]>
git.saurik.com Git - apt-legacy.git/blob - apt-pkg/lookup3.cc
db6e736b47a2bdf8e73fb9f3db81b96b68f20f47
2 -------------------------------------------------------------------------------
3 lookup3.c, by Bob Jenkins, May 2006, Public Domain.
5 These are functions for producing 32-bit hashes for hash table lookup.
6 hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
7 are externally useful functions. Routines to test the hash are included
8 if SELF_TEST is defined. You can use this free for any purpose. It's in
9 the public domain. It has no warranty.
11 You probably want to use hashlittle(). hashlittle() and hashbig()
12 hash byte arrays. hashlittle() is is faster than hashbig() on
13 little-endian machines. Intel and AMD are little-endian machines.
14 On second thought, you probably want hashlittle2(), which is identical to
15 hashlittle() except it returns two 32-bit hashes for the price of one.
16 You could implement hashbig2() if you wanted but I haven't bothered here.
18 If you want to find a hash of, say, exactly 7 integers, do
19 a = i1; b = i2; c = i3;
21 a += i4; b += i5; c += i6;
25 then use c as the hash value. If you have a variable length array of
26 4-byte integers to hash, use hashword(). If you have a byte array (like
27 a character string), use hashlittle(). If you have several byte arrays, or
28 a mix of things, see the comments above hashlittle().
30 Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
31 then mix those integers. This is fast (you can do a lot more thorough
32 mixing with 12*3 instructions on 3 integers than you can with 3 instructions
33 on 1 byte), but shoehorning those bytes into integers efficiently is messy.
34 -------------------------------------------------------------------------------
38 #include <stdio.h> /* defines printf for tests */
39 #include <time.h> /* defines time_t for timings in the test */
40 #include <stdint.h> /* defines uint32_t etc */
41 #include <sys/param.h> /* attempt to define endianness */
43 # include <endian.h> /* attempt to define endianness */
47 * My best guess at if you are big-endian or little-endian. This may
50 #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
51 __BYTE_ORDER == __LITTLE_ENDIAN) || \
52 (defined(i386) || defined(__i386__) || defined(__i486__) || \
53 defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
54 # define HASH_LITTLE_ENDIAN 1
55 # define HASH_BIG_ENDIAN 0
56 #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
57 __BYTE_ORDER == __BIG_ENDIAN) || \
58 (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
59 # define HASH_LITTLE_ENDIAN 0
60 # define HASH_BIG_ENDIAN 1
62 # define HASH_LITTLE_ENDIAN 0
63 # define HASH_BIG_ENDIAN 0
66 #define hashsize(n) ((uint32_t)1<<(n))
67 #define hashmask(n) (hashsize(n)-1)
68 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
71 -------------------------------------------------------------------------------
72 mix -- mix 3 32-bit values reversibly.
74 This is reversible, so any information in (a,b,c) before mix() is
75 still in (a,b,c) after mix().
77 If four pairs of (a,b,c) inputs are run through mix(), or through
78 mix() in reverse, there are at least 32 bits of the output that
79 are sometimes the same for one pair and different for another pair.
81 * pairs that differed by one bit, by two bits, in any combination
82 of top bits of (a,b,c), or in any combination of bottom bits of
84 * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
85 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
86 is commonly produced by subtraction) look like a single 1-bit
88 * the base values were pseudorandom, all zero but one bit set, or
89 all zero plus a counter that starts at zero.
91 Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
96 Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
97 for "differ" defined as + with a one-bit base and a two-bit delta. I
98 used http://burtleburtle.net/bob/hash/avalanche.html to choose
99 the operations, constants, and arrangements of the variables.
101 This does not achieve avalanche. There are input bits of (a,b,c)
102 that fail to affect some output bits of (a,b,c), especially of a. The
103 most thoroughly mixed value is c, but it doesn't really even achieve
106 This allows some parallelism. Read-after-writes are good at doubling
107 the number of bits affected, so the goal of mixing pulls in the opposite
108 direction as the goal of parallelism. I did what I could. Rotates
109 seem to cost as much as shifts on every machine I could lay my hands
110 on, and rotates are much kinder to the top and bottom bits, so I used
112 -------------------------------------------------------------------------------
116 a -= c; a ^= rot(c, 4); c += b; \
117 b -= a; b ^= rot(a, 6); a += c; \
118 c -= b; c ^= rot(b, 8); b += a; \
119 a -= c; a ^= rot(c,16); c += b; \
120 b -= a; b ^= rot(a,19); a += c; \
121 c -= b; c ^= rot(b, 4); b += a; \
125 -------------------------------------------------------------------------------
126 final -- final mixing of 3 32-bit values (a,b,c) into c
128 Pairs of (a,b,c) values differing in only a few bits will usually
129 produce values of c that look totally different. This was tested for
130 * pairs that differed by one bit, by two bits, in any combination
131 of top bits of (a,b,c), or in any combination of bottom bits of
133 * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
134 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
135 is commonly produced by subtraction) look like a single 1-bit
137 * the base values were pseudorandom, all zero but one bit set, or
138 all zero plus a counter that starts at zero.
140 These constants passed:
143 and these came close:
147 -------------------------------------------------------------------------------
149 #define final(a,b,c) \
151 c ^= b; c -= rot(b,14); \
152 a ^= c; a -= rot(c,11); \
153 b ^= a; b -= rot(a,25); \
154 c ^= b; c -= rot(b,16); \
155 a ^= c; a -= rot(c,4); \
156 b ^= a; b -= rot(a,14); \
157 c ^= b; c -= rot(b,24); \
161 --------------------------------------------------------------------
162 This works on all machines. To be useful, it requires
163 -- that the key be an array of uint32_t's, and
164 -- that the length be the number of uint32_t's in the key
166 The function hashword() is identical to hashlittle() on little-endian
167 machines, and identical to hashbig() on big-endian machines,
168 except that the length has to be measured in uint32_ts rather than in
169 bytes. hashlittle() is more complicated than hashword() only because
170 hashlittle() has to dance around fitting the key bytes into registers.
171 --------------------------------------------------------------------
174 const uint32_t *k
, /* the key, an array of uint32_t values */
175 size_t length
, /* the length of the key, in uint32_ts */
176 uint32_t initval
) /* the previous hash, or an arbitrary value */
180 /* Set up the internal state */
181 a
= b
= c
= 0xdeadbeef + (((uint32_t)length
)<<2) + initval
;
183 /*------------------------------------------------- handle most of the key */
194 /*------------------------------------------- handle the last 3 uint32_t's */
195 switch(length
) /* all the case statements fall through */
201 case 0: /* case 0: nothing left to add */
204 /*------------------------------------------------------ report the result */
210 --------------------------------------------------------------------
211 hashword2() -- same as hashword(), but take two seeds and return two
212 32-bit values. pc and pb must both be nonnull, and *pc and *pb must
213 both be initialized with seeds. If you pass in (*pb)==0, the output
214 (*pc) will be the same as the return value from hashword().
215 --------------------------------------------------------------------
218 const uint32_t *k
, /* the key, an array of uint32_t values */
219 size_t length
, /* the length of the key, in uint32_ts */
220 uint32_t *pc
, /* IN: seed OUT: primary hash value */
221 uint32_t *pb
) /* IN: more seed OUT: secondary hash value */
225 /* Set up the internal state */
226 a
= b
= c
= 0xdeadbeef + ((uint32_t)(length
<<2)) + *pc
;
229 /*------------------------------------------------- handle most of the key */
240 /*------------------------------------------- handle the last 3 uint32_t's */
241 switch(length
) /* all the case statements fall through */
247 case 0: /* case 0: nothing left to add */
250 /*------------------------------------------------------ report the result */
256 -------------------------------------------------------------------------------
257 hashlittle() -- hash a variable-length key into a 32-bit value
258 k : the key (the unaligned variable-length array of bytes)
259 length : the length of the key, counting by bytes
260 initval : can be any 4-byte value
261 Returns a 32-bit value. Every bit of the key affects every bit of
262 the return value. Two keys differing by one or two bits will have
263 totally different hash values.
265 The best hash table sizes are powers of 2. There is no need to do
266 mod a prime (mod is sooo slow!). If you need less than 32 bits,
267 use a bitmask. For example, if you need only 10 bits, do
268 h = (h & hashmask(10));
269 In which case, the hash table should have hashsize(10) elements.
271 If you are hashing n strings (uint8_t **)k, do it like this:
272 for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
274 By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
275 code any way you wish, private, educational, or commercial. It's free.
277 Use for hash table lookup, or anything where one collision in 2^^32 is
278 acceptable. Do NOT use for cryptographic purposes.
279 -------------------------------------------------------------------------------
282 uint32_t hashlittle( const void *key
, size_t length
, uint32_t initval
)
284 uint32_t a
,b
,c
; /* internal state */
285 union { const void *ptr
; size_t i
; } u
; /* needed for Mac Powerbook G4 */
287 /* Set up the internal state */
288 a
= b
= c
= 0xdeadbeef + ((uint32_t)length
) + initval
;
291 if (HASH_LITTLE_ENDIAN
&& ((u
.i
& 0x3) == 0)) {
292 const uint32_t *k
= (const uint32_t *)key
; /* read 32-bit chunks */
297 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
308 /*----------------------------- handle the last (probably partial) block */
310 * "k[2]&0xffffff" actually reads beyond the end of the string, but
311 * then masks off the part it's not allowed to read. Because the
312 * string is aligned, the masked-off tail is in the same word as the
313 * rest of the string. Every machine with memory protection I've seen
314 * does it on word boundaries, so is OK with this. But VALGRIND will
315 * still catch it and complain. The masking trick does make the hash
316 * noticably faster for short strings (like English words).
322 case 12: c
+=k
[2]; b
+=k
[1]; a
+=k
[0]; break;
323 case 11: c
+=k
[2]&0xffffff; b
+=k
[1]; a
+=k
[0]; break;
324 case 10: c
+=k
[2]&0xffff; b
+=k
[1]; a
+=k
[0]; break;
325 case 9 : c
+=k
[2]&0xff; b
+=k
[1]; a
+=k
[0]; break;
326 case 8 : b
+=k
[1]; a
+=k
[0]; break;
327 case 7 : b
+=k
[1]&0xffffff; a
+=k
[0]; break;
328 case 6 : b
+=k
[1]&0xffff; a
+=k
[0]; break;
329 case 5 : b
+=k
[1]&0xff; a
+=k
[0]; break;
330 case 4 : a
+=k
[0]; break;
331 case 3 : a
+=k
[0]&0xffffff; break;
332 case 2 : a
+=k
[0]&0xffff; break;
333 case 1 : a
+=k
[0]&0xff; break;
334 case 0 : return c
; /* zero length strings require no mixing */
337 #else /* make valgrind happy */
339 k8
= (const uint8_t *)k
;
342 case 12: c
+=k
[2]; b
+=k
[1]; a
+=k
[0]; break;
343 case 11: c
+=((uint32_t)k8
[10])<<16; /* fall through */
344 case 10: c
+=((uint32_t)k8
[9])<<8; /* fall through */
345 case 9 : c
+=k8
[8]; /* fall through */
346 case 8 : b
+=k
[1]; a
+=k
[0]; break;
347 case 7 : b
+=((uint32_t)k8
[6])<<16; /* fall through */
348 case 6 : b
+=((uint32_t)k8
[5])<<8; /* fall through */
349 case 5 : b
+=k8
[4]; /* fall through */
350 case 4 : a
+=k
[0]; break;
351 case 3 : a
+=((uint32_t)k8
[2])<<16; /* fall through */
352 case 2 : a
+=((uint32_t)k8
[1])<<8; /* fall through */
353 case 1 : a
+=k8
[0]; break;
357 #endif /* !valgrind */
359 } else if (HASH_LITTLE_ENDIAN
&& ((u
.i
& 0x1) == 0)) {
360 const uint16_t *k
= (const uint16_t *)key
; /* read 16-bit chunks */
363 /*--------------- all but last block: aligned reads and different mixing */
366 a
+= k
[0] + (((uint32_t)k
[1])<<16);
367 b
+= k
[2] + (((uint32_t)k
[3])<<16);
368 c
+= k
[4] + (((uint32_t)k
[5])<<16);
374 /*----------------------------- handle the last (probably partial) block */
375 k8
= (const uint8_t *)k
;
378 case 12: c
+=k
[4]+(((uint32_t)k
[5])<<16);
379 b
+=k
[2]+(((uint32_t)k
[3])<<16);
380 a
+=k
[0]+(((uint32_t)k
[1])<<16);
382 case 11: c
+=((uint32_t)k8
[10])<<16; /* fall through */
384 b
+=k
[2]+(((uint32_t)k
[3])<<16);
385 a
+=k
[0]+(((uint32_t)k
[1])<<16);
387 case 9 : c
+=k8
[8]; /* fall through */
388 case 8 : b
+=k
[2]+(((uint32_t)k
[3])<<16);
389 a
+=k
[0]+(((uint32_t)k
[1])<<16);
391 case 7 : b
+=((uint32_t)k8
[6])<<16; /* fall through */
393 a
+=k
[0]+(((uint32_t)k
[1])<<16);
395 case 5 : b
+=k8
[4]; /* fall through */
396 case 4 : a
+=k
[0]+(((uint32_t)k
[1])<<16);
398 case 3 : a
+=((uint32_t)k8
[2])<<16; /* fall through */
403 case 0 : return c
; /* zero length requires no mixing */
406 } else { /* need to read the key one byte at a time */
407 const uint8_t *k
= (const uint8_t *)key
;
409 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
413 a
+= ((uint32_t)k
[1])<<8;
414 a
+= ((uint32_t)k
[2])<<16;
415 a
+= ((uint32_t)k
[3])<<24;
417 b
+= ((uint32_t)k
[5])<<8;
418 b
+= ((uint32_t)k
[6])<<16;
419 b
+= ((uint32_t)k
[7])<<24;
421 c
+= ((uint32_t)k
[9])<<8;
422 c
+= ((uint32_t)k
[10])<<16;
423 c
+= ((uint32_t)k
[11])<<24;
429 /*-------------------------------- last block: affect all 32 bits of (c) */
430 switch(length
) /* all the case statements fall through */
432 case 12: c
+=((uint32_t)k
[11])<<24;
433 case 11: c
+=((uint32_t)k
[10])<<16;
434 case 10: c
+=((uint32_t)k
[9])<<8;
436 case 8 : b
+=((uint32_t)k
[7])<<24;
437 case 7 : b
+=((uint32_t)k
[6])<<16;
438 case 6 : b
+=((uint32_t)k
[5])<<8;
440 case 4 : a
+=((uint32_t)k
[3])<<24;
441 case 3 : a
+=((uint32_t)k
[2])<<16;
442 case 2 : a
+=((uint32_t)k
[1])<<8;
455 * hashlittle2: return 2 32-bit hash values
457 * This is identical to hashlittle(), except it returns two 32-bit hash
458 * values instead of just one. This is good enough for hash table
459 * lookup with 2^^64 buckets, or if you want a second hash if you're not
460 * happy with the first, or if you want a probably-unique 64-bit ID for
461 * the key. *pc is better mixed than *pb, so use *pc first. If you want
462 * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
465 const void *key
, /* the key to hash */
466 size_t length
, /* length of the key */
467 uint32_t *pc
, /* IN: primary initval, OUT: primary hash */
468 uint32_t *pb
) /* IN: secondary initval, OUT: secondary hash */
470 uint32_t a
,b
,c
; /* internal state */
471 union { const void *ptr
; size_t i
; } u
; /* needed for Mac Powerbook G4 */
473 /* Set up the internal state */
474 a
= b
= c
= 0xdeadbeef + ((uint32_t)length
) + *pc
;
478 if (HASH_LITTLE_ENDIAN
&& ((u
.i
& 0x3) == 0)) {
479 const uint32_t *k
= (const uint32_t *)key
; /* read 32-bit chunks */
484 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
495 /*----------------------------- handle the last (probably partial) block */
497 * "k[2]&0xffffff" actually reads beyond the end of the string, but
498 * then masks off the part it's not allowed to read. Because the
499 * string is aligned, the masked-off tail is in the same word as the
500 * rest of the string. Every machine with memory protection I've seen
501 * does it on word boundaries, so is OK with this. But VALGRIND will
502 * still catch it and complain. The masking trick does make the hash
503 * noticably faster for short strings (like English words).
509 case 12: c
+=k
[2]; b
+=k
[1]; a
+=k
[0]; break;
510 case 11: c
+=k
[2]&0xffffff; b
+=k
[1]; a
+=k
[0]; break;
511 case 10: c
+=k
[2]&0xffff; b
+=k
[1]; a
+=k
[0]; break;
512 case 9 : c
+=k
[2]&0xff; b
+=k
[1]; a
+=k
[0]; break;
513 case 8 : b
+=k
[1]; a
+=k
[0]; break;
514 case 7 : b
+=k
[1]&0xffffff; a
+=k
[0]; break;
515 case 6 : b
+=k
[1]&0xffff; a
+=k
[0]; break;
516 case 5 : b
+=k
[1]&0xff; a
+=k
[0]; break;
517 case 4 : a
+=k
[0]; break;
518 case 3 : a
+=k
[0]&0xffffff; break;
519 case 2 : a
+=k
[0]&0xffff; break;
520 case 1 : a
+=k
[0]&0xff; break;
521 case 0 : *pc
=c
; *pb
=b
; return; /* zero length strings require no mixing */
524 #else /* make valgrind happy */
526 k8
= (const uint8_t *)k
;
529 case 12: c
+=k
[2]; b
+=k
[1]; a
+=k
[0]; break;
530 case 11: c
+=((uint32_t)k8
[10])<<16; /* fall through */
531 case 10: c
+=((uint32_t)k8
[9])<<8; /* fall through */
532 case 9 : c
+=k8
[8]; /* fall through */
533 case 8 : b
+=k
[1]; a
+=k
[0]; break;
534 case 7 : b
+=((uint32_t)k8
[6])<<16; /* fall through */
535 case 6 : b
+=((uint32_t)k8
[5])<<8; /* fall through */
536 case 5 : b
+=k8
[4]; /* fall through */
537 case 4 : a
+=k
[0]; break;
538 case 3 : a
+=((uint32_t)k8
[2])<<16; /* fall through */
539 case 2 : a
+=((uint32_t)k8
[1])<<8; /* fall through */
540 case 1 : a
+=k8
[0]; break;
541 case 0 : *pc
=c
; *pb
=b
; return; /* zero length strings require no mixing */
544 #endif /* !valgrind */
546 } else if (HASH_LITTLE_ENDIAN
&& ((u
.i
& 0x1) == 0)) {
547 const uint16_t *k
= (const uint16_t *)key
; /* read 16-bit chunks */
550 /*--------------- all but last block: aligned reads and different mixing */
553 a
+= k
[0] + (((uint32_t)k
[1])<<16);
554 b
+= k
[2] + (((uint32_t)k
[3])<<16);
555 c
+= k
[4] + (((uint32_t)k
[5])<<16);
561 /*----------------------------- handle the last (probably partial) block */
562 k8
= (const uint8_t *)k
;
565 case 12: c
+=k
[4]+(((uint32_t)k
[5])<<16);
566 b
+=k
[2]+(((uint32_t)k
[3])<<16);
567 a
+=k
[0]+(((uint32_t)k
[1])<<16);
569 case 11: c
+=((uint32_t)k8
[10])<<16; /* fall through */
571 b
+=k
[2]+(((uint32_t)k
[3])<<16);
572 a
+=k
[0]+(((uint32_t)k
[1])<<16);
574 case 9 : c
+=k8
[8]; /* fall through */
575 case 8 : b
+=k
[2]+(((uint32_t)k
[3])<<16);
576 a
+=k
[0]+(((uint32_t)k
[1])<<16);
578 case 7 : b
+=((uint32_t)k8
[6])<<16; /* fall through */
580 a
+=k
[0]+(((uint32_t)k
[1])<<16);
582 case 5 : b
+=k8
[4]; /* fall through */
583 case 4 : a
+=k
[0]+(((uint32_t)k
[1])<<16);
585 case 3 : a
+=((uint32_t)k8
[2])<<16; /* fall through */
590 case 0 : *pc
=c
; *pb
=b
; return; /* zero length strings require no mixing */
593 } else { /* need to read the key one byte at a time */
594 const uint8_t *k
= (const uint8_t *)key
;
596 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
600 a
+= ((uint32_t)k
[1])<<8;
601 a
+= ((uint32_t)k
[2])<<16;
602 a
+= ((uint32_t)k
[3])<<24;
604 b
+= ((uint32_t)k
[5])<<8;
605 b
+= ((uint32_t)k
[6])<<16;
606 b
+= ((uint32_t)k
[7])<<24;
608 c
+= ((uint32_t)k
[9])<<8;
609 c
+= ((uint32_t)k
[10])<<16;
610 c
+= ((uint32_t)k
[11])<<24;
616 /*-------------------------------- last block: affect all 32 bits of (c) */
617 switch(length
) /* all the case statements fall through */
619 case 12: c
+=((uint32_t)k
[11])<<24;
620 case 11: c
+=((uint32_t)k
[10])<<16;
621 case 10: c
+=((uint32_t)k
[9])<<8;
623 case 8 : b
+=((uint32_t)k
[7])<<24;
624 case 7 : b
+=((uint32_t)k
[6])<<16;
625 case 6 : b
+=((uint32_t)k
[5])<<8;
627 case 4 : a
+=((uint32_t)k
[3])<<24;
628 case 3 : a
+=((uint32_t)k
[2])<<16;
629 case 2 : a
+=((uint32_t)k
[1])<<8;
632 case 0 : *pc
=c
; *pb
=b
; return; /* zero length strings require no mixing */
644 * This is the same as hashword() on big-endian machines. It is different
645 * from hashlittle() on all machines. hashbig() takes advantage of
646 * big-endian byte ordering.
648 uint32_t hashbig( const void *key
, size_t length
, uint32_t initval
)
651 union { const void *ptr
; size_t i
; } u
; /* to cast key to (size_t) happily */
653 /* Set up the internal state */
654 a
= b
= c
= 0xdeadbeef + ((uint32_t)length
) + initval
;
657 if (HASH_BIG_ENDIAN
&& ((u
.i
& 0x3) == 0)) {
658 const uint32_t *k
= (const uint32_t *)key
; /* read 32-bit chunks */
663 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
674 /*----------------------------- handle the last (probably partial) block */
676 * "k[2]<<8" actually reads beyond the end of the string, but
677 * then shifts out the part it's not allowed to read. Because the
678 * string is aligned, the illegal read is in the same word as the
679 * rest of the string. Every machine with memory protection I've seen
680 * does it on word boundaries, so is OK with this. But VALGRIND will
681 * still catch it and complain. The masking trick does make the hash
682 * noticably faster for short strings (like English words).
688 case 12: c
+=k
[2]; b
+=k
[1]; a
+=k
[0]; break;
689 case 11: c
+=k
[2]&0xffffff00; b
+=k
[1]; a
+=k
[0]; break;
690 case 10: c
+=k
[2]&0xffff0000; b
+=k
[1]; a
+=k
[0]; break;
691 case 9 : c
+=k
[2]&0xff000000; b
+=k
[1]; a
+=k
[0]; break;
692 case 8 : b
+=k
[1]; a
+=k
[0]; break;
693 case 7 : b
+=k
[1]&0xffffff00; a
+=k
[0]; break;
694 case 6 : b
+=k
[1]&0xffff0000; a
+=k
[0]; break;
695 case 5 : b
+=k
[1]&0xff000000; a
+=k
[0]; break;
696 case 4 : a
+=k
[0]; break;
697 case 3 : a
+=k
[0]&0xffffff00; break;
698 case 2 : a
+=k
[0]&0xffff0000; break;
699 case 1 : a
+=k
[0]&0xff000000; break;
700 case 0 : return c
; /* zero length strings require no mixing */
703 #else /* make valgrind happy */
705 k8
= (const uint8_t *)k
;
706 switch(length
) /* all the case statements fall through */
708 case 12: c
+=k
[2]; b
+=k
[1]; a
+=k
[0]; break;
709 case 11: c
+=((uint32_t)k8
[10])<<8; /* fall through */
710 case 10: c
+=((uint32_t)k8
[9])<<16; /* fall through */
711 case 9 : c
+=((uint32_t)k8
[8])<<24; /* fall through */
712 case 8 : b
+=k
[1]; a
+=k
[0]; break;
713 case 7 : b
+=((uint32_t)k8
[6])<<8; /* fall through */
714 case 6 : b
+=((uint32_t)k8
[5])<<16; /* fall through */
715 case 5 : b
+=((uint32_t)k8
[4])<<24; /* fall through */
716 case 4 : a
+=k
[0]; break;
717 case 3 : a
+=((uint32_t)k8
[2])<<8; /* fall through */
718 case 2 : a
+=((uint32_t)k8
[1])<<16; /* fall through */
719 case 1 : a
+=((uint32_t)k8
[0])<<24; break;
723 #endif /* !VALGRIND */
725 } else { /* need to read the key one byte at a time */
726 const uint8_t *k
= (const uint8_t *)key
;
728 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
731 a
+= ((uint32_t)k
[0])<<24;
732 a
+= ((uint32_t)k
[1])<<16;
733 a
+= ((uint32_t)k
[2])<<8;
734 a
+= ((uint32_t)k
[3]);
735 b
+= ((uint32_t)k
[4])<<24;
736 b
+= ((uint32_t)k
[5])<<16;
737 b
+= ((uint32_t)k
[6])<<8;
738 b
+= ((uint32_t)k
[7]);
739 c
+= ((uint32_t)k
[8])<<24;
740 c
+= ((uint32_t)k
[9])<<16;
741 c
+= ((uint32_t)k
[10])<<8;
742 c
+= ((uint32_t)k
[11]);
748 /*-------------------------------- last block: affect all 32 bits of (c) */
749 switch(length
) /* all the case statements fall through */
752 case 11: c
+=((uint32_t)k
[10])<<8;
753 case 10: c
+=((uint32_t)k
[9])<<16;
754 case 9 : c
+=((uint32_t)k
[8])<<24;
756 case 7 : b
+=((uint32_t)k
[6])<<8;
757 case 6 : b
+=((uint32_t)k
[5])<<16;
758 case 5 : b
+=((uint32_t)k
[4])<<24;
760 case 3 : a
+=((uint32_t)k
[2])<<8;
761 case 2 : a
+=((uint32_t)k
[1])<<16;
762 case 1 : a
+=((uint32_t)k
[0])<<24;
775 /* used for timings */
784 for (i
=0; i
<256; ++i
) buf
[i
] = 'x';
787 h
= hashlittle(&buf
[0],1,h
);
790 if (z
-a
> 0) printf("time %d %.8x\n", z
-a
, h
);
793 /* check that every input bit changes every output bit half the time */
800 uint8_t qa
[MAXLEN
+1], qb
[MAXLEN
+2], *a
= &qa
[0], *b
= &qb
[1];
801 uint32_t c
[HASHSTATE
], d
[HASHSTATE
], i
=0, j
=0, k
, l
, m
=0, z
;
802 uint32_t e
[HASHSTATE
],f
[HASHSTATE
],g
[HASHSTATE
],h
[HASHSTATE
];
803 uint32_t x
[HASHSTATE
],y
[HASHSTATE
];
806 printf("No more than %d trials should ever be needed \n",MAXPAIR
/2);
807 for (hlen
=0; hlen
< MAXLEN
; ++hlen
)
810 for (i
=0; i
<hlen
; ++i
) /*----------------------- for each input byte, */
812 for (j
=0; j
<8; ++j
) /*------------------------ for each input bit, */
814 for (m
=1; m
<8; ++m
) /*------------ for serveral possible initvals, */
816 for (l
=0; l
<HASHSTATE
; ++l
)
817 e
[l
]=f
[l
]=g
[l
]=h
[l
]=x
[l
]=y
[l
]=~((uint32_t)0);
819 /*---- check that every output bit is affected by that input bit */
820 for (k
=0; k
<MAXPAIR
; k
+=2)
823 /* keys have one bit different */
824 for (l
=0; l
<hlen
+1; ++l
) {a
[l
] = b
[l
] = (uint8_t)0;}
825 /* have a and b be two keys differing in only one bit */
828 c
[0] = hashlittle(a
, hlen
, m
);
830 b
[i
] ^= ((k
+1)>>(8-j
));
831 d
[0] = hashlittle(b
, hlen
, m
);
832 /* check every bit is 1, 0, set, and not set at least once */
833 for (l
=0; l
<HASHSTATE
; ++l
)
836 f
[l
] &= ~(c
[l
]^d
[l
]);
841 if (e
[l
]|f
[l
]|g
[l
]|h
[l
]|x
[l
]|y
[l
]) finished
=0;
848 printf("Some bit didn't change: ");
849 printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
850 e
[0],f
[0],g
[0],h
[0],x
[0],y
[0]);
851 printf("i %d j %d m %d len %d\n", i
, j
, m
, hlen
);
853 if (z
==MAXPAIR
) goto done
;
860 printf("Mix success %2d bytes %2d initvals ",i
,m
);
861 printf("required %d trials\n", z
/2);
867 /* Check for reading beyond the end of the buffer and alignment problems */
870 uint8_t buf
[MAXLEN
+20], *b
;
872 uint8_t q
[] = "This is the time for all good men to come to the aid of their country...";
874 uint8_t qq
[] = "xThis is the time for all good men to come to the aid of their country...";
876 uint8_t qqq
[] = "xxThis is the time for all good men to come to the aid of their country...";
878 uint8_t qqqq
[] = "xxxThis is the time for all good men to come to the aid of their country...";
882 printf("Endianness. These lines should all be the same (for values filled in):\n");
883 printf("%.8x %.8x %.8x\n",
884 hashword((const uint32_t *)q
, (sizeof(q
)-1)/4, 13),
885 hashword((const uint32_t *)q
, (sizeof(q
)-5)/4, 13),
886 hashword((const uint32_t *)q
, (sizeof(q
)-9)/4, 13));
888 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
889 hashlittle(p
, sizeof(q
)-1, 13), hashlittle(p
, sizeof(q
)-2, 13),
890 hashlittle(p
, sizeof(q
)-3, 13), hashlittle(p
, sizeof(q
)-4, 13),
891 hashlittle(p
, sizeof(q
)-5, 13), hashlittle(p
, sizeof(q
)-6, 13),
892 hashlittle(p
, sizeof(q
)-7, 13), hashlittle(p
, sizeof(q
)-8, 13),
893 hashlittle(p
, sizeof(q
)-9, 13), hashlittle(p
, sizeof(q
)-10, 13),
894 hashlittle(p
, sizeof(q
)-11, 13), hashlittle(p
, sizeof(q
)-12, 13));
896 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
897 hashlittle(p
, sizeof(q
)-1, 13), hashlittle(p
, sizeof(q
)-2, 13),
898 hashlittle(p
, sizeof(q
)-3, 13), hashlittle(p
, sizeof(q
)-4, 13),
899 hashlittle(p
, sizeof(q
)-5, 13), hashlittle(p
, sizeof(q
)-6, 13),
900 hashlittle(p
, sizeof(q
)-7, 13), hashlittle(p
, sizeof(q
)-8, 13),
901 hashlittle(p
, sizeof(q
)-9, 13), hashlittle(p
, sizeof(q
)-10, 13),
902 hashlittle(p
, sizeof(q
)-11, 13), hashlittle(p
, sizeof(q
)-12, 13));
904 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
905 hashlittle(p
, sizeof(q
)-1, 13), hashlittle(p
, sizeof(q
)-2, 13),
906 hashlittle(p
, sizeof(q
)-3, 13), hashlittle(p
, sizeof(q
)-4, 13),
907 hashlittle(p
, sizeof(q
)-5, 13), hashlittle(p
, sizeof(q
)-6, 13),
908 hashlittle(p
, sizeof(q
)-7, 13), hashlittle(p
, sizeof(q
)-8, 13),
909 hashlittle(p
, sizeof(q
)-9, 13), hashlittle(p
, sizeof(q
)-10, 13),
910 hashlittle(p
, sizeof(q
)-11, 13), hashlittle(p
, sizeof(q
)-12, 13));
912 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
913 hashlittle(p
, sizeof(q
)-1, 13), hashlittle(p
, sizeof(q
)-2, 13),
914 hashlittle(p
, sizeof(q
)-3, 13), hashlittle(p
, sizeof(q
)-4, 13),
915 hashlittle(p
, sizeof(q
)-5, 13), hashlittle(p
, sizeof(q
)-6, 13),
916 hashlittle(p
, sizeof(q
)-7, 13), hashlittle(p
, sizeof(q
)-8, 13),
917 hashlittle(p
, sizeof(q
)-9, 13), hashlittle(p
, sizeof(q
)-10, 13),
918 hashlittle(p
, sizeof(q
)-11, 13), hashlittle(p
, sizeof(q
)-12, 13));
921 /* check that hashlittle2 and hashlittle produce the same results */
923 hashlittle2(q
, sizeof(q
), &i
, &j
);
924 if (hashlittle(q
, sizeof(q
), 47) != i
)
925 printf("hashlittle2 and hashlittle mismatch\n");
927 /* check that hashword2 and hashword produce the same results */
930 hashword2(&len
, 1, &i
, &j
);
931 if (hashword(&len
, 1, 47) != i
)
932 printf("hashword2 and hashword mismatch %x %x\n",
933 i
, hashword(&len
, 1, 47));
935 /* check hashlittle doesn't read before or after the ends of the string */
936 for (h
=0, b
=buf
+1; h
<8; ++h
, ++b
)
938 for (i
=0; i
<MAXLEN
; ++i
)
941 for (j
=0; j
<i
; ++j
) *(b
+j
)=0;
943 /* these should all be equal */
944 ref
= hashlittle(b
, len
, (uint32_t)1);
947 x
= hashlittle(b
, len
, (uint32_t)1);
948 y
= hashlittle(b
, len
, (uint32_t)1);
949 if ((ref
!= x
) || (ref
!= y
))
951 printf("alignment error: %.8x %.8x %.8x %d %d\n",ref
,x
,y
,
958 /* check for problems with nulls */
962 uint32_t h
,i
,state
[HASHSTATE
];
966 for (i
=0; i
<HASHSTATE
; ++i
) state
[i
] = 1;
967 printf("These should all be different\n");
968 for (i
=0, h
=0; i
<8; ++i
)
970 h
= hashlittle(buf
, 0, h
);
971 printf("%2ld 0-byte strings, hash is %.8x\n", i
, h
);
978 b
=0, c
=0, hashlittle2("", 0, &c
, &b
);
979 printf("hash is %.8lx %.8lx\n", c
, b
); /* deadbeef deadbeef */
980 b
=0xdeadbeef, c
=0, hashlittle2("", 0, &c
, &b
);
981 printf("hash is %.8lx %.8lx\n", c
, b
); /* bd5b7dde deadbeef */
982 b
=0xdeadbeef, c
=0xdeadbeef, hashlittle2("", 0, &c
, &b
);
983 printf("hash is %.8lx %.8lx\n", c
, b
); /* 9c093ccd bd5b7dde */
984 b
=0, c
=0, hashlittle2("Four score and seven years ago", 30, &c
, &b
);
985 printf("hash is %.8lx %.8lx\n", c
, b
); /* 17770551 ce7226e6 */
986 b
=1, c
=0, hashlittle2("Four score and seven years ago", 30, &c
, &b
);
987 printf("hash is %.8lx %.8lx\n", c
, b
); /* e3607cae bd371de4 */
988 b
=0, c
=1, hashlittle2("Four score and seven years ago", 30, &c
, &b
);
989 printf("hash is %.8lx %.8lx\n", c
, b
); /* cd628161 6cbea4b3 */
990 c
= hashlittle("Four score and seven years ago", 30, 0);
991 printf("hash is %.8lx\n", c
); /* 17770551 */
992 c
= hashlittle("Four score and seven years ago", 30, 1);
993 printf("hash is %.8lx\n", c
); /* cd628161 */
999 driver1(); /* test that the key is hashed: used for timings */
1000 driver2(); /* test that whole key is hashed thoroughly */
1001 driver3(); /* test that nothing but the key is hashed */
1002 driver4(); /* test hashing multiple buffers (all buffers are null) */
1003 driver5(); /* test the hash against known vectors */
1007 #endif /* SELF_TEST */