------------------------.
269 | Use the information computed by new_itemsets to find the state |
270 | numbers reached by each shift transition from the current state. |
271 | |
272 | shiftset is set up as a vector of state numbers of those states. |
273 `------------------------------------------------------------------*/
274
275 static void
276 append_states (void)
277 {
278 int i;
279 int j;
280 int symbol;
281
282 if (trace_flag)
283 fprintf (stderr, "Entering append_states, state = %d\n",
284 this_state->number);
285
286 /* first sort shift_symbol into increasing order */
287
288 for (i = 1; i < nshifts; i++)
289 {
290 symbol = shift_symbol[i];
291 j = i;
292 while (j > 0 && shift_symbol[j - 1] > symbol)
293 {
294 shift_symbol[j] = shift_symbol[j - 1];
295 j--;
296 }
297 shift_symbol[j] = symbol;
298 }
299
300 for (i = 0; i < nshifts; i++)
301 shiftset[i] = get_state (shift_symbol[i]);
302 }
303
304
305 static void
306 new_states (void)
307 {
308 first_state = last_state = this_state = STATE_ALLOC (0);
309 nstates = 1;
310 }
311
312
313 /*------------------------------------------------------------.
314 | Save the NSHIFTS of SHIFTSET into the current linked list. |
315 `------------------------------------------------------------*/
316
317 static void
318 save_shifts (void)
319 {
320 shifts *p = shifts_new (nshifts);
321
322 p->number = this_state->number;
323
324 shortcpy (p->shifts, shiftset, nshifts);
325
326 if (last_shift)
327 last_shift->next = p;
328 else
329 first_shift = p;
330 last_shift = p;
331 }
332
333
334 /*------------------------------------------------------------------.
335 | Subroutine of augment_automaton. Create the next-to-final state, |
336 | to which a shift has already been made in the initial state. |
337 `------------------------------------------------------------------*/
338
339 static void
340 insert_start_shift (void)
341 {
342 state_t *statep;
343 shifts *sp;
344
345 statep = STATE_ALLOC (0);
346 statep->number = nstates;
347 statep->accessing_symbol = start_symbol;
348
349 last_state->next = statep;
350 last_state = statep;
351
352 /* Make a shift from this state to (what will be) the final state. */
353 sp = shifts_new (1);
354 sp->number = nstates++;
355 sp->shifts[0] = nstates;
356
357 last_shift->next = sp;
358 last_shift = sp;
359 }
360
361
362 /*------------------------------------------------------------------.
363 | Make sure that the initial state has a shift that accepts the |
364 | grammar's start symbol and goes to the next-to-final state, which |
365 | has a shift going to the final state, which has a shift to the |
366 | termination state. Create such states and shifts if they don't |
367 | happen to exist already. |
368 `------------------------------------------------------------------*/
369
370 static void
371 augment_automaton (void)
372 {
373 state_t *statep;
374 shifts *sp;
375 shifts *sp1 = NULL;
376
377 sp = first_shift;
378
379 if (!sp->nshifts)
380 {
381 /* There are no shifts for any state. Make one shift, from the
382 initial state to the next-to-final state. */
383
384 sp = shifts_new (1);
385 sp->shifts[0] = nstates;
386
387 /* Initialize the chain of shifts with sp. */
388 first_shift = sp;
389 last_shift = sp;
390
391 /* Create the next-to-final state, with shift to
392 what will be the final state. */
393 insert_start_shift ();
394 }
395 else if (sp->number == 0)
396 {
397 statep = first_state->next;
398
399 /* The states reached by shifts from FIRST_STATE are numbered
400 1..(SP->NSHIFTS). Look for one reached by START_SYMBOL. */
401 while (statep->accessing_symbol < start_symbol
402 && statep->number < sp->nshifts)
403 statep = statep->next;
404
405 if (statep->accessing_symbol == start_symbol)
406 {
407 /* We already have a next-to-final state.
408 Make sure it has a shift to what will be the final state. */
409 while (sp && sp->number < statep->number)
410 {
411 sp1 = sp;
412 sp = sp->next;
413 }
414
415 if (sp && sp->number == statep->number)
416 {
417 int i;
418 shifts *sp2 = shifts_new (sp->nshifts + 1);
419 sp2->number = statep->number;
420 sp2->shifts[0] = nstates;
421 for (i = sp->nshifts; i > 0; i--)
422 sp2->shifts[i] = sp->shifts[i - 1];
423
424 /* Patch sp2 into the chain of shifts in place of sp,
425 following sp1. */
426 sp2->next = sp->next;
427 sp1->next = sp2;
428 if (sp == last_shift)
429 last_shift = sp2;
430 XFREE (sp);
431 }
432 else
433 {
434 shifts *sp2 = shifts_new (1);
435 sp2->number = statep->number;
436 sp2->shifts[0] = nstates;
437
438 /* Patch sp2 into the chain of shifts between sp1 and sp. */
439 sp2->next = sp;
440 sp1->next = sp2;
441 if (sp == 0)
442 last_shift = sp2;
443 }
444 }
445 else
446 {
447 int i, k;
448 shifts *sp2;
449
450 /* There is no next-to-final state as yet. */
451 /* Add one more shift in first_shift,
452 going to the next-to-final state (yet to be made). */
453 sp = first_shift;
454
455 sp2 = shifts_new (sp->nshifts + 1);
456
457 /* Stick this shift into the vector at the proper place. */
458 statep = first_state->next;
459 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
460 {
461 if (statep->accessing_symbol > start_symbol && i == k)
462 sp2->shifts[k++] = nstates;
463 sp2->shifts[k] = sp->shifts[i];
464 statep = statep->next;
465 }
466 if (i == k)
467 sp2->shifts[k++] = nstates;
468
469 /* Patch sp2 into the chain of shifts
470 in place of sp, at the beginning. */
471 sp2->next = sp->next;
472 first_shift = sp2;
473 if (last_shift == sp)
474 last_shift = sp2;
475
476 XFREE (sp);
477
478 /* Create the next-to-final state, with shift to
479 what will be the final state. */
480 insert_start_shift ();
481 }
482 }
483 else
484 {
485 /* The initial state didn't even have any shifts.
486 Give it one shift, to the next-to-final state. */
487 sp = shifts_new (1);
488 sp->shifts[0] = nstates;
489
490 /* Patch sp into the chain of shifts at the beginning. */
491 sp->next = first_shift;
492 first_shift = sp;
493
494 /* Create the next-to-final state, with shift to
495 what will be the final state. */
496 insert_start_shift ();
497 }
498
499 /* Make the final state--the one that follows a shift from the
500 next-to-final state.
501 The symbol for that shift is 0 (end-of-file). */
502 statep = STATE_ALLOC (0);
503 statep->number = nstates;
504 last_state->next = statep;
505 last_state = statep;
506
507 /* Make the shift from the final state to the termination state. */
508 sp = shifts_new (1);
509 sp->number = nstates++;
510 sp->shifts[0] = nstates;
511 last_shift->next = sp;
512 last_shift = sp;
513
514 /* Note that the variable `final_state' refers to what we sometimes call
515 the termination state. */
516 final_state = nstates;
517
518 /* Make the termination state. */
519 statep = STATE_ALLOC (0);
520 statep->number = nstates++;
521 last_state->next = statep;
522 last_state = statep;
523 }
524
525
526 /*----------------------------------------------------------------.
527 | Find which rules can be used for reduction transitions from the |
528 | current state and make a reductions structure for the state to |
529 | record their rule numbers. |
530 `----------------------------------------------------------------*/
531
532 static void
533 save_reductions (void)
534 {
535 int count;
536 int i;
537
538 /* Find and count the active items that represent ends of rules. */
539
540 count = 0;
541 for (i = 0; i < nitemset; ++i)
542 {
543 int item = ritem[itemset[i]];
544 if (item < 0)
545 redset[count++] = -item;
546 }
547
548 /* Make a reductions structure and copy the data into it. */
549
550 if (count)
551 {
552 reductions *p = REDUCTIONS_ALLOC (count);
553 p->nreds = count;
554 shortcpy (p->rules, redset, count);
555
556 this_state->reductions = p;
557 }
558 }
559
560 \f
561 /*-------------------------------------------------------------------.
562 | Compute the nondeterministic finite state machine (see state.h for |
563 | details) from the grammar. |
564 `-------------------------------------------------------------------*/
565
566 void
567 generate_states (void)
568 {
569 allocate_storage ();
570 new_closure (nitems);
571 new_states ();
572
573 while (this_state)
574 {
575 if (trace_flag)
576 fprintf (stderr, "Processing state %d (reached by %s)\n",
577 this_state->number, tags[this_state->accessing_symbol]);
578 /* Set up ruleset and itemset for the transitions out of this
579 state. ruleset gets a 1 bit for each rule that could reduce
580 now. itemset gets a vector of all the items that could be
581 accepted next. */
582 closure (this_state->items, this_state->nitems);
583 /* record the reductions allowed out of this state */
584 save_reductions ();
585 /* find the itemsets of the states that shifts can reach */
586 new_itemsets ();
587 /* find or create the core structures for those states */
588 append_states ();
589
590 /* create the shifts structures for the shifts to those states,
591 now that the state numbers transitioning to are known */
592 save_shifts ();
593
594 /* states are queued when they are created; process them all */
595 this_state = this_state->next;
596 }
597
598 /* discard various storage */
599 free_closure ();
600 free_storage ();
601
602 /* set up initial and final states as parser wants them */
603 augment_automaton ();
604 }