]> git.saurik.com Git - bison.git/blob - src/LR0.c
184a25f4dbba970f8825bcc07889017f02849a80
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "bitset.h"
27 #include "quotearg.h"
28 #include "symtab.h"
29 #include "gram.h"
30 #include "getargs.h"
31 #include "reader.h"
32 #include "gram.h"
33 #include "state.h"
34 #include "complain.h"
35 #include "closure.h"
36 #include "LR0.h"
37 #include "lalr.h"
38 #include "reduce.h"
39
40 typedef struct state_list_s
41 {
42 struct state_list_s *next;
43 state_t *state;
44 } state_list_t;
45
46 static state_list_t *first_state = NULL;
47 static state_list_t *last_state = NULL;
48
49
50 /*------------------------------------------------------------------.
51 | A state was just discovered from another state. Queue it for |
52 | later examination, in order to find its transitions. Return it. |
53 `------------------------------------------------------------------*/
54
55 static state_t *
56 state_list_append (symbol_number_t symbol,
57 size_t core_size, item_number_t *core)
58 {
59 state_list_t *node = XMALLOC (state_list_t, 1);
60 state_t *state = state_new (symbol, core_size, core);
61
62 if (trace_flag)
63 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
64 nstates, symbol, symbols[symbol]->tag);
65
66 /* If this is the endtoken, and this is not the initial state, then
67 this is the final state. */
68 if (symbol == 0 && first_state)
69 final_state = state;
70
71 node->next = NULL;
72 node->state = state;
73
74 if (!first_state)
75 first_state = node;
76 if (last_state)
77 last_state->next = node;
78 last_state = node;
79
80 return state;
81 }
82
83 static int nshifts;
84 static symbol_number_t *shift_symbol = NULL;
85
86 static rule_t **redset = NULL;
87 static state_t **shiftset = NULL;
88
89 static item_number_t **kernel_base = NULL;
90 static int *kernel_size = NULL;
91 static item_number_t *kernel_items = NULL;
92
93 \f
94 static void
95 allocate_itemsets (void)
96 {
97 symbol_number_t i;
98 rule_number_t r;
99 item_number_t *rhsp;
100
101 /* Count the number of occurrences of all the symbols in RITEMS.
102 Note that useless productions (hence useless nonterminals) are
103 browsed too, hence we need to allocate room for _all_ the
104 symbols. */
105 int count = 0;
106 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
107
108 for (r = 0; r < nrules; ++r)
109 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
110 {
111 count++;
112 symbol_count[*rhsp]++;
113 }
114
115 /* See comments before new_itemsets. All the vectors of items
116 live inside KERNEL_ITEMS. The number of active items after
117 some symbol cannot be more than the number of times that symbol
118 appears as an item, which is SYMBOL_COUNT[SYMBOL].
119 We allocate that much space for each symbol. */
120
121 kernel_base = XCALLOC (item_number_t *, nsyms);
122 if (count)
123 kernel_items = XCALLOC (item_number_t, count);
124
125 count = 0;
126 for (i = 0; i < nsyms; i++)
127 {
128 kernel_base[i] = kernel_items + count;
129 count += symbol_count[i];
130 }
131
132 free (symbol_count);
133 kernel_size = XCALLOC (int, nsyms);
134 }
135
136
137 static void
138 allocate_storage (void)
139 {
140 allocate_itemsets ();
141
142 shiftset = XCALLOC (state_t *, nsyms);
143 redset = XCALLOC (rule_t *, nrules);
144 state_hash_new ();
145 shift_symbol = XCALLOC (symbol_number_t, nsyms);
146 }
147
148
149 static void
150 free_storage (void)
151 {
152 free (shift_symbol);
153 free (redset);
154 free (shiftset);
155 free (kernel_base);
156 free (kernel_size);
157 XFREE (kernel_items);
158 state_hash_free ();
159 }
160
161
162
163
164 /*---------------------------------------------------------------.
165 | Find which symbols can be shifted in STATE, and for each one |
166 | record which items would be active after that shift. Uses the |
167 | contents of itemset. |
168 | |
169 | shift_symbol is set to a vector of the symbols that can be |
170 | shifted. For each symbol in the grammar, kernel_base[symbol] |
171 | points to a vector of item numbers activated if that symbol is |
172 | shifted, and kernel_size[symbol] is their numbers. |
173 `---------------------------------------------------------------*/
174
175 static void
176 new_itemsets (state_t *state)
177 {
178 int i;
179
180 if (trace_flag)
181 fprintf (stderr, "Entering new_itemsets, state = %d\n",
182 state->number);
183
184 for (i = 0; i < nsyms; i++)
185 kernel_size[i] = 0;
186
187 nshifts = 0;
188
189 for (i = 0; i < nritemset; ++i)
190 if (ritem[itemset[i]] >= 0)
191 {
192 symbol_number_t symbol
193 = item_number_as_symbol_number (ritem[itemset[i]]);
194 if (!kernel_size[symbol])
195 {
196 shift_symbol[nshifts] = symbol;
197 nshifts++;
198 }
199
200 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
201 kernel_size[symbol]++;
202 }
203 }
204
205
206
207 /*-----------------------------------------------------------------.
208 | Find the state we would get to (from the current state) by |
209 | shifting SYMBOL. Create a new state if no equivalent one exists |
210 | already. Used by append_states. |
211 `-----------------------------------------------------------------*/
212
213 static state_t *
214 get_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
215 {
216 state_t *sp;
217
218 if (trace_flag)
219 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
220 symbol, symbols[symbol]->tag);
221
222 sp = state_hash_lookup (core_size, core);
223 if (!sp)
224 sp = state_list_append (symbol, core_size, core);
225
226 if (trace_flag)
227 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
228
229 return sp;
230 }
231
232 /*---------------------------------------------------------------.
233 | Use the information computed by new_itemsets to find the state |
234 | numbers reached by each shift transition from STATE. |
235 | |
236 | SHIFTSET is set up as a vector of those states. |
237 `---------------------------------------------------------------*/
238
239 static void
240 append_states (state_t *state)
241 {
242 int i;
243 int j;
244 symbol_number_t symbol;
245
246 if (trace_flag)
247 fprintf (stderr, "Entering append_states, state = %d\n",
248 state->number);
249
250 /* first sort shift_symbol into increasing order */
251
252 for (i = 1; i < nshifts; i++)
253 {
254 symbol = shift_symbol[i];
255 j = i;
256 while (j > 0 && shift_symbol[j - 1] > symbol)
257 {
258 shift_symbol[j] = shift_symbol[j - 1];
259 j--;
260 }
261 shift_symbol[j] = symbol;
262 }
263
264 for (i = 0; i < nshifts; i++)
265 {
266 symbol = shift_symbol[i];
267 shiftset[i] = get_state (symbol,
268 kernel_size[symbol], kernel_base[symbol]);
269 }
270 }
271
272
273 /*----------------------------------------------------------------.
274 | Find which rules can be used for reduction transitions from the |
275 | current state and make a reductions structure for the state to |
276 | record their rule numbers. |
277 `----------------------------------------------------------------*/
278
279 static void
280 save_reductions (state_t *state)
281 {
282 int count = 0;
283 int i;
284
285 /* Find and count the active items that represent ends of rules. */
286 for (i = 0; i < nritemset; ++i)
287 {
288 int item = ritem[itemset[i]];
289 if (item < 0)
290 redset[count++] = &rules[item_number_as_rule_number (item)];
291 }
292
293 /* Make a reductions structure and copy the data into it. */
294 state_reductions_set (state, count, redset);
295 }
296
297 \f
298 /*---------------.
299 | Build STATES. |
300 `---------------*/
301
302 static void
303 set_states (void)
304 {
305 states = XCALLOC (state_t *, nstates);
306
307 while (first_state)
308 {
309 state_list_t *this = first_state;
310
311 /* Pessimization, but simplification of the code: make sure all
312 the states have valid transitions and reductions members,
313 even if reduced to 0. It is too soon for errs, which are
314 computed later, but set_conflicts. */
315 state_t *state = this->state;
316 if (!state->transitions)
317 state_transitions_set (state, 0, 0);
318 if (!state->reductions)
319 state_reductions_set (state, 0, 0);
320
321 states[state->number] = state;
322
323 first_state = this->next;
324 free (this);
325 }
326 first_state = NULL;
327 last_state = NULL;
328 }
329
330
331 /*-------------------------------------------------------------------.
332 | Compute the nondeterministic finite state machine (see state.h for |
333 | details) from the grammar. |
334 `-------------------------------------------------------------------*/
335
336 void
337 generate_states (void)
338 {
339 state_list_t *list = NULL;
340 allocate_storage ();
341 new_closure (nritems);
342
343 /* Create the initial state. The 0 at the lhs is the index of the
344 item of this initial rule. */
345 kernel_base[0][0] = 0;
346 kernel_size[0] = 1;
347 state_list_append (0, kernel_size[0], kernel_base[0]);
348
349 list = first_state;
350
351 while (list)
352 {
353 state_t *state = list->state;
354 if (trace_flag)
355 fprintf (stderr, "Processing state %d (reached by %s)\n",
356 state->number,
357 symbols[state->accessing_symbol]->tag);
358 /* Set up ruleset and itemset for the transitions out of this
359 state. ruleset gets a 1 bit for each rule that could reduce
360 now. itemset gets a vector of all the items that could be
361 accepted next. */
362 closure (state->items, state->nitems);
363 /* Record the reductions allowed out of this state. */
364 save_reductions (state);
365 /* Find the itemsets of the states that shifts can reach. */
366 new_itemsets (state);
367 /* Find or create the core structures for those states. */
368 append_states (state);
369
370 /* Create the shifts structures for the shifts to those states,
371 now that the state numbers transitioning to are known. */
372 state_transitions_set (state, nshifts, shiftset);
373
374 /* States are queued when they are created; process them all.
375 */
376 list = list->next;
377 }
378
379 /* discard various storage */
380 free_closure ();
381 free_storage ();
382
383 /* Set up STATES. */
384 set_states ();
385 }