/*
- * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* Please see the License for the specific language governing rights and
* limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
zone_t kalloc_zone(vm_size_t);
#endif
+#define KALLOC_MAP_SIZE_MIN (16 * 1024 * 1024)
+#define KALLOC_MAP_SIZE_MAX (128 * 1024 * 1024)
vm_map_t kalloc_map;
-vm_size_t kalloc_map_size = 16 * 1024 * 1024;
vm_size_t kalloc_max;
vm_size_t kalloc_max_prerounded;
+vm_size_t kalloc_kernmap_size; /* size of kallocs that can come from kernel map */
unsigned int kalloc_large_inuse;
vm_size_t kalloc_large_total;
vm_size_t kalloc_large_max;
+vm_size_t kalloc_largest_allocated = 0;
+uint64_t kalloc_large_sum;
+
+int kalloc_fake_zone_index = -1; /* index of our fake zone in statistics arrays */
+
+vm_offset_t kalloc_map_min;
+vm_offset_t kalloc_map_max;
+
+#ifdef MUTEX_ZONE
+/*
+ * Diagnostic code to track mutexes separately rather than via the 2^ zones
+ */
+ zone_t lck_mtx_zone;
+#endif
+
+static void
+KALLOC_ZINFO_SALLOC(vm_size_t bytes)
+{
+ thread_t thr = current_thread();
+ task_t task;
+ zinfo_usage_t zinfo;
+
+ thr->tkm_shared.alloc += bytes;
+ if (kalloc_fake_zone_index != -1 &&
+ (task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
+ zinfo[kalloc_fake_zone_index].alloc += bytes;
+}
+
+static void
+KALLOC_ZINFO_SFREE(vm_size_t bytes)
+{
+ thread_t thr = current_thread();
+ task_t task;
+ zinfo_usage_t zinfo;
+
+ thr->tkm_shared.free += bytes;
+ if (kalloc_fake_zone_index != -1 &&
+ (task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
+ zinfo[kalloc_fake_zone_index].free += bytes;
+}
/*
* All allocations of size less than kalloc_max are rounded to the
* It represents the first power of two for which no zone exists.
* kalloc_max_prerounded is the smallest allocation size, before
* rounding, for which no zone exists.
+ * Also if the allocation size is more than kalloc_kernmap_size
+ * then allocate from kernel map rather than kalloc_map.
*/
int first_k_zone = -1;
boolean_t canblock);
+lck_grp_t *kalloc_lck_grp;
+lck_mtx_t kalloc_lock;
+
+#define kalloc_spin_lock() lck_mtx_lock_spin(&kalloc_lock)
+#define kalloc_unlock() lck_mtx_unlock(&kalloc_lock)
+
+
/* OSMalloc local data declarations */
static
queue_head_t OSMalloc_tag_list;
-decl_simple_lock_data(static,OSMalloc_tag_lock)
+lck_grp_t *OSMalloc_tag_lck_grp;
+lck_mtx_t OSMalloc_tag_lock;
+
+#define OSMalloc_tag_spin_lock() lck_mtx_lock_spin(&OSMalloc_tag_lock)
+#define OSMalloc_tag_unlock() lck_mtx_unlock(&OSMalloc_tag_lock)
+
/* OSMalloc forward declarations */
void OSMalloc_init(void);
{
kern_return_t retval;
vm_offset_t min;
- vm_size_t size;
+ vm_size_t size, kalloc_map_size;
register int i;
+ /*
+ * Scale the kalloc_map_size to physical memory size: stay below
+ * 1/8th the total zone map size, or 128 MB (for a 32-bit kernel).
+ */
+ kalloc_map_size = (vm_size_t)(sane_size >> 5);
+#if !__LP64__
+ if (kalloc_map_size > KALLOC_MAP_SIZE_MAX)
+ kalloc_map_size = KALLOC_MAP_SIZE_MAX;
+#endif /* !__LP64__ */
+ if (kalloc_map_size < KALLOC_MAP_SIZE_MIN)
+ kalloc_map_size = KALLOC_MAP_SIZE_MIN;
+
retval = kmem_suballoc(kernel_map, &min, kalloc_map_size,
- FALSE, VM_FLAGS_ANYWHERE, &kalloc_map);
+ FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT,
+ &kalloc_map);
if (retval != KERN_SUCCESS)
panic("kalloc_init: kmem_suballoc failed");
+ kalloc_map_min = min;
+ kalloc_map_max = min + kalloc_map_size - 1;
+
/*
* Ensure that zones up to size 8192 bytes exist.
* This is desirable because messages are allocated
else
kalloc_max = PAGE_SIZE;
kalloc_max_prerounded = kalloc_max / 2 + 1;
+ /* size it to be more than 16 times kalloc_max (256k) for allocations from kernel map */
+ kalloc_kernmap_size = (kalloc_max * 16) + 1;
+ kalloc_largest_allocated = kalloc_kernmap_size;
/*
* Allocate a zone for each size we are going to handle.
- * We specify non-paged memory.
+ * We specify non-paged memory. Don't charge the caller
+ * for the allocation, as we aren't sure how the memory
+ * will be handled.
*/
for (i = 0, size = 1; size < kalloc_max; i++, size <<= 1) {
if (size < KALLOC_MINSIZE) {
- k_zone[i] = 0;
+ k_zone[i] = NULL;
continue;
}
if (size == KALLOC_MINSIZE) {
}
k_zone[i] = zinit(size, k_zone_max[i] * size, size,
k_zone_name[i]);
+ zone_change(k_zone[i], Z_CALLERACCT, FALSE);
}
+ kalloc_lck_grp = lck_grp_alloc_init("kalloc.large", LCK_GRP_ATTR_NULL);
+ lck_mtx_init(&kalloc_lock, kalloc_lck_grp, LCK_ATTR_NULL);
OSMalloc_init();
+#ifdef MUTEX_ZONE
+ lck_mtx_zone = zinit(sizeof(struct _lck_mtx_), 1024*256, 4096, "lck_mtx");
+#endif
+
}
void *
{
register int zindex;
register vm_size_t allocsize;
+ vm_map_t alloc_map = VM_MAP_NULL;
/*
* If size is too large for a zone, then use kmem_alloc.
- * (We use kmem_alloc instead of kmem_alloc_wired so that
+ * (We use kmem_alloc instead of kmem_alloc_kobject so that
* krealloc can use kmem_realloc.)
*/
/* kmem_alloc could block so we return if noblock */
if (!canblock) {
- return(0);
+ return(NULL);
}
- if (kmem_alloc(kalloc_map, (vm_offset_t *)&addr, size) != KERN_SUCCESS)
- addr = 0;
- if (addr) {
+ if (size >= kalloc_kernmap_size)
+ alloc_map = kernel_map;
+ else
+ alloc_map = kalloc_map;
+
+ if (kmem_alloc(alloc_map, (vm_offset_t *)&addr, size) != KERN_SUCCESS) {
+ if (alloc_map != kernel_map) {
+ if (kmem_alloc(kernel_map, (vm_offset_t *)&addr, size) != KERN_SUCCESS)
+ addr = NULL;
+ }
+ else
+ addr = NULL;
+ }
+
+ if (addr != NULL) {
+ kalloc_spin_lock();
+ /*
+ * Thread-safe version of the workaround for 4740071
+ * (a double FREE())
+ */
+ if (size > kalloc_largest_allocated)
+ kalloc_largest_allocated = size;
+
kalloc_large_inuse++;
kalloc_large_total += size;
+ kalloc_large_sum += size;
if (kalloc_large_total > kalloc_large_max)
kalloc_large_max = kalloc_large_total;
+
+ kalloc_unlock();
+
+ KALLOC_ZINFO_SALLOC(size);
}
return(addr);
}
register int zindex;
register vm_size_t allocsize;
void *naddr;
+ vm_map_t alloc_map = VM_MAP_NULL;
/* can only be used for increasing allocation size */
/* if old block was kmem_alloc'd, then use kmem_realloc if necessary */
if (old_size >= kalloc_max_prerounded) {
+ if (old_size >= kalloc_kernmap_size)
+ alloc_map = kernel_map;
+ else
+ alloc_map = kalloc_map;
+
old_size = round_page(old_size);
new_size = round_page(new_size);
if (new_size > old_size) {
- if (KERN_SUCCESS != kmem_realloc(kalloc_map,
+ if (KERN_SUCCESS != kmem_realloc(alloc_map,
(vm_offset_t)*addrp, old_size,
- (vm_offset_t *)&naddr, new_size)) {
+ (vm_offset_t *)&naddr, new_size))
panic("krealloc: kmem_realloc");
- naddr = 0;
- }
simple_lock(lock);
*addrp = (void *) naddr;
/* kmem_realloc() doesn't free old page range. */
- kmem_free(kalloc_map, (vm_offset_t)*addrp, old_size);
+ kmem_free(alloc_map, (vm_offset_t)*addrp, old_size);
kalloc_large_total += (new_size - old_size);
+ kalloc_large_sum += (new_size - old_size);
if (kalloc_large_total > kalloc_large_max)
kalloc_large_max = kalloc_large_total;
simple_unlock(lock);
if (new_size >= kalloc_max_prerounded) {
- if (KERN_SUCCESS != kmem_alloc(kalloc_map,
+ if (new_size >= kalloc_kernmap_size)
+ alloc_map = kernel_map;
+ else
+ alloc_map = kalloc_map;
+ if (KERN_SUCCESS != kmem_alloc(alloc_map,
(vm_offset_t *)&naddr, new_size)) {
panic("krealloc: kmem_alloc");
simple_lock(lock);
*addrp = NULL;
return;
}
+ kalloc_spin_lock();
+
kalloc_large_inuse++;
+ kalloc_large_sum += new_size;
kalloc_large_total += new_size;
if (kalloc_large_total > kalloc_large_max)
kalloc_large_max = kalloc_large_total;
+
+ kalloc_unlock();
+
+ KALLOC_ZINFO_SALLOC(new_size);
} else {
register int new_zindex;
return(zget(k_zone[zindex]));
}
+volatile SInt32 kfree_nop_count = 0;
+
void
kfree(
void *data,
{
register int zindex;
register vm_size_t freesize;
+ vm_map_t alloc_map = kernel_map;
/* if size was too large for a zone, then use kmem_free */
if (size >= kalloc_max_prerounded) {
- kmem_free(kalloc_map, (vm_offset_t)data, size);
+ if ((((vm_offset_t) data) >= kalloc_map_min) && (((vm_offset_t) data) <= kalloc_map_max))
+ alloc_map = kalloc_map;
+ if (size > kalloc_largest_allocated) {
+ /*
+ * work around double FREEs of small MALLOCs
+ * this use to end up being a nop
+ * since the pointer being freed from an
+ * alloc backed by the zalloc world could
+ * never show up in the kalloc_map... however,
+ * the kernel_map is a different issue... since it
+ * was released back into the zalloc pool, a pointer
+ * would have gotten written over the 'size' that
+ * the MALLOC was retaining in the first 4 bytes of
+ * the underlying allocation... that pointer ends up
+ * looking like a really big size on the 2nd FREE and
+ * pushes the kfree into the kernel_map... we
+ * end up removing a ton of virutal space before we panic
+ * this check causes us to ignore the kfree for a size
+ * that must be 'bogus'... note that it might not be due
+ * to the above scenario, but it would still be wrong and
+ * cause serious damage.
+ */
+
+ OSAddAtomic(1, &kfree_nop_count);
+ return;
+ }
+ kmem_free(alloc_map, (vm_offset_t)data, size);
+
+ kalloc_spin_lock();
kalloc_large_total -= size;
kalloc_large_inuse--;
+ kalloc_unlock();
+
+ KALLOC_ZINFO_SFREE(size);
return;
}
}
#endif
+void
+kalloc_fake_zone_init(int zone_index)
+{
+ kalloc_fake_zone_index = zone_index;
+}
void
-kalloc_fake_zone_info(int *count, vm_size_t *cur_size, vm_size_t *max_size, vm_size_t *elem_size,
- vm_size_t *alloc_size, int *collectable, int *exhaustable)
+kalloc_fake_zone_info(int *count,
+ vm_size_t *cur_size, vm_size_t *max_size, vm_size_t *elem_size, vm_size_t *alloc_size,
+ uint64_t *sum_size, int *collectable, int *exhaustable, int *caller_acct)
{
*count = kalloc_large_inuse;
*cur_size = kalloc_large_total;
*max_size = kalloc_large_max;
- *elem_size = kalloc_large_total / kalloc_large_inuse;
- *alloc_size = kalloc_large_total / kalloc_large_inuse;
+
+ if (kalloc_large_inuse) {
+ *elem_size = kalloc_large_total / kalloc_large_inuse;
+ *alloc_size = kalloc_large_total / kalloc_large_inuse;
+ } else {
+ *elem_size = 0;
+ *alloc_size = 0;
+ }
+ *sum_size = kalloc_large_sum;
*collectable = 0;
*exhaustable = 0;
+ *caller_acct = 0;
}
void)
{
queue_init(&OSMalloc_tag_list);
- simple_lock_init(&OSMalloc_tag_lock, 0);
+
+ OSMalloc_tag_lck_grp = lck_grp_alloc_init("OSMalloc_tag", LCK_GRP_ATTR_NULL);
+ lck_mtx_init(&OSMalloc_tag_lock, OSMalloc_tag_lck_grp, LCK_ATTR_NULL);
}
OSMallocTag
strncpy(OSMTag->OSMT_name, str, OSMT_MAX_NAME);
- simple_lock(&OSMalloc_tag_lock);
+ OSMalloc_tag_spin_lock();
enqueue_tail(&OSMalloc_tag_list, (queue_entry_t)OSMTag);
- simple_unlock(&OSMalloc_tag_lock);
+ OSMalloc_tag_unlock();
OSMTag->OSMT_state = OSMT_VALID;
return(OSMTag);
}
if (!((tag->OSMT_state & OSMT_VALID_MASK) == OSMT_VALID))
panic("OSMalloc_Tagref(): bad state 0x%08X\n",tag->OSMT_state);
- (void)hw_atomic_add((uint32_t *)(&tag->OSMT_refcnt), 1);
+ (void)hw_atomic_add(&tag->OSMT_refcnt, 1);
}
void
if (!((tag->OSMT_state & OSMT_VALID_MASK) == OSMT_VALID))
panic("OSMalloc_Tagref(): bad state 0x%08X\n",tag->OSMT_state);
- if (hw_atomic_sub((uint32_t *)(&tag->OSMT_refcnt), 1) == 0) {
+ if (hw_atomic_sub(&tag->OSMT_refcnt, 1) == 0) {
if (hw_compare_and_store(OSMT_VALID|OSMT_RELEASED, OSMT_VALID|OSMT_RELEASED, &tag->OSMT_state)) {
- simple_lock(&OSMalloc_tag_lock);
+ OSMalloc_tag_spin_lock();
(void)remque((queue_entry_t)tag);
- simple_unlock(&OSMalloc_tag_lock);
+ OSMalloc_tag_unlock();
kfree((void*)tag, sizeof(*tag));
} else
panic("OSMalloc_Tagrele(): refcnt 0\n");
if (!hw_compare_and_store(OSMT_VALID, OSMT_VALID|OSMT_RELEASED, &tag->OSMT_state))
panic("OSMalloc_Tagfree(): bad state 0x%08X\n", tag->OSMT_state);
- if (hw_atomic_sub((uint32_t *)(&tag->OSMT_refcnt), 1) == 0) {
- simple_lock(&OSMalloc_tag_lock);
+ if (hw_atomic_sub(&tag->OSMT_refcnt, 1) == 0) {
+ OSMalloc_tag_spin_lock();
(void)remque((queue_entry_t)tag);
- simple_unlock(&OSMalloc_tag_lock);
+ OSMalloc_tag_unlock();
kfree((void*)tag, sizeof(*tag));
}
}
&& (size & ~PAGE_MASK)) {
if ((kr = kmem_alloc_pageable(kernel_map, (vm_offset_t *)&addr, size)) != KERN_SUCCESS)
- panic("OSMalloc(): kmem_alloc_pageable() failed 0x%08X\n", kr);
+ addr = NULL;
} else
addr = kalloc((vm_size_t)size);
+ if (!addr)
+ OSMalloc_Tagrele(tag);
+
return(addr);
}