/*
- * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* Please see the License for the specific language governing rights and
* limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
/*
- * File: kern/clock.c
- * Purpose: Routines for the creation and use of kernel
- * alarm clock services. This file and the ipc
- * routines in kern/ipc_clock.c constitute the
- * machine-independent clock service layer.
*/
-
-#include <mach_host.h>
+/*-
+ * Copyright (c) 1982, 1986, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)time.h 8.5 (Berkeley) 5/4/95
+ * $FreeBSD$
+ */
#include <mach/mach_types.h>
-#include <mach/boolean.h>
-#include <mach/processor_info.h>
-#include <mach/vm_param.h>
-
-#include <kern/cpu_number.h>
-#include <kern/misc_protos.h>
-#include <kern/lock.h>
-#include <kern/host.h>
+
#include <kern/spl.h>
#include <kern/sched_prim.h>
#include <kern/thread.h>
-#include <kern/ipc_host.h>
#include <kern/clock.h>
-#include <kern/zalloc.h>
+#include <kern/host_notify.h>
+#include <kern/thread_call.h>
+#include <libkern/OSAtomic.h>
+
+#include <IOKit/IOPlatformExpert.h>
-#include <ipc/ipc_types.h>
-#include <ipc/ipc_port.h>
+#include <machine/commpage.h>
+#include <machine/config.h>
+#include <machine/machine_routines.h>
#include <mach/mach_traps.h>
-#include <mach/clock_reply.h>
#include <mach/mach_time.h>
-#include <mach/clock_server.h>
-#include <mach/clock_priv_server.h>
-#include <mach/host_priv_server.h>
+#include <sys/kdebug.h>
+#include <sys/timex.h>
+#include <kern/arithmetic_128.h>
+#include <os/log.h>
-/*
- * Exported interface
- */
+uint32_t hz_tick_interval = 1;
+static uint64_t has_monotonic_clock = 0;
+
+decl_simple_lock_data(,clock_lock)
+lck_grp_attr_t * settime_lock_grp_attr;
+lck_grp_t * settime_lock_grp;
+lck_attr_t * settime_lock_attr;
+lck_mtx_t settime_lock;
+
+#define clock_lock() \
+ simple_lock(&clock_lock)
+
+#define clock_unlock() \
+ simple_unlock(&clock_lock)
+
+#define clock_lock_init() \
+ simple_lock_init(&clock_lock, 0)
+
+#ifdef kdp_simple_lock_is_acquired
+boolean_t kdp_clock_is_locked()
+{
+ return kdp_simple_lock_is_acquired(&clock_lock);
+}
+#endif
+
+struct bintime {
+ time_t sec;
+ uint64_t frac;
+};
+
+static __inline void
+bintime_addx(struct bintime *_bt, uint64_t _x)
+{
+ uint64_t _u;
+
+ _u = _bt->frac;
+ _bt->frac += _x;
+ if (_u > _bt->frac)
+ _bt->sec++;
+}
+
+static __inline void
+bintime_subx(struct bintime *_bt, uint64_t _x)
+{
+ uint64_t _u;
+
+ _u = _bt->frac;
+ _bt->frac -= _x;
+ if (_u < _bt->frac)
+ _bt->sec--;
+}
+
+static __inline void
+bintime_addns(struct bintime *bt, uint64_t ns)
+{
+ bt->sec += ns/ (uint64_t)NSEC_PER_SEC;
+ ns = ns % (uint64_t)NSEC_PER_SEC;
+ if (ns) {
+ /* 18446744073 = int(2^64 / NSEC_PER_SEC) */
+ ns = ns * (uint64_t)18446744073LL;
+ bintime_addx(bt, ns);
+ }
+}
+
+static __inline void
+bintime_subns(struct bintime *bt, uint64_t ns)
+{
+ bt->sec -= ns/ (uint64_t)NSEC_PER_SEC;
+ ns = ns % (uint64_t)NSEC_PER_SEC;
+ if (ns) {
+ /* 18446744073 = int(2^64 / NSEC_PER_SEC) */
+ ns = ns * (uint64_t)18446744073LL;
+ bintime_subx(bt, ns);
+ }
+}
-#include <mach/clock_server.h>
-#include <mach/mach_host_server.h>
+static __inline void
+bintime_addxns(struct bintime *bt, uint64_t a, int64_t xns)
+{
+ uint64_t uxns = (xns > 0)?(uint64_t )xns:(uint64_t)-xns;
+ uint64_t ns = multi_overflow(a, uxns);
+ if (xns > 0) {
+ if (ns)
+ bintime_addns(bt, ns);
+ ns = (a * uxns) / (uint64_t)NSEC_PER_SEC;
+ bintime_addx(bt, ns);
+ }
+ else{
+ if (ns)
+ bintime_subns(bt, ns);
+ ns = (a * uxns) / (uint64_t)NSEC_PER_SEC;
+ bintime_subx(bt,ns);
+ }
+}
-/* local data declarations */
-decl_simple_lock_data(static,ClockLock) /* clock system synchronization */
-static struct zone *alarm_zone; /* zone for user alarms */
-static struct alarm *alrmfree; /* alarm free list pointer */
-static struct alarm *alrmdone; /* alarm done list pointer */
-static long alrm_seqno; /* uniquely identifies alarms */
-static thread_call_data_t alarm_deliver;
-decl_simple_lock_data(static,calend_adjlock)
+static __inline void
+bintime_add(struct bintime *_bt, const struct bintime *_bt2)
+{
+ uint64_t _u;
-static timer_call_data_t calend_adjcall;
-static uint64_t calend_adjdeadline;
+ _u = _bt->frac;
+ _bt->frac += _bt2->frac;
+ if (_u > _bt->frac)
+ _bt->sec++;
+ _bt->sec += _bt2->sec;
+}
-static thread_call_data_t calend_wakecall;
+static __inline void
+bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
+{
+ uint64_t _u;
-/* external declarations */
-extern struct clock clock_list[];
-extern int clock_count;
+ _u = _bt->frac;
+ _bt->frac -= _bt2->frac;
+ if (_u < _bt->frac)
+ _bt->sec--;
+ _bt->sec -= _bt2->sec;
+}
-/* local clock subroutines */
-static
-void flush_alarms(
- clock_t clock);
+static __inline void
+clock2bintime(const clock_sec_t *secs, const clock_usec_t *microsecs, struct bintime *_bt)
+{
-static
-void post_alarm(
- clock_t clock,
- alarm_t alarm);
+ _bt->sec = *secs;
+ /* 18446744073709 = int(2^64 / 1000000) */
+ _bt->frac = *microsecs * (uint64_t)18446744073709LL;
+}
-static
-int check_time(
- alarm_type_t alarm_type,
- mach_timespec_t *alarm_time,
- mach_timespec_t *clock_time);
+static __inline void
+bintime2usclock(const struct bintime *_bt, clock_sec_t *secs, clock_usec_t *microsecs)
+{
-static
-void clock_alarm_deliver(
- thread_call_param_t p0,
- thread_call_param_t p1);
+ *secs = _bt->sec;
+ *microsecs = ((uint64_t)USEC_PER_SEC * (uint32_t)(_bt->frac >> 32)) >> 32;
+}
-static
-void calend_adjust_call(
- timer_call_param_t p0,
- timer_call_param_t p1);
+static __inline void
+bintime2nsclock(const struct bintime *_bt, clock_sec_t *secs, clock_usec_t *nanosecs)
+{
-static
-void calend_dowakeup(
- thread_call_param_t p0,
- thread_call_param_t p1);
+ *secs = _bt->sec;
+ *nanosecs = ((uint64_t)NSEC_PER_SEC * (uint32_t)(_bt->frac >> 32)) >> 32;
+}
+
+static __inline void
+bintime2absolutetime(const struct bintime *_bt, uint64_t *abs)
+{
+ uint64_t nsec;
+ nsec = (uint64_t) _bt->sec * (uint64_t)NSEC_PER_SEC + (((uint64_t)NSEC_PER_SEC * (uint32_t)(_bt->frac >> 32)) >> 32);
+ nanoseconds_to_absolutetime(nsec, abs);
+}
+
+struct latched_time {
+ uint64_t monotonic_time_usec;
+ uint64_t mach_time;
+};
+
+extern int
+kernel_sysctlbyname(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
/*
- * Macros to lock/unlock clock system.
+ * Time of day (calendar) variables.
+ *
+ * Algorithm:
+ *
+ * TOD <- bintime + delta*scale
+ *
+ * where :
+ * bintime is a cumulative offset that includes bootime and scaled time elapsed betweed bootime and last scale update.
+ * delta is ticks elapsed since last scale update.
+ * scale is computed according to an adjustment provided by ntp_kern.
*/
-#define LOCK_CLOCK(s) \
- s = splclock(); \
- simple_lock(&ClockLock);
+static struct clock_calend {
+ uint64_t s_scale_ns; /* scale to apply for each second elapsed, it converts in ns */
+ int64_t s_adj_nsx; /* additional adj to apply for each second elapsed, it is expressed in 64 bit frac of ns */
+ uint64_t tick_scale_x; /* scale to apply for each tick elapsed, it converts in 64 bit frac of s */
+ uint64_t offset_count; /* abs time from which apply current scales */
+ struct bintime offset; /* cumulative offset expressed in (sec, 64 bits frac of a second) */
+ struct bintime bintime; /* cumulative offset (it includes bootime) expressed in (sec, 64 bits frac of a second) */
+ struct bintime boottime; /* boot time expressed in (sec, 64 bits frac of a second) */
+ struct bintime basesleep;
+} clock_calend;
+
+static uint64_t ticks_per_sec; /* ticks in a second (expressed in abs time) */
+
+#if DEVELOPMENT || DEBUG
+clock_sec_t last_utc_sec = 0;
+clock_usec_t last_utc_usec = 0;
+clock_sec_t max_utc_sec = 0;
+clock_sec_t last_sys_sec = 0;
+clock_usec_t last_sys_usec = 0;
+#endif
+
+#if DEVELOPMENT || DEBUG
+extern int g_should_log_clock_adjustments;
+
+static void print_all_clock_variables(const char*, clock_sec_t* pmu_secs, clock_usec_t* pmu_usec, clock_sec_t* sys_secs, clock_usec_t* sys_usec, struct clock_calend* calend_cp);
+static void print_all_clock_variables_internal(const char *, struct clock_calend* calend_cp);
+#else
+#define print_all_clock_variables(...) do { } while (0)
+#define print_all_clock_variables_internal(...) do { } while (0)
+#endif
+
+#if CONFIG_DTRACE
-#define UNLOCK_CLOCK(s) \
- simple_unlock(&ClockLock); \
- splx(s);
+
+/*
+ * Unlocked calendar flipflop; this is used to track a clock_calend such
+ * that we can safely access a snapshot of a valid clock_calend structure
+ * without needing to take any locks to do it.
+ *
+ * The trick is to use a generation count and set the low bit when it is
+ * being updated/read; by doing this, we guarantee, through use of the
+ * hw_atomic functions, that the generation is incremented when the bit
+ * is cleared atomically (by using a 1 bit add).
+ */
+static struct unlocked_clock_calend {
+ struct clock_calend calend; /* copy of calendar */
+ uint32_t gen; /* generation count */
+} flipflop[ 2];
+
+static void clock_track_calend_nowait(void);
+
+#endif
+
+void _clock_delay_until_deadline(uint64_t interval, uint64_t deadline);
+void _clock_delay_until_deadline_with_leeway(uint64_t interval, uint64_t deadline, uint64_t leeway);
+
+/* Boottime variables*/
+static uint64_t clock_boottime;
+static uint32_t clock_boottime_usec;
+
+#define TIME_ADD(rsecs, secs, rfrac, frac, unit) \
+MACRO_BEGIN \
+ if (((rfrac) += (frac)) >= (unit)) { \
+ (rfrac) -= (unit); \
+ (rsecs) += 1; \
+ } \
+ (rsecs) += (secs); \
+MACRO_END
+
+#define TIME_SUB(rsecs, secs, rfrac, frac, unit) \
+MACRO_BEGIN \
+ if ((int)((rfrac) -= (frac)) < 0) { \
+ (rfrac) += (unit); \
+ (rsecs) -= 1; \
+ } \
+ (rsecs) -= (secs); \
+MACRO_END
/*
* clock_config:
void
clock_config(void)
{
- clock_t clock;
- register int i;
- assert(cpu_number() == master_cpu);
+ clock_lock_init();
- simple_lock_init(&ClockLock, 0);
- thread_call_setup(&alarm_deliver, clock_alarm_deliver, NULL);
+ settime_lock_grp_attr = lck_grp_attr_alloc_init();
+ settime_lock_grp = lck_grp_alloc_init("settime grp", settime_lock_grp_attr);
+ settime_lock_attr = lck_attr_alloc_init();
+ lck_mtx_init(&settime_lock, settime_lock_grp, settime_lock_attr);
- simple_lock_init(&calend_adjlock, 0);
- timer_call_setup(&calend_adjcall, calend_adjust_call, NULL);
+ clock_oldconfig();
- thread_call_setup(&calend_wakecall, calend_dowakeup, NULL);
+ ntp_init();
- /*
- * Configure clock devices.
- */
- for (i = 0; i < clock_count; i++) {
- clock = &clock_list[i];
- if (clock->cl_ops) {
- if ((*clock->cl_ops->c_config)() == 0)
- clock->cl_ops = 0;
- }
- }
-
- /*
- * Initialize the timer callouts.
- */
- timer_call_initialize();
-
- /* start alarm sequence numbers at 0 */
- alrm_seqno = 0;
+ nanoseconds_to_absolutetime((uint64_t)NSEC_PER_SEC, &ticks_per_sec);
}
/*
void
clock_init(void)
{
- clock_t clock;
- register int i;
-
- /*
- * Initialize basic clock structures.
- */
- for (i = 0; i < clock_count; i++) {
- clock = &clock_list[i];
- if (clock->cl_ops && clock->cl_ops->c_init)
- (*clock->cl_ops->c_init)();
- }
+ clock_oldinit();
}
/*
- * Called by machine dependent code
- * to initialize areas dependent on the
- * timebase value. May be called multiple
- * times during start up.
+ * clock_timebase_init:
+ *
+ * Called by machine dependent code
+ * to initialize areas dependent on the
+ * timebase value. May be called multiple
+ * times during start up.
*/
void
clock_timebase_init(void)
{
+ uint64_t abstime;
+
+ nanoseconds_to_absolutetime(NSEC_PER_SEC / 100, &abstime);
+ hz_tick_interval = (uint32_t)abstime;
+
sched_timebase_init();
}
/*
- * Initialize the clock ipc service facility.
+ * mach_timebase_info_trap:
+ *
+ * User trap returns timebase constant.
+ */
+kern_return_t
+mach_timebase_info_trap(
+ struct mach_timebase_info_trap_args *args)
+{
+ mach_vm_address_t out_info_addr = args->info;
+ mach_timebase_info_data_t info = {};
+
+ clock_timebase_info(&info);
+
+ copyout((void *)&info, out_info_addr, sizeof (info));
+
+ return (KERN_SUCCESS);
+}
+
+/*
+ * Calendar routines.
+ */
+
+/*
+ * clock_get_calendar_microtime:
+ *
+ * Returns the current calendar value,
+ * microseconds as the fraction.
*/
void
-clock_service_create(void)
+clock_get_calendar_microtime(
+ clock_sec_t *secs,
+ clock_usec_t *microsecs)
{
- clock_t clock;
- register int i;
+ clock_get_calendar_absolute_and_microtime(secs, microsecs, NULL);
+}
+
+/*
+ * get_scale_factors_from_adj:
+ *
+ * computes scale factors from the value given in adjustment.
+ *
+ * Part of the code has been taken from tc_windup of FreeBSD
+ * written by Poul-Henning Kamp <phk@FreeBSD.ORG>, Julien Ridoux and
+ * Konstantin Belousov.
+ * https://github.com/freebsd/freebsd/blob/master/sys/kern/kern_tc.c
+ */
+static void
+get_scale_factors_from_adj(int64_t adjustment, uint64_t* tick_scale_x, uint64_t* s_scale_ns, int64_t* s_adj_nsx)
+{
+ uint64_t scale;
+ int64_t nano, frac;
+
+ /*-
+ * Calculating the scaling factor. We want the number of 1/2^64
+ * fractions of a second per period of the hardware counter, taking
+ * into account the th_adjustment factor which the NTP PLL/adjtime(2)
+ * processing provides us with.
+ *
+ * The th_adjustment is nanoseconds per second with 32 bit binary
+ * fraction and we want 64 bit binary fraction of second:
+ *
+ * x = a * 2^32 / 10^9 = a * 4.294967296
+ *
+ * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
+ * we can only multiply by about 850 without overflowing, that
+ * leaves no suitably precise fractions for multiply before divide.
+ *
+ * Divide before multiply with a fraction of 2199/512 results in a
+ * systematic undercompensation of 10PPM of th_adjustment. On a
+ * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
+ *
+ * We happily sacrifice the lowest of the 64 bits of our result
+ * to the goddess of code clarity.
+ *
+ */
+ scale = (uint64_t)1 << 63;
+ scale += (adjustment / 1024) * 2199;
+ scale /= ticks_per_sec;
+ *tick_scale_x = scale * 2;
/*
- * Initialize ipc clock services.
+ * hi part of adj
+ * it contains ns (without fraction) to add to the next sec.
+ * Get ns scale factor for the next sec.
*/
- for (i = 0; i < clock_count; i++) {
- clock = &clock_list[i];
- if (clock->cl_ops) {
- ipc_clock_init(clock);
- ipc_clock_enable(clock);
- }
- }
+ nano = (adjustment > 0)? adjustment >> 32 : -((-adjustment) >> 32);
+ scale = (uint64_t) NSEC_PER_SEC;
+ scale += nano;
+ *s_scale_ns = scale;
/*
- * Perform miscellaneous late
- * initialization.
+ * lo part of adj
+ * it contains 32 bit frac of ns to add to the next sec.
+ * Keep it as additional adjustment for the next sec.
*/
- i = sizeof(struct alarm);
- alarm_zone = zinit(i, (4096/i)*i, 10*i, "alarms");
+ frac = (adjustment > 0)? ((uint32_t) adjustment) : -((uint32_t) (-adjustment));
+ *s_adj_nsx = (frac>0)? frac << 32 : -( (-frac) << 32);
+
+ return;
}
/*
- * Get the service port on a clock.
+ * scale_delta:
+ *
+ * returns a bintime struct representing delta scaled accordingly to the
+ * scale factors provided to this function.
*/
-kern_return_t
-host_get_clock_service(
- host_t host,
- clock_id_t clock_id,
- clock_t *clock) /* OUT */
-{
- if (host == HOST_NULL || clock_id < 0 || clock_id >= clock_count) {
- *clock = CLOCK_NULL;
- return (KERN_INVALID_ARGUMENT);
+static struct bintime
+scale_delta(uint64_t delta, uint64_t tick_scale_x, uint64_t s_scale_ns, int64_t s_adj_nsx)
+{
+ uint64_t sec, new_ns, over;
+ struct bintime bt;
+
+ bt.sec = 0;
+ bt.frac = 0;
+
+ /*
+ * If more than one second is elapsed,
+ * scale fully elapsed seconds using scale factors for seconds.
+ * s_scale_ns -> scales sec to ns.
+ * s_adj_nsx -> additional adj expressed in 64 bit frac of ns to apply to each sec.
+ */
+ if (delta > ticks_per_sec) {
+ sec = (delta/ticks_per_sec);
+ new_ns = sec * s_scale_ns;
+ bintime_addns(&bt, new_ns);
+ if (s_adj_nsx) {
+ if (sec == 1) {
+ /* shortcut, no overflow can occur */
+ if (s_adj_nsx > 0)
+ bintime_addx(&bt, (uint64_t)s_adj_nsx/ (uint64_t)NSEC_PER_SEC);
+ else
+ bintime_subx(&bt, (uint64_t)-s_adj_nsx/ (uint64_t)NSEC_PER_SEC);
+ }
+ else{
+ /*
+ * s_adj_nsx is 64 bit frac of ns.
+ * sec*s_adj_nsx might overflow in int64_t.
+ * use bintime_addxns to not lose overflowed ns.
+ */
+ bintime_addxns(&bt, sec, s_adj_nsx);
+ }
+ }
+ delta = (delta % ticks_per_sec);
+ }
+
+ over = multi_overflow(tick_scale_x, delta);
+ if(over){
+ bt.sec += over;
}
- *clock = &clock_list[clock_id];
- if ((*clock)->cl_ops == 0)
- return (KERN_FAILURE);
- return (KERN_SUCCESS);
+ /*
+ * scale elapsed ticks using the scale factor for ticks.
+ */
+ bintime_addx(&bt, delta * tick_scale_x);
+
+ return bt;
}
/*
- * Get the control port on a clock.
+ * get_scaled_time:
+ *
+ * returns the scaled time of the time elapsed from the last time
+ * scale factors were updated to now.
*/
-kern_return_t
-host_get_clock_control(
- host_priv_t host_priv,
- clock_id_t clock_id,
- clock_t *clock) /* OUT */
-{
- if (host_priv == HOST_PRIV_NULL || clock_id < 0 || clock_id >= clock_count) {
- *clock = CLOCK_NULL;
- return (KERN_INVALID_ARGUMENT);
- }
+static struct bintime
+get_scaled_time(uint64_t now)
+{
+ uint64_t delta;
- *clock = &clock_list[clock_id];
- if ((*clock)->cl_ops == 0)
- return (KERN_FAILURE);
- return (KERN_SUCCESS);
+ /*
+ * Compute ticks elapsed since last scale update.
+ * This time will be scaled according to the value given by ntp kern.
+ */
+ delta = now - clock_calend.offset_count;
+
+ return scale_delta(delta, clock_calend.tick_scale_x, clock_calend.s_scale_ns, clock_calend.s_adj_nsx);
}
-/*
- * Get the current clock time.
- */
-kern_return_t
-clock_get_time(
- clock_t clock,
- mach_timespec_t *cur_time) /* OUT */
+static void
+clock_get_calendar_absolute_and_microtime_locked(
+ clock_sec_t *secs,
+ clock_usec_t *microsecs,
+ uint64_t *abstime)
{
- if (clock == CLOCK_NULL)
- return (KERN_INVALID_ARGUMENT);
- return ((*clock->cl_ops->c_gettime)(cur_time));
+ uint64_t now;
+ struct bintime bt;
+
+ now = mach_absolute_time();
+ if (abstime)
+ *abstime = now;
+
+ bt = get_scaled_time(now);
+ bintime_add(&bt, &clock_calend.bintime);
+ bintime2usclock(&bt, secs, microsecs);
}
-/*
- * Get clock attributes.
- */
-kern_return_t
-clock_get_attributes(
- clock_t clock,
- clock_flavor_t flavor,
- clock_attr_t attr, /* OUT */
- mach_msg_type_number_t *count) /* IN/OUT */
-{
- if (clock == CLOCK_NULL)
- return (KERN_INVALID_ARGUMENT);
- if (clock->cl_ops->c_getattr)
- return(clock->cl_ops->c_getattr(flavor, attr, count));
- else
- return (KERN_FAILURE);
+static void
+clock_get_calendar_absolute_and_nanotime_locked(
+ clock_sec_t *secs,
+ clock_usec_t *nanosecs,
+ uint64_t *abstime)
+{
+ uint64_t now;
+ struct bintime bt;
+
+ now = mach_absolute_time();
+ if (abstime)
+ *abstime = now;
+
+ bt = get_scaled_time(now);
+ bintime_add(&bt, &clock_calend.bintime);
+ bintime2nsclock(&bt, secs, nanosecs);
}
/*
- * Set the current clock time.
+ * clock_get_calendar_absolute_and_microtime:
+ *
+ * Returns the current calendar value,
+ * microseconds as the fraction. Also
+ * returns mach_absolute_time if abstime
+ * is not NULL.
*/
-kern_return_t
-clock_set_time(
- clock_t clock,
- mach_timespec_t new_time)
+void
+clock_get_calendar_absolute_and_microtime(
+ clock_sec_t *secs,
+ clock_usec_t *microsecs,
+ uint64_t *abstime)
{
- mach_timespec_t *clock_time;
+ spl_t s;
- if (clock == CLOCK_NULL)
- return (KERN_INVALID_ARGUMENT);
- if (clock->cl_ops->c_settime == NULL)
- return (KERN_FAILURE);
- clock_time = &new_time;
- if (BAD_MACH_TIMESPEC(clock_time))
- return (KERN_INVALID_VALUE);
+ s = splclock();
+ clock_lock();
- /*
- * Flush all outstanding alarms.
- */
- flush_alarms(clock);
+ clock_get_calendar_absolute_and_microtime_locked(secs, microsecs, abstime);
- /*
- * Set the new time.
- */
- return (clock->cl_ops->c_settime(clock_time));
+ clock_unlock();
+ splx(s);
}
/*
- * Set the clock alarm resolution.
+ * clock_get_calendar_nanotime:
+ *
+ * Returns the current calendar value,
+ * nanoseconds as the fraction.
+ *
+ * Since we do not have an interface to
+ * set the calendar with resolution greater
+ * than a microsecond, we honor that here.
*/
-kern_return_t
-clock_set_attributes(
- clock_t clock,
- clock_flavor_t flavor,
- clock_attr_t attr,
- mach_msg_type_number_t count)
-{
- if (clock == CLOCK_NULL)
- return (KERN_INVALID_ARGUMENT);
- if (clock->cl_ops->c_setattr)
- return (clock->cl_ops->c_setattr(flavor, attr, count));
- else
- return (KERN_FAILURE);
+void
+clock_get_calendar_nanotime(
+ clock_sec_t *secs,
+ clock_nsec_t *nanosecs)
+{
+ spl_t s;
+
+ s = splclock();
+ clock_lock();
+
+ clock_get_calendar_absolute_and_nanotime_locked(secs, nanosecs, NULL);
+
+ clock_unlock();
+ splx(s);
}
/*
- * Setup a clock alarm.
+ * clock_gettimeofday:
+ *
+ * Kernel interface for commpage implementation of
+ * gettimeofday() syscall.
+ *
+ * Returns the current calendar value, and updates the
+ * commpage info as appropriate. Because most calls to
+ * gettimeofday() are handled in user mode by the commpage,
+ * this routine should be used infrequently.
*/
-kern_return_t
-clock_alarm(
- clock_t clock,
- alarm_type_t alarm_type,
- mach_timespec_t alarm_time,
- ipc_port_t alarm_port,
- mach_msg_type_name_t alarm_port_type)
-{
- alarm_t alarm;
- mach_timespec_t clock_time;
- int chkstat;
- kern_return_t reply_code;
- spl_t s;
-
- if (clock == CLOCK_NULL)
- return (KERN_INVALID_ARGUMENT);
- if (clock->cl_ops->c_setalrm == 0)
- return (KERN_FAILURE);
- if (IP_VALID(alarm_port) == 0)
- return (KERN_INVALID_CAPABILITY);
+void
+clock_gettimeofday(
+ clock_sec_t *secs,
+ clock_usec_t *microsecs)
+{
+ clock_gettimeofday_and_absolute_time(secs, microsecs, NULL);
+}
- /*
- * Check alarm parameters. If parameters are invalid,
- * send alarm message immediately.
- */
- (*clock->cl_ops->c_gettime)(&clock_time);
- chkstat = check_time(alarm_type, &alarm_time, &clock_time);
- if (chkstat <= 0) {
- reply_code = (chkstat < 0 ? KERN_INVALID_VALUE : KERN_SUCCESS);
- clock_alarm_reply(alarm_port, alarm_port_type,
- reply_code, alarm_type, clock_time);
- return (KERN_SUCCESS);
+void
+clock_gettimeofday_and_absolute_time(
+ clock_sec_t *secs,
+ clock_usec_t *microsecs,
+ uint64_t *mach_time)
+{
+ uint64_t now;
+ spl_t s;
+ struct bintime bt;
+
+ s = splclock();
+ clock_lock();
+
+ now = mach_absolute_time();
+ bt = get_scaled_time(now);
+ bintime_add(&bt, &clock_calend.bintime);
+ bintime2usclock(&bt, secs, microsecs);
+
+ clock_gettimeofday_set_commpage(now, bt.sec, bt.frac, clock_calend.tick_scale_x, ticks_per_sec);
+
+ clock_unlock();
+ splx(s);
+
+ if (mach_time) {
+ *mach_time = now;
}
+}
+static void
+update_basesleep(struct bintime delta, bool forward)
+{
/*
- * Get alarm and add to clock alarm list.
+ * Update basesleep only if the platform does not have monotonic clock.
+ * In that case the sleep time computation will use the PMU time
+ * which offset gets modified by settimeofday.
+ * We don't need this for mononic clock because in that case the sleep
+ * time computation is independent from the offset value of the PMU.
*/
-
- LOCK_CLOCK(s);
- if ((alarm = alrmfree) == 0) {
- UNLOCK_CLOCK(s);
- alarm = (alarm_t) zalloc(alarm_zone);
- if (alarm == 0)
- return (KERN_RESOURCE_SHORTAGE);
- LOCK_CLOCK(s);
+ if (!has_monotonic_clock) {
+ if (forward)
+ bintime_add(&clock_calend.basesleep, &delta);
+ else
+ bintime_sub(&clock_calend.basesleep, &delta);
}
- else
- alrmfree = alarm->al_next;
-
- alarm->al_status = ALARM_CLOCK;
- alarm->al_time = alarm_time;
- alarm->al_type = alarm_type;
- alarm->al_port = alarm_port;
- alarm->al_port_type = alarm_port_type;
- alarm->al_clock = clock;
- alarm->al_seqno = alrm_seqno++;
- post_alarm(clock, alarm);
- UNLOCK_CLOCK(s);
-
- return (KERN_SUCCESS);
}
/*
- * Sleep on a clock. System trap. User-level libmach clock_sleep
- * interface call takes a mach_timespec_t sleep_time argument which it
- * converts to sleep_sec and sleep_nsec arguments which are then
- * passed to clock_sleep_trap.
+ * clock_set_calendar_microtime:
+ *
+ * Sets the current calendar value by
+ * recalculating the epoch and offset
+ * from the system clock.
+ *
+ * Also adjusts the boottime to keep the
+ * value consistent, writes the new
+ * calendar value to the platform clock,
+ * and sends calendar change notifications.
*/
-kern_return_t
-clock_sleep_trap(
- struct clock_sleep_trap_args *args)
-{
- mach_port_name_t clock_name = args->clock_name;
- sleep_type_t sleep_type = args->sleep_type;
- int sleep_sec = args->sleep_sec;
- int sleep_nsec = args->sleep_nsec;
- mach_vm_address_t wakeup_time_addr = args->wakeup_time;
- clock_t clock;
- mach_timespec_t swtime;
- kern_return_t rvalue;
+void
+clock_set_calendar_microtime(
+ clock_sec_t secs,
+ clock_usec_t microsecs)
+{
+ uint64_t absolutesys;
+ clock_sec_t newsecs;
+ clock_sec_t oldsecs;
+ clock_usec_t newmicrosecs;
+ clock_usec_t oldmicrosecs;
+ uint64_t commpage_value;
+ spl_t s;
+ struct bintime bt;
+ clock_sec_t deltasecs;
+ clock_usec_t deltamicrosecs;
+
+ newsecs = secs;
+ newmicrosecs = microsecs;
/*
- * Convert the trap parameters.
+ * settime_lock mtx is used to avoid that racing settimeofdays update the wall clock and
+ * the platform clock concurrently.
+ *
+ * clock_lock cannot be used for this race because it is acquired from interrupt context
+ * and it needs interrupts disabled while instead updating the platform clock needs to be
+ * called with interrupts enabled.
*/
- if (clock_name != MACH_PORT_NULL)
- clock = port_name_to_clock(clock_name);
- else
- clock = &clock_list[SYSTEM_CLOCK];
+ lck_mtx_lock(&settime_lock);
- swtime.tv_sec = sleep_sec;
- swtime.tv_nsec = sleep_nsec;
+ s = splclock();
+ clock_lock();
+
+#if DEVELOPMENT || DEBUG
+ struct clock_calend clock_calend_cp = clock_calend;
+#endif
+ commpage_disable_timestamp();
/*
- * Call the actual clock_sleep routine.
+ * Adjust the boottime based on the delta.
*/
- rvalue = clock_sleep_internal(clock, sleep_type, &swtime);
+ clock_get_calendar_absolute_and_microtime_locked(&oldsecs, &oldmicrosecs, &absolutesys);
+
+#if DEVELOPMENT || DEBUG
+ if (g_should_log_clock_adjustments) {
+ os_log(OS_LOG_DEFAULT, "%s wall %lu s %d u computed with %llu abs\n",
+ __func__, (unsigned long)oldsecs, oldmicrosecs, absolutesys);
+ os_log(OS_LOG_DEFAULT, "%s requested %lu s %d u\n",
+ __func__, (unsigned long)secs, microsecs );
+ }
+#endif
+
+ if (oldsecs < secs || (oldsecs == secs && oldmicrosecs < microsecs)) {
+ // moving forwards
+ deltasecs = secs;
+ deltamicrosecs = microsecs;
+
+ TIME_SUB(deltasecs, oldsecs, deltamicrosecs, oldmicrosecs, USEC_PER_SEC);
+
+#if DEVELOPMENT || DEBUG
+ if (g_should_log_clock_adjustments) {
+ os_log(OS_LOG_DEFAULT, "%s delta requested %lu s %d u\n",
+ __func__, (unsigned long)deltasecs, deltamicrosecs);
+ }
+#endif
+
+ TIME_ADD(clock_boottime, deltasecs, clock_boottime_usec, deltamicrosecs, USEC_PER_SEC);
+ clock2bintime(&deltasecs, &deltamicrosecs, &bt);
+ bintime_add(&clock_calend.boottime, &bt);
+ update_basesleep(bt, TRUE);
+ } else {
+ // moving backwards
+ deltasecs = oldsecs;
+ deltamicrosecs = oldmicrosecs;
+
+ TIME_SUB(deltasecs, secs, deltamicrosecs, microsecs, USEC_PER_SEC);
+#if DEVELOPMENT || DEBUG
+ if (g_should_log_clock_adjustments) {
+ os_log(OS_LOG_DEFAULT, "%s negative delta requested %lu s %d u\n",
+ __func__, (unsigned long)deltasecs, deltamicrosecs);
+ }
+#endif
+
+ TIME_SUB(clock_boottime, deltasecs, clock_boottime_usec, deltamicrosecs, USEC_PER_SEC);
+ clock2bintime(&deltasecs, &deltamicrosecs, &bt);
+ bintime_sub(&clock_calend.boottime, &bt);
+ update_basesleep(bt, FALSE);
+ }
+
+ clock_calend.bintime = clock_calend.boottime;
+ bintime_add(&clock_calend.bintime, &clock_calend.offset);
+
+ clock2bintime((clock_sec_t *) &secs, (clock_usec_t *) µsecs, &bt);
+
+ clock_gettimeofday_set_commpage(absolutesys, bt.sec, bt.frac, clock_calend.tick_scale_x, ticks_per_sec);
+
+#if DEVELOPMENT || DEBUG
+ struct clock_calend clock_calend_cp1 = clock_calend;
+#endif
+
+ commpage_value = clock_boottime * USEC_PER_SEC + clock_boottime_usec;
+
+ clock_unlock();
+ splx(s);
/*
- * Return current time as wakeup time.
+ * Set the new value for the platform clock.
+ * This call might block, so interrupts must be enabled.
*/
- if (rvalue != KERN_INVALID_ARGUMENT && rvalue != KERN_FAILURE) {
- copyout((char *)&swtime, wakeup_time_addr, sizeof(mach_timespec_t));
+#if DEVELOPMENT || DEBUG
+ uint64_t now_b = mach_absolute_time();
+#endif
+
+ PESetUTCTimeOfDay(newsecs, newmicrosecs);
+
+#if DEVELOPMENT || DEBUG
+ uint64_t now_a = mach_absolute_time();
+ if (g_should_log_clock_adjustments) {
+ os_log(OS_LOG_DEFAULT, "%s mach bef PESet %llu mach aft %llu \n", __func__, now_b, now_a);
}
- return (rvalue);
-}
+#endif
-/*
- * Kernel internally callable clock sleep routine. The calling
- * thread is suspended until the requested sleep time is reached.
- */
-kern_return_t
-clock_sleep_internal(
- clock_t clock,
- sleep_type_t sleep_type,
- mach_timespec_t *sleep_time)
-{
- alarm_t alarm;
- mach_timespec_t clock_time;
- kern_return_t rvalue;
- int chkstat;
- spl_t s;
-
- if (clock == CLOCK_NULL)
- return (KERN_INVALID_ARGUMENT);
- if (clock->cl_ops->c_setalrm == 0)
- return (KERN_FAILURE);
+ print_all_clock_variables_internal(__func__, &clock_calend_cp);
+ print_all_clock_variables_internal(__func__, &clock_calend_cp1);
+
+ commpage_update_boottime(commpage_value);
/*
- * Check sleep parameters. If parameters are invalid
- * return an error, otherwise post alarm request.
+ * Send host notifications.
*/
- (*clock->cl_ops->c_gettime)(&clock_time);
+ host_notify_calendar_change();
+ host_notify_calendar_set();
- chkstat = check_time(sleep_type, sleep_time, &clock_time);
- if (chkstat < 0)
- return (KERN_INVALID_VALUE);
- rvalue = KERN_SUCCESS;
- if (chkstat > 0) {
- wait_result_t wait_result;
+#if CONFIG_DTRACE
+ clock_track_calend_nowait();
+#endif
- /*
- * Get alarm and add to clock alarm list.
- */
+ lck_mtx_unlock(&settime_lock);
+}
- LOCK_CLOCK(s);
- if ((alarm = alrmfree) == 0) {
- UNLOCK_CLOCK(s);
- alarm = (alarm_t) zalloc(alarm_zone);
- if (alarm == 0)
- return (KERN_RESOURCE_SHORTAGE);
- LOCK_CLOCK(s);
- }
- else
- alrmfree = alarm->al_next;
+uint64_t mach_absolutetime_asleep = 0;
+uint64_t mach_absolutetime_last_sleep = 0;
- /*
- * Wait for alarm to occur.
- */
- wait_result = assert_wait((event_t)alarm, THREAD_ABORTSAFE);
- if (wait_result == THREAD_WAITING) {
- alarm->al_time = *sleep_time;
- alarm->al_status = ALARM_SLEEP;
- post_alarm(clock, alarm);
- UNLOCK_CLOCK(s);
-
- wait_result = thread_block(THREAD_CONTINUE_NULL);
-
- /*
- * Note if alarm expired normally or whether it
- * was aborted. If aborted, delete alarm from
- * clock alarm list. Return alarm to free list.
- */
- LOCK_CLOCK(s);
- if (alarm->al_status != ALARM_DONE) {
- assert(wait_result != THREAD_AWAKENED);
- if (((alarm->al_prev)->al_next = alarm->al_next) != NULL)
- (alarm->al_next)->al_prev = alarm->al_prev;
- rvalue = KERN_ABORTED;
- }
- *sleep_time = alarm->al_time;
- alarm->al_status = ALARM_FREE;
- } else {
- assert(wait_result == THREAD_INTERRUPTED);
- assert(alarm->al_status == ALARM_FREE);
- rvalue = KERN_ABORTED;
- }
- alarm->al_next = alrmfree;
- alrmfree = alarm;
- UNLOCK_CLOCK(s);
- }
- else
- *sleep_time = clock_time;
+void
+clock_get_calendar_uptime(clock_sec_t *secs)
+{
+ uint64_t now;
+ spl_t s;
+ struct bintime bt;
+
+ s = splclock();
+ clock_lock();
+
+ now = mach_absolute_time();
+
+ bt = get_scaled_time(now);
+ bintime_add(&bt, &clock_calend.offset);
+
+ *secs = bt.sec;
- return (rvalue);
+ clock_unlock();
+ splx(s);
}
-/*
- * CLOCK INTERRUPT SERVICE ROUTINES.
- */
/*
- * Service clock alarm interrupts. Called from machine dependent
- * layer at splclock(). The clock_id argument specifies the clock,
- * and the clock_time argument gives that clock's current time.
+ * clock_update_calendar:
+ *
+ * called by ntp timer to update scale factors.
*/
void
-clock_alarm_intr(
- clock_id_t clock_id,
- mach_timespec_t *clock_time)
+clock_update_calendar(void)
{
- clock_t clock;
- register alarm_t alrm1;
- register alarm_t alrm2;
- mach_timespec_t *alarm_time;
- spl_t s;
- clock = &clock_list[clock_id];
+ uint64_t now, delta;
+ struct bintime bt;
+ spl_t s;
+ int64_t adjustment;
+
+ s = splclock();
+ clock_lock();
+
+ now = mach_absolute_time();
/*
- * Update clock alarm list. All alarms that are due are moved
- * to the alarmdone list to be serviced by the alarm_thread.
+ * scale the time elapsed since the last update and
+ * add it to offset.
*/
+ bt = get_scaled_time(now);
+ bintime_add(&clock_calend.offset, &bt);
- LOCK_CLOCK(s);
- alrm1 = (alarm_t) &clock->cl_alarm;
- while ((alrm2 = alrm1->al_next) != NULL) {
- alarm_time = &alrm2->al_time;
- if (CMP_MACH_TIMESPEC(alarm_time, clock_time) > 0)
- break;
+ /*
+ * update the base from which apply next scale factors.
+ */
+ delta = now - clock_calend.offset_count;
+ clock_calend.offset_count += delta;
- /*
- * Alarm has expired, so remove it from the
- * clock alarm list.
- */
- if ((alrm1->al_next = alrm2->al_next) != NULL)
- (alrm1->al_next)->al_prev = alrm1;
+ clock_calend.bintime = clock_calend.offset;
+ bintime_add(&clock_calend.bintime, &clock_calend.boottime);
- /*
- * If a clock_sleep() alarm, wakeup the thread
- * which issued the clock_sleep() call.
- */
- if (alrm2->al_status == ALARM_SLEEP) {
- alrm2->al_next = 0;
- alrm2->al_status = ALARM_DONE;
- alrm2->al_time = *clock_time;
- thread_wakeup((event_t)alrm2);
- }
+ /*
+ * recompute next adjustment.
+ */
+ ntp_update_second(&adjustment, clock_calend.bintime.sec);
- /*
- * If a clock_alarm() alarm, place the alarm on
- * the alarm done list and schedule the alarm
- * delivery mechanism.
- */
- else {
- assert(alrm2->al_status == ALARM_CLOCK);
- if ((alrm2->al_next = alrmdone) != NULL)
- alrmdone->al_prev = alrm2;
- else
- thread_call_enter(&alarm_deliver);
- alrm2->al_prev = (alarm_t) &alrmdone;
- alrmdone = alrm2;
- alrm2->al_status = ALARM_DONE;
- alrm2->al_time = *clock_time;
- }
+#if DEVELOPMENT || DEBUG
+ if (g_should_log_clock_adjustments) {
+ os_log(OS_LOG_DEFAULT, "%s adjustment %lld\n", __func__, adjustment);
}
-
+#endif
+
/*
- * Setup the clock dependent layer to deliver another
- * interrupt for the next pending alarm.
+ * recomputing scale factors.
*/
- if (alrm2)
- (*clock->cl_ops->c_setalrm)(alarm_time);
- UNLOCK_CLOCK(s);
+ get_scale_factors_from_adj(adjustment, &clock_calend.tick_scale_x, &clock_calend.s_scale_ns, &clock_calend.s_adj_nsx);
+
+ clock_gettimeofday_set_commpage(now, clock_calend.bintime.sec, clock_calend.bintime.frac, clock_calend.tick_scale_x, ticks_per_sec);
+
+#if DEVELOPMENT || DEBUG
+ struct clock_calend calend_cp = clock_calend;
+#endif
+
+ clock_unlock();
+ splx(s);
+
+ print_all_clock_variables(__func__, NULL,NULL,NULL,NULL, &calend_cp);
}
-/*
- * ALARM DELIVERY ROUTINES.
- */
-static void
-clock_alarm_deliver(
- __unused thread_call_param_t p0,
- __unused thread_call_param_t p1)
-{
- register alarm_t alrm;
- kern_return_t code;
- spl_t s;
-
- LOCK_CLOCK(s);
- while ((alrm = alrmdone) != NULL) {
- if ((alrmdone = alrm->al_next) != NULL)
- alrmdone->al_prev = (alarm_t) &alrmdone;
- UNLOCK_CLOCK(s);
-
- code = (alrm->al_status == ALARM_DONE? KERN_SUCCESS: KERN_ABORTED);
- if (alrm->al_port != IP_NULL) {
- /* Deliver message to designated port */
- if (IP_VALID(alrm->al_port)) {
- clock_alarm_reply(alrm->al_port, alrm->al_port_type, code,
- alrm->al_type, alrm->al_time);
- }
+#if DEVELOPMENT || DEBUG
- LOCK_CLOCK(s);
- alrm->al_status = ALARM_FREE;
- alrm->al_next = alrmfree;
- alrmfree = alrm;
- }
- else
- panic("clock_alarm_deliver");
- }
+void print_all_clock_variables_internal(const char* func, struct clock_calend* clock_calend_cp)
+{
+ clock_sec_t offset_secs;
+ clock_usec_t offset_microsecs;
+ clock_sec_t bintime_secs;
+ clock_usec_t bintime_microsecs;
+ clock_sec_t bootime_secs;
+ clock_usec_t bootime_microsecs;
+
+ if (!g_should_log_clock_adjustments)
+ return;
+
+ bintime2usclock(&clock_calend_cp->offset, &offset_secs, &offset_microsecs);
+ bintime2usclock(&clock_calend_cp->bintime, &bintime_secs, &bintime_microsecs);
+ bintime2usclock(&clock_calend_cp->boottime, &bootime_secs, &bootime_microsecs);
+
+ os_log(OS_LOG_DEFAULT, "%s s_scale_ns %llu s_adj_nsx %lld tick_scale_x %llu offset_count %llu\n",
+ func , clock_calend_cp->s_scale_ns, clock_calend_cp->s_adj_nsx,
+ clock_calend_cp->tick_scale_x, clock_calend_cp->offset_count);
+ os_log(OS_LOG_DEFAULT, "%s offset.sec %ld offset.frac %llu offset_secs %lu offset_microsecs %d\n",
+ func, clock_calend_cp->offset.sec, clock_calend_cp->offset.frac,
+ (unsigned long)offset_secs, offset_microsecs);
+ os_log(OS_LOG_DEFAULT, "%s bintime.sec %ld bintime.frac %llu bintime_secs %lu bintime_microsecs %d\n",
+ func, clock_calend_cp->bintime.sec, clock_calend_cp->bintime.frac,
+ (unsigned long)bintime_secs, bintime_microsecs);
+ os_log(OS_LOG_DEFAULT, "%s bootime.sec %ld bootime.frac %llu bootime_secs %lu bootime_microsecs %d\n",
+ func, clock_calend_cp->boottime.sec, clock_calend_cp->boottime.frac,
+ (unsigned long)bootime_secs, bootime_microsecs);
+
+ clock_sec_t basesleep_secs;
+ clock_usec_t basesleep_microsecs;
+
+ bintime2usclock(&clock_calend_cp->basesleep, &basesleep_secs, &basesleep_microsecs);
+ os_log(OS_LOG_DEFAULT, "%s basesleep.sec %ld basesleep.frac %llu basesleep_secs %lu basesleep_microsecs %d\n",
+ func, clock_calend_cp->basesleep.sec, clock_calend_cp->basesleep.frac,
+ (unsigned long)basesleep_secs, basesleep_microsecs);
- UNLOCK_CLOCK(s);
}
-/*
- * CLOCK PRIVATE SERVICING SUBROUTINES.
- */
-/*
- * Flush all pending alarms on a clock. All alarms
- * are activated and timestamped correctly, so any
- * programs waiting on alarms/threads will proceed
- * with accurate information.
- */
-static
-void
-flush_alarms(
- clock_t clock)
+void print_all_clock_variables(const char* func, clock_sec_t* pmu_secs, clock_usec_t* pmu_usec, clock_sec_t* sys_secs, clock_usec_t* sys_usec, struct clock_calend* clock_calend_cp)
{
- register alarm_t alrm1, alrm2;
- spl_t s;
+ if (!g_should_log_clock_adjustments)
+ return;
- /*
- * Flush all outstanding alarms.
- */
- LOCK_CLOCK(s);
- alrm1 = (alarm_t) &clock->cl_alarm;
- while ((alrm2 = alrm1->al_next) != NULL) {
- /*
- * Remove alarm from the clock alarm list.
- */
- if ((alrm1->al_next = alrm2->al_next) != NULL)
- (alrm1->al_next)->al_prev = alrm1;
+ struct bintime bt;
+ clock_sec_t wall_secs;
+ clock_usec_t wall_microsecs;
+ uint64_t now;
+ uint64_t delta;
- /*
- * If a clock_sleep() alarm, wakeup the thread
- * which issued the clock_sleep() call.
- */
- if (alrm2->al_status == ALARM_SLEEP) {
- alrm2->al_next = 0;
- thread_wakeup((event_t)alrm2);
- }
- else {
- /*
- * If a clock_alarm() alarm, place the alarm on
- * the alarm done list and wakeup the dedicated
- * kernel alarm_thread to service the alarm.
- */
- assert(alrm2->al_status == ALARM_CLOCK);
- if ((alrm2->al_next = alrmdone) != NULL)
- alrmdone->al_prev = alrm2;
- else
- thread_wakeup((event_t)&alrmdone);
- alrm2->al_prev = (alarm_t) &alrmdone;
- alrmdone = alrm2;
- }
+ if (pmu_secs) {
+ os_log(OS_LOG_DEFAULT, "%s PMU %lu s %d u \n", func, (unsigned long)*pmu_secs, *pmu_usec);
+ }
+ if (sys_secs) {
+ os_log(OS_LOG_DEFAULT, "%s sys %lu s %d u \n", func, (unsigned long)*sys_secs, *sys_usec);
}
- UNLOCK_CLOCK(s);
+
+ print_all_clock_variables_internal(func, clock_calend_cp);
+
+ now = mach_absolute_time();
+ delta = now - clock_calend_cp->offset_count;
+
+ bt = scale_delta(delta, clock_calend_cp->tick_scale_x, clock_calend_cp->s_scale_ns, clock_calend_cp->s_adj_nsx);
+ bintime_add(&bt, &clock_calend_cp->bintime);
+ bintime2usclock(&bt, &wall_secs, &wall_microsecs);
+
+ os_log(OS_LOG_DEFAULT, "%s wall %lu s %d u computed with %llu abs\n",
+ func, (unsigned long)wall_secs, wall_microsecs, now);
}
+
+#endif /* DEVELOPMENT || DEBUG */
+
+
/*
- * Post an alarm on a clock's active alarm list. The alarm is
- * inserted in time-order into the clock's active alarm list.
- * Always called from within a LOCK_CLOCK() code section.
+ * clock_initialize_calendar:
+ *
+ * Set the calendar and related clocks
+ * from the platform clock at boot.
+ *
+ * Also sends host notifications.
*/
-static
void
-post_alarm(
- clock_t clock,
- alarm_t alarm)
+clock_initialize_calendar(void)
{
- register alarm_t alrm1, alrm2;
- mach_timespec_t *alarm_time;
- mach_timespec_t *queue_time;
+ clock_sec_t sys; // sleepless time since boot in seconds
+ clock_sec_t secs; // Current UTC time
+ clock_sec_t utc_offset_secs; // Difference in current UTC time and sleepless time since boot
+ clock_usec_t microsys;
+ clock_usec_t microsecs;
+ clock_usec_t utc_offset_microsecs;
+ spl_t s;
+ struct bintime bt;
+ struct bintime monotonic_bt;
+ struct latched_time monotonic_time;
+ uint64_t monotonic_usec_total;
+ clock_sec_t sys2, monotonic_sec;
+ clock_usec_t microsys2, monotonic_usec;
+ size_t size;
+
+ //Get PMU time with offset and corresponding sys time
+ PEGetUTCTimeOfDay(&secs, µsecs);
+ clock_get_system_microtime(&sys, µsys);
/*
- * Traverse alarm list until queue time is greater
- * than alarm time, then insert alarm.
+ * If the platform has a monotonic clock, use kern.monotonicclock_usecs
+ * to estimate the sleep/wake time, otherwise use the PMU and adjustments
+ * provided through settimeofday to estimate the sleep time.
+ * NOTE: the latter case relies that the kernel is the only component
+ * to set the PMU offset.
*/
- alarm_time = &alarm->al_time;
- alrm1 = (alarm_t) &clock->cl_alarm;
- while ((alrm2 = alrm1->al_next) != NULL) {
- queue_time = &alrm2->al_time;
- if (CMP_MACH_TIMESPEC(queue_time, alarm_time) > 0)
- break;
- alrm1 = alrm2;
+ size = sizeof(monotonic_time);
+ if (kernel_sysctlbyname("kern.monotonicclock_usecs", &monotonic_time, &size, NULL, 0) != 0) {
+ has_monotonic_clock = 0;
+ os_log(OS_LOG_DEFAULT, "%s system does not have monotonic clock.\n", __func__);
+ } else {
+ has_monotonic_clock = 1;
+ monotonic_usec_total = monotonic_time.monotonic_time_usec;
+ absolutetime_to_microtime(monotonic_time.mach_time, &sys2, µsys2);
+ os_log(OS_LOG_DEFAULT, "%s system has monotonic clock.\n", __func__);
}
- alrm1->al_next = alarm;
- alarm->al_next = alrm2;
- alarm->al_prev = alrm1;
- if (alrm2)
- alrm2->al_prev = alarm;
+
+ s = splclock();
+ clock_lock();
+
+ commpage_disable_timestamp();
+
+ utc_offset_secs = secs;
+ utc_offset_microsecs = microsecs;
+
+#if DEVELOPMENT || DEBUG
+ last_utc_sec = secs;
+ last_utc_usec = microsecs;
+ last_sys_sec = sys;
+ last_sys_usec = microsys;
+ if (secs > max_utc_sec)
+ max_utc_sec = secs;
+#endif
/*
- * If the inserted alarm is the 'earliest' alarm,
- * reset the device layer alarm time accordingly.
+ * We normally expect the UTC clock to be always-on and produce
+ * greater readings than the tick counter. There may be corner cases
+ * due to differing clock resolutions (UTC clock is likely lower) and
+ * and errors reading the UTC clock (some implementations return 0
+ * on error) in which that doesn't hold true. Bring the UTC measurements
+ * in-line with the tick counter measurements as a best effort in that case.
*/
- if (clock->cl_alarm.al_next == alarm)
- (*clock->cl_ops->c_setalrm)(alarm_time);
-}
+ //FIXME if the current time is prior than 1970 secs will be negative
+ if ((sys > secs) || ((sys == secs) && (microsys > microsecs))) {
+ os_log(OS_LOG_DEFAULT, "%s WARNING: PMU offset is less then sys PMU %lu s %d u sys %lu s %d u\n",
+ __func__, (unsigned long) secs, microsecs, (unsigned long)sys, microsys);
+ secs = utc_offset_secs = sys;
+ microsecs = utc_offset_microsecs = microsys;
+ }
-/*
- * Check the validity of 'alarm_time' and 'alarm_type'. If either
- * argument is invalid, return a negative value. If the 'alarm_time'
- * is now, return a 0 value. If the 'alarm_time' is in the future,
- * return a positive value.
- */
-static
-int
-check_time(
- alarm_type_t alarm_type,
- mach_timespec_t *alarm_time,
- mach_timespec_t *clock_time)
-{
- int result;
+ // PMU time with offset - sys
+ // This macro stores the subtraction result in utc_offset_secs and utc_offset_microsecs
+ TIME_SUB(utc_offset_secs, sys, utc_offset_microsecs, microsys, USEC_PER_SEC);
+
+ clock2bintime(&utc_offset_secs, &utc_offset_microsecs, &bt);
+
+ /*
+ * Initialize the boot time based on the platform clock.
+ */
+ clock_boottime = secs;
+ clock_boottime_usec = microsecs;
+ commpage_update_boottime(clock_boottime * USEC_PER_SEC + clock_boottime_usec);
+
+ nanoseconds_to_absolutetime((uint64_t)NSEC_PER_SEC, &ticks_per_sec);
+ clock_calend.boottime = bt;
+ clock_calend.bintime = bt;
+ clock_calend.offset.sec = 0;
+ clock_calend.offset.frac = 0;
+
+ clock_calend.tick_scale_x = (uint64_t)1 << 63;
+ clock_calend.tick_scale_x /= ticks_per_sec;
+ clock_calend.tick_scale_x *= 2;
+
+ clock_calend.s_scale_ns = NSEC_PER_SEC;
+ clock_calend.s_adj_nsx = 0;
+
+ if (has_monotonic_clock) {
+
+ monotonic_sec = monotonic_usec_total / (clock_sec_t)USEC_PER_SEC;
+ monotonic_usec = monotonic_usec_total % (clock_usec_t)USEC_PER_SEC;
+
+ // PMU time without offset - sys
+ // This macro stores the subtraction result in monotonic_sec and monotonic_usec
+ TIME_SUB(monotonic_sec, sys2, monotonic_usec, microsys2, USEC_PER_SEC);
+ clock2bintime(&monotonic_sec, &monotonic_usec, &monotonic_bt);
+
+ // set the baseleep as the difference between monotonic clock - sys
+ clock_calend.basesleep = monotonic_bt;
+ } else {
+ // set the baseleep as the difference between PMU clock - sys
+ clock_calend.basesleep = bt;
+ }
+ commpage_update_mach_continuous_time(mach_absolutetime_asleep);
+
+#if DEVELOPMENT || DEBUG
+ struct clock_calend clock_calend_cp = clock_calend;
+#endif
- if (BAD_ALRMTYPE(alarm_type))
- return (-1);
- if (BAD_MACH_TIMESPEC(alarm_time))
- return (-1);
- if ((alarm_type & ALRMTYPE) == TIME_RELATIVE)
- ADD_MACH_TIMESPEC(alarm_time, clock_time);
+ clock_unlock();
+ splx(s);
- result = CMP_MACH_TIMESPEC(alarm_time, clock_time);
+ print_all_clock_variables(__func__, &secs, µsecs, &sys, µsys, &clock_calend_cp);
- return ((result >= 0)? result: 0);
+ /*
+ * Send host notifications.
+ */
+ host_notify_calendar_change();
+
+#if CONFIG_DTRACE
+ clock_track_calend_nowait();
+#endif
}
-mach_timespec_t
-clock_get_system_value(void)
+
+void
+clock_wakeup_calendar(void)
{
- clock_t clock = &clock_list[SYSTEM_CLOCK];
- mach_timespec_t value;
+ clock_sec_t sys;
+ clock_sec_t secs;
+ clock_usec_t microsys;
+ clock_usec_t microsecs;
+ spl_t s;
+ struct bintime bt, last_sleep_bt;
+ clock_sec_t basesleep_s, last_sleep_sec;
+ clock_usec_t basesleep_us, last_sleep_usec;
+ struct latched_time monotonic_time;
+ uint64_t monotonic_usec_total;
+ size_t size;
+ clock_sec_t secs_copy;
+ clock_usec_t microsecs_copy;
+#if DEVELOPMENT || DEBUG
+ clock_sec_t utc_sec;
+ clock_usec_t utc_usec;
+ PEGetUTCTimeOfDay(&utc_sec, &utc_usec);
+#endif
- (void) (*clock->cl_ops->c_gettime)(&value);
+ /*
+ * If the platform has the monotonic clock use that to
+ * compute the sleep time. The monotonic clock does not have an offset
+ * that can be modified, so nor kernel or userspace can change the time
+ * of this clock, it can only monotonically increase over time.
+ * During sleep mach_absolute_time does not tick,
+ * so the sleep time is the difference betwen the current monotonic time
+ * less the absolute time and the previous difference stored at wake time.
+ *
+ * basesleep = monotonic - sys ---> computed at last wake
+ * sleep_time = (monotonic - sys) - basesleep
+ *
+ * If the platform does not support monotonic time we use the PMU time
+ * to compute the last sleep.
+ * The PMU time is the monotonic clock + an offset that can be set
+ * by kernel.
+ *
+ * IMPORTANT:
+ * We assume that only the kernel is setting the offset of the PMU and that
+ * it is doing it only througth the settimeofday interface.
+ *
+ * basesleep is the different between the PMU time and the mach_absolute_time
+ * at wake.
+ * During awake time settimeofday can change the PMU offset by a delta,
+ * and basesleep is shifted by the same delta applyed to the PMU. So the sleep
+ * time computation becomes:
+ *
+ * PMU = monotonic + PMU_offset
+ * basesleep = PMU - sys ---> computed at last wake
+ * basesleep += settimeofday_delta
+ * PMU_offset += settimeofday_delta
+ * sleep_time = (PMU - sys) - basesleep
+ */
+ if (has_monotonic_clock) {
+ //Get monotonic time with corresponding sys time
+ size = sizeof(monotonic_time);
+ if (kernel_sysctlbyname("kern.monotonicclock_usecs", &monotonic_time, &size, NULL, 0) != 0) {
+ panic("%s: could not call kern.monotonicclock_usecs", __func__);
+ }
+ monotonic_usec_total = monotonic_time.monotonic_time_usec;
+ absolutetime_to_microtime(monotonic_time.mach_time, &sys, µsys);
- return value;
-}
+ secs = monotonic_usec_total / (clock_sec_t)USEC_PER_SEC;
+ microsecs = monotonic_usec_total % (clock_usec_t)USEC_PER_SEC;
+ } else {
+ //Get PMU time with offset and corresponding sys time
+ PEGetUTCTimeOfDay(&secs, µsecs);
+ clock_get_system_microtime(&sys, µsys);
-mach_timespec_t
-clock_get_calendar_value(void)
-{
- clock_t clock = &clock_list[CALENDAR_CLOCK];
- mach_timespec_t value = MACH_TIMESPEC_ZERO;
+ }
- (void) (*clock->cl_ops->c_gettime)(&value);
+ s = splclock();
+ clock_lock();
+
+ commpage_disable_timestamp();
+
+ secs_copy = secs;
+ microsecs_copy = microsecs;
+
+#if DEVELOPMENT || DEBUG
+ struct clock_calend clock_calend_cp1 = clock_calend;
+#endif /* DEVELOPMENT || DEBUG */
+
+#if DEVELOPMENT || DEBUG
+ last_utc_sec = secs;
+ last_utc_usec = microsecs;
+ last_sys_sec = sys;
+ last_sys_usec = microsys;
+ if (secs > max_utc_sec)
+ max_utc_sec = secs;
+#endif
+ /*
+ * We normally expect the UTC clock to be always-on and produce
+ * greater readings than the tick counter. There may be corner cases
+ * due to differing clock resolutions (UTC clock is likely lower) and
+ * and errors reading the UTC clock (some implementations return 0
+ * on error) in which that doesn't hold true. Bring the UTC measurements
+ * in-line with the tick counter measurements as a best effort in that case.
+ */
+ //FIXME if the current time is prior than 1970 secs will be negative
+ if ((sys > secs) || ((sys == secs) && (microsys > microsecs))) {
+ os_log(OS_LOG_DEFAULT, "%s WARNING: %s is less then sys %s %lu s %d u sys %lu s %d u\n",
+ __func__, (has_monotonic_clock)?"monotonic":"PMU", (has_monotonic_clock)?"monotonic":"PMU", (unsigned long)secs, microsecs, (unsigned long)sys, microsys);
+ secs = sys;
+ microsecs = microsys;
+ }
- return value;
-}
+ // PMU or monotonic - sys
+ // This macro stores the subtraction result in secs and microsecs
+ TIME_SUB(secs, sys, microsecs, microsys, USEC_PER_SEC);
+ clock2bintime(&secs, µsecs, &bt);
-void
-clock_deadline_for_periodic_event(
- uint64_t interval,
- uint64_t abstime,
- uint64_t *deadline)
-{
- assert(interval != 0);
+ /*
+ * Safety belt: the UTC clock will likely have a lower resolution than the tick counter.
+ * It's also possible that the device didn't fully transition to the powered-off state on
+ * the most recent sleep, so the tick counter may not have reset or may have only briefly
+ * tured off. In that case it's possible for the difference between the UTC clock and the
+ * tick counter to be less than the previously recorded value in clock.calend.basesleep.
+ * In that case simply record that we slept for 0 ticks.
+ */
+ if ((bt.sec > clock_calend.basesleep.sec) ||
+ ((bt.sec == clock_calend.basesleep.sec) && (bt.frac > clock_calend.basesleep.frac))) {
+
+ //last_sleep is the difference between current PMU or monotonic - abs and last wake PMU or monotonic - abs
+ last_sleep_bt = bt;
+ bintime_sub(&last_sleep_bt, &clock_calend.basesleep);
+
+ //set baseseep to current PMU or monotonic - abs
+ clock_calend.basesleep = bt;
+ bintime2usclock(&last_sleep_bt, &last_sleep_sec, &last_sleep_usec);
+ bintime2absolutetime(&last_sleep_bt, &mach_absolutetime_last_sleep);
+ mach_absolutetime_asleep += mach_absolutetime_last_sleep;
+
+ bintime_add(&clock_calend.offset, &last_sleep_bt);
+ bintime_add(&clock_calend.bintime, &last_sleep_bt);
+
+ } else{
+ mach_absolutetime_last_sleep = 0;
+ last_sleep_sec = last_sleep_usec = 0;
+ bintime2usclock(&clock_calend.basesleep, &basesleep_s, &basesleep_us);
+ os_log(OS_LOG_DEFAULT, "%s WARNING: basesleep (%lu s %d u) > %s-sys (%lu s %d u) \n",
+ __func__, (unsigned long) basesleep_s, basesleep_us, (has_monotonic_clock)?"monotonic":"PMU", (unsigned long) secs_copy, microsecs_copy );
+ }
- *deadline += interval;
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_CLOCK,MACH_EPOCH_CHANGE) | DBG_FUNC_NONE,
+ (uintptr_t) mach_absolutetime_last_sleep,
+ (uintptr_t) mach_absolutetime_asleep,
+ (uintptr_t) (mach_absolutetime_last_sleep >> 32),
+ (uintptr_t) (mach_absolutetime_asleep >> 32),
+ 0);
- if (*deadline <= abstime) {
- *deadline = abstime + interval;
- abstime = mach_absolute_time();
+ commpage_update_mach_continuous_time(mach_absolutetime_asleep);
+ adjust_cont_time_thread_calls();
- if (*deadline <= abstime)
- *deadline = abstime + interval;
+#if DEVELOPMENT || DEBUG
+ struct clock_calend clock_calend_cp = clock_calend;
+#endif
+
+ clock_unlock();
+ splx(s);
+
+#if DEVELOPMENT || DEBUG
+ if (g_should_log_clock_adjustments) {
+ os_log(OS_LOG_DEFAULT, "PMU was %lu s %d u\n",(unsigned long) utc_sec, utc_usec);
+ os_log(OS_LOG_DEFAULT, "last sleep was %lu s %d u\n",(unsigned long) last_sleep_sec, last_sleep_usec);
+ print_all_clock_variables("clock_wakeup_calendar:BEFORE",
+ &secs_copy, µsecs_copy, &sys, µsys, &clock_calend_cp1);
+ print_all_clock_variables("clock_wakeup_calendar:AFTER", NULL, NULL, NULL, NULL, &clock_calend_cp);
}
+#endif /* DEVELOPMENT || DEBUG */
+
+ host_notify_calendar_change();
+
+#if CONFIG_DTRACE
+ clock_track_calend_nowait();
+#endif
}
+
+/*
+ * clock_get_boottime_nanotime:
+ *
+ * Return the boottime, used by sysctl.
+ */
void
-mk_timebase_info_trap(
- struct mk_timebase_info_trap_args *args)
+clock_get_boottime_nanotime(
+ clock_sec_t *secs,
+ clock_nsec_t *nanosecs)
{
- uint32_t *delta = args->delta;
- uint32_t *abs_to_ns_numer = args->abs_to_ns_numer;
- uint32_t *abs_to_ns_denom = args->abs_to_ns_denom;
- uint32_t *proc_to_abs_numer = args->proc_to_abs_numer;
- uint32_t *proc_to_abs_denom = args->proc_to_abs_denom;
- mach_timebase_info_data_t info;
- uint32_t one = 1;
-
- clock_timebase_info(&info);
+ spl_t s;
- copyout((void *)&one, CAST_USER_ADDR_T(delta), sizeof (uint32_t));
+ s = splclock();
+ clock_lock();
- copyout((void *)&info.numer, CAST_USER_ADDR_T(abs_to_ns_numer), sizeof (uint32_t));
- copyout((void *)&info.denom, CAST_USER_ADDR_T(abs_to_ns_denom), sizeof (uint32_t));
+ *secs = (clock_sec_t)clock_boottime;
+ *nanosecs = (clock_nsec_t)clock_boottime_usec * NSEC_PER_USEC;
- copyout((void *)&one, CAST_USER_ADDR_T(proc_to_abs_numer), sizeof (uint32_t));
- copyout((void *)&one, CAST_USER_ADDR_T(proc_to_abs_denom), sizeof (uint32_t));
+ clock_unlock();
+ splx(s);
}
-kern_return_t
-mach_timebase_info_trap(
- struct mach_timebase_info_trap_args *args)
+/*
+ * clock_get_boottime_nanotime:
+ *
+ * Return the boottime, used by sysctl.
+ */
+void
+clock_get_boottime_microtime(
+ clock_sec_t *secs,
+ clock_usec_t *microsecs)
{
- mach_vm_address_t out_info_addr = args->info;
- mach_timebase_info_data_t info;
+ spl_t s;
- clock_timebase_info(&info);
+ s = splclock();
+ clock_lock();
- copyout((void *)&info, out_info_addr, sizeof (info));
+ *secs = (clock_sec_t)clock_boottime;
+ *microsecs = (clock_nsec_t)clock_boottime_usec;
- return (KERN_SUCCESS);
+ clock_unlock();
+ splx(s);
}
+
+/*
+ * Wait / delay routines.
+ */
static void
mach_wait_until_continue(
__unused void *parameter,
/*NOTREACHED*/
}
+/*
+ * mach_wait_until_trap: Suspend execution of calling thread until the specified time has passed
+ *
+ * Parameters: args->deadline Amount of time to wait
+ *
+ * Returns: 0 Success
+ * !0 Not success
+ *
+ */
kern_return_t
mach_wait_until_trap(
struct mach_wait_until_trap_args *args)
uint64_t deadline = args->deadline;
wait_result_t wresult;
- wresult = assert_wait_deadline((event_t)mach_wait_until_trap, THREAD_ABORTSAFE, deadline);
+ wresult = assert_wait_deadline_with_leeway((event_t)mach_wait_until_trap, THREAD_ABORTSAFE,
+ TIMEOUT_URGENCY_USER_NORMAL, deadline, 0);
if (wresult == THREAD_WAITING)
wresult = thread_block(mach_wait_until_continue);
return ((wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS);
}
-/*
- * Delay primitives.
- */
void
clock_delay_until(
uint64_t deadline)
if (now >= deadline)
return;
- if ( (deadline - now) < (8 * sched_cswtime) ||
+ _clock_delay_until_deadline(deadline - now, deadline);
+}
+
+/*
+ * Preserve the original precise interval that the client
+ * requested for comparison to the spin threshold.
+ */
+void
+_clock_delay_until_deadline(
+ uint64_t interval,
+ uint64_t deadline)
+{
+ _clock_delay_until_deadline_with_leeway(interval, deadline, 0);
+}
+
+/*
+ * Like _clock_delay_until_deadline, but it accepts a
+ * leeway value.
+ */
+void
+_clock_delay_until_deadline_with_leeway(
+ uint64_t interval,
+ uint64_t deadline,
+ uint64_t leeway)
+{
+
+ if (interval == 0)
+ return;
+
+ if ( ml_delay_should_spin(interval) ||
get_preemption_level() != 0 ||
- ml_get_interrupts_enabled() == FALSE )
- machine_delay_until(deadline);
- else {
- assert_wait_deadline((event_t)clock_delay_until, THREAD_UNINT, deadline - sched_cswtime);
+ ml_get_interrupts_enabled() == FALSE ) {
+ machine_delay_until(interval, deadline);
+ } else {
+ /*
+ * For now, assume a leeway request of 0 means the client does not want a leeway
+ * value. We may want to change this interpretation in the future.
+ */
+
+ if (leeway) {
+ assert_wait_deadline_with_leeway((event_t)clock_delay_until, THREAD_UNINT, TIMEOUT_URGENCY_LEEWAY, deadline, leeway);
+ } else {
+ assert_wait_deadline((event_t)clock_delay_until, THREAD_UNINT, deadline);
+ }
thread_block(THREAD_CONTINUE_NULL);
}
uint32_t interval,
uint32_t scale_factor)
{
- uint64_t end;
+ uint64_t abstime;
- clock_interval_to_deadline(interval, scale_factor, &end);
+ clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
- clock_delay_until(end);
+ _clock_delay_until_deadline(abstime, mach_absolute_time() + abstime);
+}
+
+void
+delay_for_interval_with_leeway(
+ uint32_t interval,
+ uint32_t leeway,
+ uint32_t scale_factor)
+{
+ uint64_t abstime_interval;
+ uint64_t abstime_leeway;
+
+ clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime_interval);
+ clock_interval_to_absolutetime_interval(leeway, scale_factor, &abstime_leeway);
+
+ _clock_delay_until_deadline_with_leeway(abstime_interval, mach_absolute_time() + abstime_interval, abstime_leeway);
}
void
delay_for_interval((usec < 0)? -usec: usec, NSEC_PER_USEC);
}
+/*
+ * Miscellaneous routines.
+ */
void
-clock_adjtime(
- int32_t *secs,
- int32_t *microsecs)
+clock_interval_to_deadline(
+ uint32_t interval,
+ uint32_t scale_factor,
+ uint64_t *result)
{
- uint32_t interval;
- spl_t s;
+ uint64_t abstime;
- s = splclock();
- simple_lock(&calend_adjlock);
+ clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
- interval = clock_set_calendar_adjtime(secs, microsecs);
- if (interval != 0) {
- if (calend_adjdeadline >= interval)
- calend_adjdeadline -= interval;
- clock_deadline_for_periodic_event(interval, mach_absolute_time(),
- &calend_adjdeadline);
+ *result = mach_absolute_time() + abstime;
+}
- timer_call_enter(&calend_adjcall, calend_adjdeadline);
- }
- else
- timer_call_cancel(&calend_adjcall);
+void
+clock_absolutetime_interval_to_deadline(
+ uint64_t abstime,
+ uint64_t *result)
+{
+ *result = mach_absolute_time() + abstime;
+}
- simple_unlock(&calend_adjlock);
- splx(s);
+void
+clock_continuoustime_interval_to_deadline(
+ uint64_t conttime,
+ uint64_t *result)
+{
+ *result = mach_continuous_time() + conttime;
}
-static void
-calend_adjust_call(
- __unused timer_call_param_t p0,
- __unused timer_call_param_t p1)
+void
+clock_get_uptime(
+ uint64_t *result)
{
- uint32_t interval;
- spl_t s;
+ *result = mach_absolute_time();
+}
- s = splclock();
- simple_lock(&calend_adjlock);
+void
+clock_deadline_for_periodic_event(
+ uint64_t interval,
+ uint64_t abstime,
+ uint64_t *deadline)
+{
+ assert(interval != 0);
+
+ *deadline += interval;
- interval = clock_adjust_calendar();
- if (interval != 0) {
- clock_deadline_for_periodic_event(interval, mach_absolute_time(),
- &calend_adjdeadline);
+ if (*deadline <= abstime) {
+ *deadline = abstime + interval;
+ abstime = mach_absolute_time();
- timer_call_enter(&calend_adjcall, calend_adjdeadline);
+ if (*deadline <= abstime)
+ *deadline = abstime + interval;
}
+}
- simple_unlock(&calend_adjlock);
- splx(s);
+uint64_t
+mach_continuous_time(void)
+{
+ while(1) {
+ uint64_t read1 = mach_absolutetime_asleep;
+ uint64_t absolute = mach_absolute_time();
+ OSMemoryBarrier();
+ uint64_t read2 = mach_absolutetime_asleep;
+
+ if(__builtin_expect(read1 == read2, 1)) {
+ return absolute + read1;
+ }
+ }
}
-void
-clock_wakeup_calendar(void)
+uint64_t
+mach_continuous_approximate_time(void)
{
- thread_call_enter(&calend_wakecall);
+ while(1) {
+ uint64_t read1 = mach_absolutetime_asleep;
+ uint64_t absolute = mach_approximate_time();
+ OSMemoryBarrier();
+ uint64_t read2 = mach_absolutetime_asleep;
+
+ if(__builtin_expect(read1 == read2, 1)) {
+ return absolute + read1;
+ }
+ }
}
-extern void IOKitResetTime(void); /* XXX */
+/*
+ * continuoustime_to_absolutetime
+ * Must be called with interrupts disabled
+ * Returned value is only valid until the next update to
+ * mach_continuous_time
+ */
+uint64_t
+continuoustime_to_absolutetime(uint64_t conttime) {
+ if (conttime <= mach_absolutetime_asleep)
+ return 0;
+ else
+ return conttime - mach_absolutetime_asleep;
+}
-static void
-calend_dowakeup(
- __unused thread_call_param_t p0,
- __unused thread_call_param_t p1)
+/*
+ * absolutetime_to_continuoustime
+ * Must be called with interrupts disabled
+ * Returned value is only valid until the next update to
+ * mach_continuous_time
+ */
+uint64_t
+absolutetime_to_continuoustime(uint64_t abstime) {
+ return abstime + mach_absolutetime_asleep;
+}
+
+#if CONFIG_DTRACE
+
+/*
+ * clock_get_calendar_nanotime_nowait
+ *
+ * Description: Non-blocking version of clock_get_calendar_nanotime()
+ *
+ * Notes: This function operates by separately tracking calendar time
+ * updates using a two element structure to copy the calendar
+ * state, which may be asynchronously modified. It utilizes
+ * barrier instructions in the tracking process and in the local
+ * stable snapshot process in order to ensure that a consistent
+ * snapshot is used to perform the calculation.
+ */
+void
+clock_get_calendar_nanotime_nowait(
+ clock_sec_t *secs,
+ clock_nsec_t *nanosecs)
+{
+ int i = 0;
+ uint64_t now;
+ struct unlocked_clock_calend stable;
+ struct bintime bt;
+
+ for (;;) {
+ stable = flipflop[i]; /* take snapshot */
+
+ /*
+ * Use a barrier instructions to ensure atomicity. We AND
+ * off the "in progress" bit to get the current generation
+ * count.
+ */
+ (void)hw_atomic_and(&stable.gen, ~(uint32_t)1);
+
+ /*
+ * If an update _is_ in progress, the generation count will be
+ * off by one, if it _was_ in progress, it will be off by two,
+ * and if we caught it at a good time, it will be equal (and
+ * our snapshot is threfore stable).
+ */
+ if (flipflop[i].gen == stable.gen)
+ break;
+
+ /* Switch to the other element of the flipflop, and try again. */
+ i ^= 1;
+ }
+
+ now = mach_absolute_time();
+
+ bt = get_scaled_time(now);
+
+ bintime_add(&bt, &clock_calend.bintime);
+
+ bintime2nsclock(&bt, secs, nanosecs);
+}
+
+static void
+clock_track_calend_nowait(void)
{
+ int i;
+
+ for (i = 0; i < 2; i++) {
+ struct clock_calend tmp = clock_calend;
- IOKitResetTime();
+ /*
+ * Set the low bit if the generation count; since we use a
+ * barrier instruction to do this, we are guaranteed that this
+ * will flag an update in progress to an async caller trying
+ * to examine the contents.
+ */
+ (void)hw_atomic_or(&flipflop[i].gen, 1);
+
+ flipflop[i].calend = tmp;
+
+ /*
+ * Increment the generation count to clear the low bit to
+ * signal completion. If a caller compares the generation
+ * count after taking a copy while in progress, the count
+ * will be off by two.
+ */
+ (void)hw_atomic_add(&flipflop[i].gen, 1);
+ }
}
+
+#endif /* CONFIG_DTRACE */
+