]> git.saurik.com Git - apple/xnu.git/blobdiff - bsd/netinet/ip_dummynet.c
xnu-7195.81.3.tar.gz
[apple/xnu.git] / bsd / netinet / ip_dummynet.c
index 9a94adfed0683d98c8d6ef7a1b784e893074eee5..0b4cdd0957a1954b1fc86adb6d7ef553e48274cb 100644 (file)
@@ -1,15 +1,20 @@
 /*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
  *
- * @APPLE_LICENSE_HEADER_START@
- * 
  * This file contains Original Code and/or Modifications of Original Code
  * as defined in and that are subject to the Apple Public Source License
  * Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
- * 
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
  * The Original Code and all software distributed under the License are
  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
@@ -17,8 +22,8 @@
  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  * Please see the License for the specific language governing rights and
  * limitations under the License.
- * 
- * @APPLE_LICENSE_HEADER_END@
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /*
  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
  * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
  */
 
-#define        DUMMYNET_DEBUG
+#define DUMMYNET_DEBUG
 
 /*
  * This module implements IP dummynet, a bandwidth limiter/delay emulator
- * used in conjunction with the ipfw package.
  * Description of the data structures used is in ip_dummynet.h
  * Here you mainly find the following blocks of code:
  *  + variable declarations;
@@ -78,8 +82,9 @@
 #include <sys/systm.h>
 #include <sys/malloc.h>
 #include <sys/mbuf.h>
-#include <sys/queue.h>                 /* XXX */
+#include <sys/queue.h>                  /* XXX */
 #include <sys/kernel.h>
+#include <sys/random.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/time.h>
 #include <net/if.h>
 #include <net/route.h>
 #include <net/kpi_protocol.h>
+#if DUMMYNET
+#include <net/kpi_protocol.h>
+#endif /* DUMMYNET */
+#include <net/nwk_wq.h>
+#include <net/pfvar.h>
 #include <netinet/in.h>
 #include <netinet/in_systm.h>
 #include <netinet/in_var.h>
 #include <netinet/ip.h>
-#include <netinet/ip_fw.h>
 #include <netinet/ip_dummynet.h>
 #include <netinet/ip_var.h>
 
-#if BRIDGE
-#include <netinet/if_ether.h> /* for struct arpcom */
-#include <net/bridge.h>
-#endif
+#include <netinet/ip6.h>       /* for ip6_input, ip6_output prototypes */
+#include <netinet6/ip6_var.h>
 
 /*
  * We keep a private variable for the simulation time, but we could
  * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
  */
-static dn_key curr_time = 0 ; /* current simulation time */
+static dn_key curr_time = 0 /* current simulation time */
 
-static int dn_hash_size = 64 ; /* default hash size */
+/* this is for the timer that fires to call dummynet() - we only enable the timer when
+ *       there are packets to process, otherwise it's disabled */
+static int timer_enabled = 0;
+
+static int dn_hash_size = 64;   /* default hash size */
 
 /* statistics on number of queue searches and search steps */
-static int searches, search_steps ;
-static int pipe_expire = 1 ;   /* expire queue if empty */
-static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
+static int searches, search_steps;
+static int pipe_expire = 1   /* expire queue if empty */
+static int dn_max_ratio = 16 /* max queues/buckets ratio */
 
-static int red_lookup_depth = 256;     /* RED - default lookup table depth */
+static int red_lookup_depth = 256;      /* RED - default lookup table depth */
 static int red_avg_pkt_size = 512;      /* RED - default medium packet size */
 static int red_max_pkt_size = 1500;     /* RED - default max packet size */
 
+static int serialize = 0;
+
 /*
  * Three heaps contain queues and pipes that the scheduler handles:
  *
@@ -127,62 +140,77 @@ static int red_max_pkt_size = 1500;     /* RED - default max packet size */
  * extract_heap contains pipes associated with delay lines.
  *
  */
-static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
+static struct dn_heap ready_heap, extract_heap, wfq_ready_heap;
 
-static int heap_init(struct dn_heap *h, int size) ;
-static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
+static int heap_init(struct dn_heap *h, int size);
+static int heap_insert(struct dn_heap *h, dn_key key1, void *p);
 static void heap_extract(struct dn_heap *h, void *obj);
 
-static void transmit_event(struct dn_pipe *pipe);
-static void ready_event(struct dn_flow_queue *q);
 
-static struct dn_pipe *all_pipes = NULL ;      /* list of all pipes */
-static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
+static void     transmit_event(struct dn_pipe *pipe, struct mbuf **head,
+    struct mbuf **tail);
+static void     ready_event(struct dn_flow_queue *q, struct mbuf **head,
+    struct mbuf **tail);
+static void     ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
+    struct mbuf **tail);
+
+/*
+ * Packets are retrieved from queues in Dummynet in chains instead of
+ * packet-by-packet.  The entire list of packets is first dequeued and
+ * sent out by the following function.
+ */
+static void dummynet_send(struct mbuf *m);
+
+#define HASHSIZE        16
+#define HASH(num)       ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
+static struct dn_pipe_head      pipehash[HASHSIZE];     /* all pipes */
+static struct dn_flow_set_head  flowsethash[HASHSIZE];  /* all flowsets */
 
 #ifdef SYSCTL_NODE
 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
-               CTLFLAG_RW, 0, "Dummynet");
+    CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
-           CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
-SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
-           CTLFLAG_RD, &curr_time, 0, "Current tick");
+    CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
+SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
+    CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
-           CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
+    CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
-           CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
+    CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
-           CTLFLAG_RD, &searches, 0, "Number of queue searches");
+    CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
-           CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
+    CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
-           CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
+    CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
-           CTLFLAG_RW, &dn_max_ratio, 0, 
-       "Max ratio between dynamic queues and buckets");
+    CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
+    "Max ratio between dynamic queues and buckets");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
-       CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
+    CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
-       CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
+    CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
-       CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
+    CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
 #endif
 
 #ifdef DUMMYNET_DEBUG
-int    dummynet_debug = 0;
+int     dummynet_debug = 0;
 #ifdef SYSCTL_NODE
-SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug,
-           0, "control debugging printfs");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug,
+    0, "control debugging printfs");
 #endif
-#define        DPRINTF(X)      if (dummynet_debug) printf X
+#define DPRINTF(X)      if (dummynet_debug) printf X
 #else
-#define        DPRINTF(X)
+#define DPRINTF(X)
 #endif
 
 /* dummynet lock */
-lck_grp_t         *dn_mutex_grp;
-lck_grp_attr_t    *dn_mutex_grp_attr;
-lck_attr_t        *dn_mutex_attr;
-lck_mtx_t         *dn_mutex;
+static lck_grp_t         *dn_mutex_grp;
+static lck_grp_attr_t    *dn_mutex_grp_attr;
+static lck_attr_t        *dn_mutex_attr;
+decl_lck_mtx_data(static, dn_mutex_data);
+static lck_mtx_t         *dn_mutex = &dn_mutex_data;
 
 static int config_pipe(struct dn_pipe *p);
 static int ip_dn_ctl(struct sockopt *sopt);
@@ -191,11 +219,30 @@ static void dummynet(void *);
 static void dummynet_flush(void);
 void dummynet_drain(void);
 static ip_dn_io_t dummynet_io;
-static void dn_rule_delete(void *);
 
-int if_tx_rdy(struct ifnet *ifp);
+static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
+static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
+static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
+static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
+static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
+
+static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
+static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
+static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
+static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
+static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
+
+struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt;
+
+uint32_t
+my_random(void)
+{
+       uint32_t val;
+       read_frandom(&val, sizeof(val));
+       val &= 0x7FFFFFFF;
 
-extern lck_mtx_t *rt_mtx; /* route global lock */
+       return val;
+}
 
 /*
  * Heap management functions.
@@ -213,32 +260,314 @@ extern lck_mtx_t *rt_mtx; /* route global lock */
 #define HEAP_LEFT(x) ( 2*(x) + 1 )
 #define HEAP_IS_LEFT(x) ( (x) & 1 )
 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
-#define        HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
-#define HEAP_INCREMENT 15
+#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
+#define HEAP_INCREMENT  15
+
+
+int
+cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
+{
+       struct dn_pipe_32 user_pipe_32;
+       int error = 0;
+
+       error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
+       if (!error) {
+               p->pipe_nr = user_pipe_32.pipe_nr;
+               p->bandwidth = user_pipe_32.bandwidth;
+               p->delay = user_pipe_32.delay;
+               p->V = user_pipe_32.V;
+               p->sum = user_pipe_32.sum;
+               p->numbytes = user_pipe_32.numbytes;
+               p->sched_time = user_pipe_32.sched_time;
+               bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
+               p->ready = user_pipe_32.ready;
+
+               p->fs.fs_nr = user_pipe_32.fs.fs_nr;
+               p->fs.flags_fs = user_pipe_32.fs.flags_fs;
+               p->fs.parent_nr = user_pipe_32.fs.parent_nr;
+               p->fs.weight = user_pipe_32.fs.weight;
+               p->fs.qsize = user_pipe_32.fs.qsize;
+               p->fs.plr = user_pipe_32.fs.plr;
+               p->fs.flow_mask = user_pipe_32.fs.flow_mask;
+               p->fs.rq_size = user_pipe_32.fs.rq_size;
+               p->fs.rq_elements = user_pipe_32.fs.rq_elements;
+               p->fs.last_expired = user_pipe_32.fs.last_expired;
+               p->fs.backlogged = user_pipe_32.fs.backlogged;
+               p->fs.w_q = user_pipe_32.fs.w_q;
+               p->fs.max_th = user_pipe_32.fs.max_th;
+               p->fs.min_th = user_pipe_32.fs.min_th;
+               p->fs.max_p = user_pipe_32.fs.max_p;
+               p->fs.c_1 = user_pipe_32.fs.c_1;
+               p->fs.c_2 = user_pipe_32.fs.c_2;
+               p->fs.c_3 = user_pipe_32.fs.c_3;
+               p->fs.c_4 = user_pipe_32.fs.c_4;
+               p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
+               p->fs.lookup_step = user_pipe_32.fs.lookup_step;
+               p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
+               p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
+               p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
+       }
+       return error;
+}
+
+
+int
+cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
+{
+       struct dn_pipe_64 user_pipe_64;
+       int error = 0;
+
+       error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
+       if (!error) {
+               p->pipe_nr = user_pipe_64.pipe_nr;
+               p->bandwidth = user_pipe_64.bandwidth;
+               p->delay = user_pipe_64.delay;
+               p->V = user_pipe_64.V;
+               p->sum = user_pipe_64.sum;
+               p->numbytes = user_pipe_64.numbytes;
+               p->sched_time = user_pipe_64.sched_time;
+               bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
+               p->ready = user_pipe_64.ready;
+
+               p->fs.fs_nr = user_pipe_64.fs.fs_nr;
+               p->fs.flags_fs = user_pipe_64.fs.flags_fs;
+               p->fs.parent_nr = user_pipe_64.fs.parent_nr;
+               p->fs.weight = user_pipe_64.fs.weight;
+               p->fs.qsize = user_pipe_64.fs.qsize;
+               p->fs.plr = user_pipe_64.fs.plr;
+               p->fs.flow_mask = user_pipe_64.fs.flow_mask;
+               p->fs.rq_size = user_pipe_64.fs.rq_size;
+               p->fs.rq_elements = user_pipe_64.fs.rq_elements;
+               p->fs.last_expired = user_pipe_64.fs.last_expired;
+               p->fs.backlogged = user_pipe_64.fs.backlogged;
+               p->fs.w_q = user_pipe_64.fs.w_q;
+               p->fs.max_th = user_pipe_64.fs.max_th;
+               p->fs.min_th = user_pipe_64.fs.min_th;
+               p->fs.max_p = user_pipe_64.fs.max_p;
+               p->fs.c_1 = user_pipe_64.fs.c_1;
+               p->fs.c_2 = user_pipe_64.fs.c_2;
+               p->fs.c_3 = user_pipe_64.fs.c_3;
+               p->fs.c_4 = user_pipe_64.fs.c_4;
+               p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
+               p->fs.lookup_step = user_pipe_64.fs.lookup_step;
+               p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
+               p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
+               p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
+       }
+       return error;
+}
+
+static void
+cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
+{
+       fs_bp->fs_nr = set->fs_nr;
+       fs_bp->flags_fs = set->flags_fs;
+       fs_bp->parent_nr = set->parent_nr;
+       fs_bp->weight = set->weight;
+       fs_bp->qsize = set->qsize;
+       fs_bp->plr = set->plr;
+       fs_bp->flow_mask = set->flow_mask;
+       fs_bp->rq_size = set->rq_size;
+       fs_bp->rq_elements = set->rq_elements;
+       fs_bp->last_expired = set->last_expired;
+       fs_bp->backlogged = set->backlogged;
+       fs_bp->w_q = set->w_q;
+       fs_bp->max_th = set->max_th;
+       fs_bp->min_th = set->min_th;
+       fs_bp->max_p = set->max_p;
+       fs_bp->c_1 = set->c_1;
+       fs_bp->c_2 = set->c_2;
+       fs_bp->c_3 = set->c_3;
+       fs_bp->c_4 = set->c_4;
+       fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup);
+       fs_bp->lookup_depth = set->lookup_depth;
+       fs_bp->lookup_step = set->lookup_step;
+       fs_bp->lookup_weight = set->lookup_weight;
+       fs_bp->avg_pkt_size = set->avg_pkt_size;
+       fs_bp->max_pkt_size = set->max_pkt_size;
+}
+
+static void
+cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
+{
+       fs_bp->fs_nr = set->fs_nr;
+       fs_bp->flags_fs = set->flags_fs;
+       fs_bp->parent_nr = set->parent_nr;
+       fs_bp->weight = set->weight;
+       fs_bp->qsize = set->qsize;
+       fs_bp->plr = set->plr;
+       fs_bp->flow_mask = set->flow_mask;
+       fs_bp->rq_size = set->rq_size;
+       fs_bp->rq_elements = set->rq_elements;
+       fs_bp->last_expired = set->last_expired;
+       fs_bp->backlogged = set->backlogged;
+       fs_bp->w_q = set->w_q;
+       fs_bp->max_th = set->max_th;
+       fs_bp->min_th = set->min_th;
+       fs_bp->max_p = set->max_p;
+       fs_bp->c_1 = set->c_1;
+       fs_bp->c_2 = set->c_2;
+       fs_bp->c_3 = set->c_3;
+       fs_bp->c_4 = set->c_4;
+       fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup);
+       fs_bp->lookup_depth = set->lookup_depth;
+       fs_bp->lookup_step = set->lookup_step;
+       fs_bp->lookup_weight = set->lookup_weight;
+       fs_bp->avg_pkt_size = set->avg_pkt_size;
+       fs_bp->max_pkt_size = set->max_pkt_size;
+}
+
+static
+void
+cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
+{
+       qp->id = q->id;
+       qp->len = q->len;
+       qp->len_bytes = q->len_bytes;
+       qp->numbytes = q->numbytes;
+       qp->tot_pkts = q->tot_pkts;
+       qp->tot_bytes = q->tot_bytes;
+       qp->drops = q->drops;
+       qp->hash_slot = q->hash_slot;
+       qp->avg = q->avg;
+       qp->count = q->count;
+       qp->random = q->random;
+       qp->q_time = q->q_time;
+       qp->heap_pos = q->heap_pos;
+       qp->sched_time = q->sched_time;
+       qp->S = q->S;
+       qp->F = q->F;
+}
+
+static
+void
+cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
+{
+       qp->id = q->id;
+       qp->len = q->len;
+       qp->len_bytes = q->len_bytes;
+       qp->numbytes = q->numbytes;
+       qp->tot_pkts = q->tot_pkts;
+       qp->tot_bytes = q->tot_bytes;
+       qp->drops = q->drops;
+       qp->hash_slot = q->hash_slot;
+       qp->avg = q->avg;
+       qp->count = q->count;
+       qp->random = q->random;
+       qp->q_time = q->q_time;
+       qp->heap_pos = q->heap_pos;
+       qp->sched_time = q->sched_time;
+       qp->S = q->S;
+       qp->F = q->F;
+}
+
+static
+char *
+cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
+{
+       char    *bp;
+
+       pipe_bp->pipe_nr = p->pipe_nr;
+       pipe_bp->bandwidth = p->bandwidth;
+       pipe_bp->delay = p->delay;
+       bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
+       pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
+       bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
+       pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
+       bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
+       pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
+       pipe_bp->V = p->V;
+       pipe_bp->sum = p->sum;
+       pipe_bp->numbytes = p->numbytes;
+       pipe_bp->sched_time = p->sched_time;
+       bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
+       pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
+       pipe_bp->ready = p->ready;
+
+       cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
+
+       pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10);
+       /*
+        * XXX the following is a hack based on ->next being the
+        * first field in dn_pipe and dn_flow_set. The correct
+        * solution would be to move the dn_flow_set to the beginning
+        * of struct dn_pipe.
+        */
+       pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
+       /* clean pointers */
+       pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0;
+       pipe_bp->fs.next = (user32_addr_t)0;
+       pipe_bp->fs.pipe = (user32_addr_t)0;
+       pipe_bp->fs.rq = (user32_addr_t)0;
+       bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
+       return dn_copy_set_32( &(p->fs), bp);
+}
+
+static
+char *
+cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
+{
+       char    *bp;
+
+       pipe_bp->pipe_nr = p->pipe_nr;
+       pipe_bp->bandwidth = p->bandwidth;
+       pipe_bp->delay = p->delay;
+       bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
+       pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
+       bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
+       pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
+       bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
+       pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
+       pipe_bp->V = p->V;
+       pipe_bp->sum = p->sum;
+       pipe_bp->numbytes = p->numbytes;
+       pipe_bp->sched_time = p->sched_time;
+       bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
+       pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
+       pipe_bp->ready = p->ready;
+
+       cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
+
+       pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10);
+       /*
+        * XXX the following is a hack based on ->next being the
+        * first field in dn_pipe and dn_flow_set. The correct
+        * solution would be to move the dn_flow_set to the beginning
+        * of struct dn_pipe.
+        */
+       pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
+       /* clean pointers */
+       pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL;
+       pipe_bp->fs.next = USER_ADDR_NULL;
+       pipe_bp->fs.pipe = USER_ADDR_NULL;
+       pipe_bp->fs.rq = USER_ADDR_NULL;
+       bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
+       return dn_copy_set_64( &(p->fs), bp);
+}
 
 static int
 heap_init(struct dn_heap *h, int new_size)
 {
-    struct dn_heap_entry *p;
-
-    if (h->size >= new_size ) {
-       printf("dummynet: heap_init, Bogus call, have %d want %d\n",
-               h->size, new_size);
-       return 0 ;
-    }
-    new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
-    p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
-    if (p == NULL) {
-       printf("dummynet: heap_init, resize %d failed\n", new_size );
-       return 1 ; /* error */
-    }
-    if (h->size > 0) {
-       bcopy(h->p, p, h->size * sizeof(*p) );
-       FREE(h->p, M_DUMMYNET);
-    }
-    h->p = p ;
-    h->size = new_size ;
-    return 0 ;
+       struct dn_heap_entry *p;
+
+       if (h->size >= new_size) {
+               printf("dummynet: heap_init, Bogus call, have %d want %d\n",
+                   h->size, new_size);
+               return 0;
+       }
+       new_size = (new_size + HEAP_INCREMENT) & ~HEAP_INCREMENT;
+       p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
+       if (p == NULL) {
+               printf("dummynet: heap_init, resize %d failed\n", new_size );
+               return 1; /* error */
+       }
+       if (h->size > 0) {
+               bcopy(h->p, p, h->size * sizeof(*p));
+               FREE(h->p, M_DUMMYNET);
+       }
+       h->p = p;
+       h->size = new_size;
+       return 0;
 }
 
 /*
@@ -263,32 +592,35 @@ heap_init(struct dn_heap *h, int new_size)
 static int
 heap_insert(struct dn_heap *h, dn_key key1, void *p)
 {
-    int son = h->elements ;
-
-    if (p == NULL)     /* data already there, set starting point */
-       son = key1 ;
-    else {             /* insert new element at the end, possibly resize */
-       son = h->elements ;
-       if (son == h->size) /* need resize... */
-           if (heap_init(h, h->elements+1) )
-               return 1 ; /* failure... */
-       h->p[son].object = p ;
-       h->p[son].key = key1 ;
-       h->elements++ ;
-    }
-    while (son > 0) {                          /* bubble up */
-       int father = HEAP_FATHER(son) ;
-       struct dn_heap_entry tmp  ;
-
-       if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
-           break ; /* found right position */
-       /* son smaller than father, swap and repeat */
-       HEAP_SWAP(h->p[son], h->p[father], tmp) ;
+       int son = h->elements;
+
+       if (p == NULL) { /* data already there, set starting point */
+               son = key1;
+       } else {        /* insert new element at the end, possibly resize */
+               son = h->elements;
+               if (son == h->size) { /* need resize... */
+                       if (heap_init(h, h->elements + 1)) {
+                               return 1; /* failure... */
+                       }
+               }
+               h->p[son].object = p;
+               h->p[son].key = key1;
+               h->elements++;
+       }
+       while (son > 0) {                       /* bubble up */
+               int father = HEAP_FATHER(son);
+               struct dn_heap_entry tmp;
+
+               if (DN_KEY_LT( h->p[father].key, h->p[son].key )) {
+                       break; /* found right position */
+               }
+               /* son smaller than father, swap and repeat */
+               HEAP_SWAP(h->p[son], h->p[father], tmp);
+               SET_OFFSET(h, son);
+               son = father;
+       }
        SET_OFFSET(h, son);
-       son = father ;
-    }
-    SET_OFFSET(h, son);
-    return 0 ;
+       return 0;
 }
 
 /*
@@ -297,83 +629,45 @@ heap_insert(struct dn_heap *h, dn_key key1, void *p)
 static void
 heap_extract(struct dn_heap *h, void *obj)
 {
-    int child, father, max = h->elements - 1 ;
-
-    if (max < 0) {
-       printf("dummynet: warning, extract from empty heap 0x%p\n", h);
-       return ;
-    }
-    father = 0 ; /* default: move up smallest child */
-    if (obj != NULL) { /* extract specific element, index is at offset */
-       if (h->offset <= 0)
-           panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
-       father = *((int *)((char *)obj + h->offset)) ;
-       if (father < 0 || father >= h->elements) {
-           printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
-               father, h->elements);
-           panic("dummynet: heap_extract");
-       }
-    }
-    RESET_OFFSET(h, father);
-    child = HEAP_LEFT(father) ;                /* left child */
-    while (child <= max) {             /* valid entry */
-       if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
-           child = child+1 ;           /* take right child, otherwise left */
-       h->p[father] = h->p[child] ;
-       SET_OFFSET(h, father);
-       father = child ;
-       child = HEAP_LEFT(child) ;   /* left child for next loop */
-    }
-    h->elements-- ;
-    if (father != max) {
-       /*
-        * Fill hole with last entry and bubble up, reusing the insert code
-        */
-       h->p[father] = h->p[max] ;
-       heap_insert(h, father, NULL); /* this one cannot fail */
-    }
-}
+       int child, father, maxelt = h->elements - 1;
 
-#if 0
-/*
- * change object position and update references
- * XXX this one is never used!
- */
-static void
-heap_move(struct dn_heap *h, dn_key new_key, void *object)
-{
-    int temp;
-    int i ;
-    int max = h->elements-1 ;
-    struct dn_heap_entry buf ;
-
-    if (h->offset <= 0)
-       panic("cannot move items on this heap");
-
-    i = *((int *)((char *)object + h->offset));
-    if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
-       h->p[i].key = new_key ;
-       for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
-                i = temp ) { /* bubble up */
-           HEAP_SWAP(h->p[i], h->p[temp], buf) ;
-           SET_OFFSET(h, i);
-       }
-    } else {           /* must move down */
-       h->p[i].key = new_key ;
-       while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
-           if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
-               temp++ ; /* select child with min key */
-           if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
-               HEAP_SWAP(h->p[i], h->p[temp], buf) ;
-               SET_OFFSET(h, i);
-           } else
-               break ;
-           i = temp ;
-       }
-    }
-    SET_OFFSET(h, i);
+       if (maxelt < 0) {
+               printf("dummynet: warning, extract from empty heap 0x%llx\n",
+                   (uint64_t)VM_KERNEL_ADDRPERM(h));
+               return;
+       }
+       father = 0; /* default: move up smallest child */
+       if (obj != NULL) { /* extract specific element, index is at offset */
+               if (h->offset <= 0) {
+                       panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
+               }
+               father = *((int *)((char *)obj + h->offset));
+               if (father < 0 || father >= h->elements) {
+                       printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
+                           father, h->elements);
+                       panic("dummynet: heap_extract");
+               }
+       }
+       RESET_OFFSET(h, father);
+       child = HEAP_LEFT(father);      /* left child */
+       while (child <= maxelt) {       /* valid entry */
+               if (child != maxelt && DN_KEY_LT(h->p[child + 1].key, h->p[child].key)) {
+                       child = child + 1; /* take right child, otherwise left */
+               }
+               h->p[father] = h->p[child];
+               SET_OFFSET(h, father);
+               father = child;
+               child = HEAP_LEFT(child); /* left child for next loop */
+       }
+       h->elements--;
+       if (father != maxelt) {
+               /*
+                * Fill hole with last entry and bubble up, reusing the insert code
+                */
+               h->p[father] = h->p[maxelt];
+               heap_insert(h, father, NULL); /* this one cannot fail */
+       }
 }
-#endif /* heap_move, unused */
 
 /*
  * heapify() will reorganize data inside an array to maintain the
@@ -382,10 +676,11 @@ heap_move(struct dn_heap *h, dn_key new_key, void *object)
 static void
 heapify(struct dn_heap *h)
 {
-    int i ;
+       int i;
 
-    for (i = 0 ; i < h->elements ; i++ )
-       heap_insert(h, i , NULL) ;
+       for (i = 0; i < h->elements; i++) {
+               heap_insert(h, i, NULL);
+       }
 }
 
 /*
@@ -394,9 +689,10 @@ heapify(struct dn_heap *h)
 static void
 heap_free(struct dn_heap *h)
 {
-    if (h->size >0 )
-       FREE(h->p, M_DUMMYNET);
-    bzero(h, sizeof(*h) );
+       if (h->size > 0) {
+               FREE(h->p, M_DUMMYNET);
+       }
+       bzero(h, sizeof(*h));
 }
 
 /*
@@ -411,13 +707,16 @@ heap_free(struct dn_heap *h)
 static struct dn_pkt_tag *
 dn_tag_get(struct mbuf *m)
 {
-    struct m_tag *mtag = m_tag_first(m);
-/*     KASSERT(mtag != NULL &&
+       struct m_tag *mtag = m_tag_first(m);
+
+       if (!(mtag != NULL &&
            mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
-           mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET,
-           ("packet on dummynet queue w/o dummynet tag!"));
-*/
-    return (struct dn_pkt_tag *)(mtag+1);
+           mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET)) {
+               panic("packet on dummynet queue w/o dummynet tag: 0x%llx",
+                   (uint64_t)VM_KERNEL_ADDRPERM(m));
+       }
+
+       return (struct dn_pkt_tag *)(mtag + 1);
 }
 
 /*
@@ -439,80 +738,46 @@ dn_tag_get(struct mbuf *m)
  * invocations of the procedures.
  */
 static void
-transmit_event(struct dn_pipe *pipe)
+transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
 {
-    struct mbuf *m ;
-    struct dn_pkt_tag *pkt ;
-    struct ip *ip;
-       
-       lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
-       
-    while ( (m = pipe->head) ) {
-               pkt = dn_tag_get(m);
-               if ( !DN_KEY_LEQ(pkt->output_time, curr_time) )
-                       break;
-               /*
-                * first unlink, then call procedures, since ip_input() can invoke
-                * ip_output() and viceversa, thus causing nested calls
-                */
-               pipe->head = m->m_nextpkt ;
-               m->m_nextpkt = NULL;
-       
-               /* XXX: drop the lock for now to avoid LOR's */
-               lck_mtx_unlock(dn_mutex);
-               switch (pkt->dn_dir) {
-                       case DN_TO_IP_OUT: {
-                               struct route tmp_rt = pkt->ro;
-                               (void)ip_output(m, NULL, NULL, pkt->flags, NULL);
-                               if (tmp_rt.ro_rt) {
-                                       rtfree(tmp_rt.ro_rt);
-                               }
-                               break ;
-                       }
-                       case DN_TO_IP_IN :
-                               ip = mtod(m, struct ip *);
-                               ip->ip_len = htons(ip->ip_len);
-                               ip->ip_off = htons(ip->ip_off);
-                               proto_inject(PF_INET, m);
-                               break ;
-               
-#if BRIDGE
-                       case DN_TO_BDG_FWD :
-                               /*
-                                * The bridge requires/assumes the Ethernet header is
-                                * contiguous in the first mbuf header.  Insure this is true.
-                                */
-                               if (BDG_LOADED) {
-                               if (m->m_len < ETHER_HDR_LEN &&
-                                       (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
-                                       printf("dummynet/bridge: pullup fail, dropping pkt\n");
-                                       break;
-                               }
-                               m = bdg_forward_ptr(m, pkt->ifp);
-                               } else {
-                               /* somebody unloaded the bridge module. Drop pkt */
-                               /* XXX rate limit */
-                               printf("dummynet: dropping bridged packet trapped in pipe\n");
-                               }
-                               if (m)
-                               m_freem(m);
+       struct mbuf *m;
+       struct dn_pkt_tag *pkt = NULL;
+       u_int64_t schedule_time;
+
+       LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
+       ASSERT(serialize >= 0);
+       if (serialize == 0) {
+               while ((m = pipe->head) != NULL) {
+                       pkt = dn_tag_get(m);
+                       if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time)) {
                                break;
-#endif         
-                       default:
-                               printf("dummynet: bad switch %d!\n", pkt->dn_dir);
-                               m_freem(m);
-                               break ;
+                       }
+
+                       pipe->head = m->m_nextpkt;
+                       if (*tail != NULL) {
+                               (*tail)->m_nextpkt = m;
+                       } else {
+                               *head = m;
+                       }
+                       *tail = m;
                }
-               lck_mtx_lock(dn_mutex);
-    }
-    /* if there are leftover packets, put into the heap for next event */
-    if ( (m = pipe->head) ) {
+
+               if (*tail != NULL) {
+                       (*tail)->m_nextpkt = NULL;
+               }
+       }
+
+       schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ?
+           curr_time + 1 : pkt->dn_output_time;
+
+       /* if there are leftover packets, put the pipe into the heap for next ready event */
+       if ((m = pipe->head) != NULL) {
                pkt = dn_tag_get(m);
                /* XXX should check errors on heap_insert, by draining the
                 * whole pipe p and hoping in the future we are more successful
                 */
-               heap_insert(&extract_heap, pkt->output_time, pipe);
-    }
+               heap_insert(&extract_heap, schedule_time, pipe);
+       }
 }
 
 /*
@@ -520,8 +785,15 @@ transmit_event(struct dn_pipe *pipe)
  * before being able to transmit a packet. The credit is taken from
  * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
  */
-#define SET_TICKS(_m, q, p)    \
-    ((_m)->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
+
+/* hz is 100, which gives a granularity of 10ms in the old timer.
+ * The timer has been changed to fire every 1ms, so the use of
+ * hz has been modified here. All instances of hz have been left
+ * in place but adjusted by a factor of 10 so that hz is functionally
+ * equal to 1000.
+ */
+#define SET_TICKS(_m, q, p)     \
+    ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
            p->bandwidth ;
 
 /*
@@ -530,22 +802,23 @@ transmit_event(struct dn_pipe *pipe)
  */
 static void
 move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
-       struct dn_pipe *p, int len)
+    struct dn_pipe *p, int len)
 {
-    struct dn_pkt_tag *dt = dn_tag_get(pkt);
+       struct dn_pkt_tag *dt = dn_tag_get(pkt);
 
-    q->head = pkt->m_nextpkt ;
-    q->len-- ;
-    q->len_bytes -= len ;
+       q->head = pkt->m_nextpkt;
+       q->len--;
+       q->len_bytes -= len;
 
-    dt->output_time = curr_time + p->delay ;
+       dt->dn_output_time = curr_time + p->delay;
 
-    if (p->head == NULL)
-       p->head = pkt;
-    else
-       p->tail->m_nextpkt = pkt;
-    p->tail = pkt;
-    p->tail->m_nextpkt = NULL;
+       if (p->head == NULL) {
+               p->head = pkt;
+       } else {
+               p->tail->m_nextpkt = pkt;
+       }
+       p->tail = pkt;
+       p->tail->m_nextpkt = NULL;
 }
 
 /*
@@ -556,61 +829,63 @@ move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
  * if there are leftover packets reinsert the pkt in the scheduler.
  */
 static void
-ready_event(struct dn_flow_queue *q)
+ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
 {
-    struct mbuf *pkt;
-    struct dn_pipe *p = q->fs->pipe ;
-    int p_was_empty ;
-
-       lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
-       
-    if (p == NULL) {
-       printf("dummynet: ready_event- pipe is gone\n");
-       return ;
-    }
-    p_was_empty = (p->head == NULL) ;
-
-    /*
-     * schedule fixed-rate queues linked to this pipe:
-     * Account for the bw accumulated since last scheduling, then
-     * drain as many pkts as allowed by q->numbytes and move to
-     * the delay line (in p) computing output time.
-     * bandwidth==0 (no limit) means we can drain the whole queue,
-     * setting len_scaled = 0 does the job.
-     */
-    q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
-    while ( (pkt = q->head) != NULL ) {
-       int len = pkt->m_pkthdr.len;
-       int len_scaled = p->bandwidth ? len*8*hz : 0 ;
-       if (len_scaled > q->numbytes )
-           break ;
-       q->numbytes -= len_scaled ;
-       move_pkt(pkt, q, p, len);
-    }
-    /*
-     * If we have more packets queued, schedule next ready event
-     * (can only occur when bandwidth != 0, otherwise we would have
-     * flushed the whole queue in the previous loop).
-     * To this purpose we record the current time and compute how many
-     * ticks to go for the finish time of the packet.
-     */
-    if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
-       dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
-       q->sched_time = curr_time ;
-       heap_insert(&ready_heap, curr_time + t, (void *)q );
-       /* XXX should check errors on heap_insert, and drain the whole
-        * queue on error hoping next time we are luckier.
+       struct mbuf *pkt;
+       struct dn_pipe *p = q->fs->pipe;
+       int p_was_empty;
+
+       LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
+       if (p == NULL) {
+               printf("dummynet: ready_event pipe is gone\n");
+               return;
+       }
+       p_was_empty = (p->head == NULL);
+
+       /*
+        * schedule fixed-rate queues linked to this pipe:
+        * Account for the bw accumulated since last scheduling, then
+        * drain as many pkts as allowed by q->numbytes and move to
+        * the delay line (in p) computing output time.
+        * bandwidth==0 (no limit) means we can drain the whole queue,
+        * setting len_scaled = 0 does the job.
+        */
+       q->numbytes += (curr_time - q->sched_time) * p->bandwidth;
+       while ((pkt = q->head) != NULL) {
+               int len = pkt->m_pkthdr.len;
+               int len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0;
+               if (len_scaled > q->numbytes) {
+                       break;
+               }
+               q->numbytes -= len_scaled;
+               move_pkt(pkt, q, p, len);
+       }
+       /*
+        * If we have more packets queued, schedule next ready event
+        * (can only occur when bandwidth != 0, otherwise we would have
+        * flushed the whole queue in the previous loop).
+        * To this purpose we record the current time and compute how many
+        * ticks to go for the finish time of the packet.
         */
-    } else {   /* RED needs to know when the queue becomes empty */
-       q->q_time = curr_time;
-       q->numbytes = 0;
-    }
-    /*
-     * If the delay line was empty call transmit_event(p) now.
-     * Otherwise, the scheduler will take care of it.
-     */
-    if (p_was_empty)
-       transmit_event(p);
+       if ((pkt = q->head) != NULL) { /* this implies bandwidth != 0 */
+               dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
+               q->sched_time = curr_time;
+               heap_insert(&ready_heap, curr_time + t, (void *)q );
+               /* XXX should check errors on heap_insert, and drain the whole
+                * queue on error hoping next time we are luckier.
+                */
+       } else { /* RED needs to know when the queue becomes empty */
+               q->q_time = curr_time;
+               q->numbytes = 0;
+       }
+       /*
+        * If the delay line was empty call transmit_event(p) now.
+        * Otherwise, the scheduler will take care of it.
+        */
+       if (p_was_empty) {
+               transmit_event(p, head, tail);
+       }
 }
 
 /*
@@ -622,209 +897,279 @@ ready_event(struct dn_flow_queue *q)
  * there is an additional delay.
  */
 static void
-ready_event_wfq(struct dn_pipe *p)
+ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
 {
-    int p_was_empty = (p->head == NULL) ;
-    struct dn_heap *sch = &(p->scheduler_heap);
-    struct dn_heap *neh = &(p->not_eligible_heap) ;
-
-       lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
-       
-    if (p->if_name[0] == 0) /* tx clock is simulated */
-       p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
-    else { /* tx clock is for real, the ifq must be empty or this is a NOP */
-       if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
-           return ;
-       else {
-           DPRINTF(("dummynet: pipe %d ready from %s --\n",
-               p->pipe_nr, p->if_name));
-       }
-    }
-
-    /*
-     * While we have backlogged traffic AND credit, we need to do
-     * something on the queue.
-     */
-    while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
-       if (sch->elements > 0) { /* have some eligible pkts to send out */
-           struct dn_flow_queue *q = sch->p[0].object ;
-           struct mbuf *pkt = q->head;
-           struct dn_flow_set *fs = q->fs;
-           u_int64_t len = pkt->m_pkthdr.len;
-           int len_scaled = p->bandwidth ? len*8*hz : 0 ;
-
-           heap_extract(sch, NULL); /* remove queue from heap */
-           p->numbytes -= len_scaled ;
-           move_pkt(pkt, q, p, len);
-
-           p->V += (len<<MY_M) / p->sum ; /* update V */
-           q->S = q->F ; /* update start time */
-           if (q->len == 0) { /* Flow not backlogged any more */
-               fs->backlogged-- ;
-               heap_insert(&(p->idle_heap), q->F, q);
-           } else { /* still backlogged */
+       int p_was_empty = (p->head == NULL);
+       struct dn_heap *sch = &(p->scheduler_heap);
+       struct dn_heap *neh = &(p->not_eligible_heap);
+       int64_t p_numbytes = p->numbytes;
+
+       LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
+       if (p->if_name[0] == 0) { /* tx clock is simulated */
+               p_numbytes += (curr_time - p->sched_time) * p->bandwidth;
+       } else { /* tx clock is for real, the ifq must be empty or this is a NOP */
+               if (p->ifp && !IFCQ_IS_EMPTY(&p->ifp->if_snd)) {
+                       return;
+               } else {
+                       DPRINTF(("dummynet: pipe %d ready from %s --\n",
+                           p->pipe_nr, p->if_name));
+               }
+       }
+
+       /*
+        * While we have backlogged traffic AND credit, we need to do
+        * something on the queue.
+        */
+       while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) {
+               if (sch->elements > 0) { /* have some eligible pkts to send out */
+                       struct dn_flow_queue *q = sch->p[0].object;
+                       struct mbuf *pkt = q->head;
+                       struct dn_flow_set *fs = q->fs;
+                       u_int64_t len = pkt->m_pkthdr.len;
+                       int len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0;
+
+                       heap_extract(sch, NULL); /* remove queue from heap */
+                       p_numbytes -= len_scaled;
+                       move_pkt(pkt, q, p, len);
+
+                       p->V += (len << MY_M) / p->sum; /* update V */
+                       q->S = q->F; /* update start time */
+                       if (q->len == 0) { /* Flow not backlogged any more */
+                               fs->backlogged--;
+                               heap_insert(&(p->idle_heap), q->F, q);
+                       } else { /* still backlogged */
+                               /*
+                                * update F and position in backlogged queue, then
+                                * put flow in not_eligible_heap (we will fix this later).
+                                */
+                               len = (q->head)->m_pkthdr.len;
+                               q->F += (len << MY_M) / (u_int64_t) fs->weight;
+                               if (DN_KEY_LEQ(q->S, p->V)) {
+                                       heap_insert(neh, q->S, q);
+                               } else {
+                                       heap_insert(sch, q->F, q);
+                               }
+                       }
+               }
+               /*
+                * now compute V = max(V, min(S_i)). Remember that all elements in sch
+                * have by definition S_i <= V so if sch is not empty, V is surely
+                * the max and we must not update it. Conversely, if sch is empty
+                * we only need to look at neh.
+                */
+               if (sch->elements == 0 && neh->elements > 0) {
+                       p->V = MAX64( p->V, neh->p[0].key );
+               }
+               /* move from neh to sch any packets that have become eligible */
+               while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) {
+                       struct dn_flow_queue *q = neh->p[0].object;
+                       heap_extract(neh, NULL);
+                       heap_insert(sch, q->F, q);
+               }
+
+               if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
+                       p_numbytes = -1; /* mark not ready for I/O */
+                       break;
+               }
+       }
+       if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
+           && p->idle_heap.elements > 0) {
                /*
-                * update F and position in backlogged queue, then
-                * put flow in not_eligible_heap (we will fix this later).
+                * no traffic and no events scheduled. We can get rid of idle-heap.
                 */
-               len = (q->head)->m_pkthdr.len;
-               q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
-               if (DN_KEY_LEQ(q->S, p->V))
-                   heap_insert(neh, q->S, q);
-               else
-                   heap_insert(sch, q->F, q);
-           }
+               int i;
+
+               for (i = 0; i < p->idle_heap.elements; i++) {
+                       struct dn_flow_queue *q = p->idle_heap.p[i].object;
+
+                       q->F = 0;
+                       q->S = q->F + 1;
+               }
+               p->sum = 0;
+               p->V = 0;
+               p->idle_heap.elements = 0;
        }
        /*
-        * now compute V = max(V, min(S_i)). Remember that all elements in sch
-        * have by definition S_i <= V so if sch is not empty, V is surely
-        * the max and we must not update it. Conversely, if sch is empty
-        * we only need to look at neh.
+        * If we are getting clocks from dummynet (not a real interface) and
+        * If we are under credit, schedule the next ready event.
+        * Also fix the delivery time of the last packet.
         */
-       if (sch->elements == 0 && neh->elements > 0)
-           p->V = MAX64 ( p->V, neh->p[0].key );
-       /* move from neh to sch any packets that have become eligible */
-       while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
-           struct dn_flow_queue *q = neh->p[0].object ;
-           heap_extract(neh, NULL);
-           heap_insert(sch, q->F, q);
+       if (p->if_name[0] == 0 && p_numbytes < 0) { /* this implies bandwidth >0 */
+               dn_key t = 0; /* number of ticks i have to wait */
+
+               if (p->bandwidth > 0) {
+                       t = (p->bandwidth - 1 - p_numbytes) / p->bandwidth;
+               }
+               dn_tag_get(p->tail)->dn_output_time += t;
+               p->sched_time = curr_time;
+               heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
+               /* XXX should check errors on heap_insert, and drain the whole
+                * queue on error hoping next time we are luckier.
+                */
        }
 
-       if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
-           p->numbytes = -1 ; /* mark not ready for I/O */
-           break ;
+       /* Fit (adjust if necessary) 64bit result into 32bit variable. */
+       if (p_numbytes > INT_MAX) {
+               p->numbytes = INT_MAX;
+       } else if (p_numbytes < INT_MIN) {
+               p->numbytes = INT_MIN;
+       } else {
+               p->numbytes = p_numbytes;
        }
-    }
-    if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
-           && p->idle_heap.elements > 0) {
+
        /*
-        * no traffic and no events scheduled. We can get rid of idle-heap.
+        * If the delay line was empty call transmit_event(p) now.
+        * Otherwise, the scheduler will take care of it.
         */
-       int i ;
-
-       for (i = 0 ; i < p->idle_heap.elements ; i++) {
-           struct dn_flow_queue *q = p->idle_heap.p[i].object ;
-
-           q->F = 0 ;
-           q->S = q->F + 1 ;
-       }
-       p->sum = 0 ;
-       p->V = 0 ;
-       p->idle_heap.elements = 0 ;
-    }
-    /*
-     * If we are getting clocks from dummynet (not a real interface) and
-     * If we are under credit, schedule the next ready event.
-     * Also fix the delivery time of the last packet.
-     */
-    if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
-       dn_key t=0 ; /* number of ticks i have to wait */
-
-       if (p->bandwidth > 0)
-           t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
-       dn_tag_get(p->tail)->output_time += t ;
-       p->sched_time = curr_time ;
-       heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
-       /* XXX should check errors on heap_insert, and drain the whole
-        * queue on error hoping next time we are luckier.
-        */
-    }
-    /*
-     * If the delay line was empty call transmit_event(p) now.
-     * Otherwise, the scheduler will take care of it.
-     */
-    if (p_was_empty)
-       transmit_event(p);
+       if (p_was_empty) {
+               transmit_event(p, head, tail);
+       }
 }
 
 /*
- * This is called once per tick, or HZ times per second. It is used to
+ * This is called every 1ms. It is used to
  * increment the current tick counter and schedule expired events.
  */
 static void
-dummynet(void * __unused unused)
+dummynet(__unused void * unused)
 {
-    void *p ; /* generic parameter to handler */
-    struct dn_heap *h ;
-    struct dn_heap *heaps[3];
-    int i;
-    struct dn_pipe *pe ;
-
-    heaps[0] = &ready_heap ;           /* fixed-rate queues */
-    heaps[1] = &wfq_ready_heap ;       /* wfq queues */
-    heaps[2] = &extract_heap ;         /* delay line */
-    
+       void *p; /* generic parameter to handler */
+       struct dn_heap *h;
+       struct dn_heap *heaps[3];
+       struct mbuf *head = NULL, *tail = NULL;
+       int i;
+       struct dn_pipe *pe;
+       struct timespec ts;
+       struct timeval      tv;
+
+       heaps[0] = &ready_heap;         /* fixed-rate queues */
+       heaps[1] = &wfq_ready_heap;     /* wfq queues */
+       heaps[2] = &extract_heap;       /* delay line */
+
        lck_mtx_lock(dn_mutex);
-       
-    curr_time++ ;
-    for (i=0; i < 3 ; i++) {
-       h = heaps[i];
-       while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
-           if (h->p[0].key > curr_time)
-               printf("dummynet: warning, heap %d is %d ticks late\n",
-                   i, (int)(curr_time - h->p[0].key));
-           p = h->p[0].object ; /* store a copy before heap_extract */
-           heap_extract(h, NULL); /* need to extract before processing */
-           if (i == 0)
-               ready_event(p) ;
-           else if (i == 1) {
-               struct dn_pipe *pipe = p;
-               if (pipe->if_name[0] != '\0')
-                   printf("dummynet: bad ready_event_wfq for pipe %s\n",
-                       pipe->if_name);
-               else
-                   ready_event_wfq(p) ;
-           } else
-               transmit_event(p);
-       }
-    }
-    /* sweep pipes trying to expire idle flow_queues */
-    for (pe = all_pipes; pe ; pe = pe->next )
-       if (pe->idle_heap.elements > 0 &&
-               DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
-           struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
-
-           heap_extract(&(pe->idle_heap), NULL);
-           q->S = q->F + 1 ; /* mark timestamp as invalid */
-           pe->sum -= q->fs->weight ;
-       }
-       
+
+       /* make all time measurements in milliseconds (ms) -
+        * here we convert secs and usecs to msecs (just divide the
+        * usecs and take the closest whole number).
+        */
+       microuptime(&tv);
+       curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
+
+       for (i = 0; i < 3; i++) {
+               h = heaps[i];
+               while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) {
+                       if (h->p[0].key > curr_time) {
+                               printf("dummynet: warning, heap %d is %d ticks late\n",
+                                   i, (int)(curr_time - h->p[0].key));
+                       }
+                       p = h->p[0].object; /* store a copy before heap_extract */
+                       heap_extract(h, NULL); /* need to extract before processing */
+                       if (i == 0) {
+                               ready_event(p, &head, &tail);
+                       } else if (i == 1) {
+                               struct dn_pipe *pipe = p;
+                               if (pipe->if_name[0] != '\0') {
+                                       printf("dummynet: bad ready_event_wfq for pipe %s\n",
+                                           pipe->if_name);
+                               } else {
+                                       ready_event_wfq(p, &head, &tail);
+                               }
+                       } else {
+                               transmit_event(p, &head, &tail);
+                       }
+               }
+       }
+       /* sweep pipes trying to expire idle flow_queues */
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_FOREACH(pe, &pipehash[i], next) {
+                       if (pe->idle_heap.elements > 0 &&
+                           DN_KEY_LT(pe->idle_heap.p[0].key, pe->V)) {
+                               struct dn_flow_queue *q = pe->idle_heap.p[0].object;
+
+                               heap_extract(&(pe->idle_heap), NULL);
+                               q->S = q->F + 1; /* mark timestamp as invalid */
+                               pe->sum -= q->fs->weight;
+                       }
+               }
+       }
+
+       /* check the heaps to see if there's still stuff in there, and
+        * only set the timer if there are packets to process
+        */
+       timer_enabled = 0;
+       for (i = 0; i < 3; i++) {
+               h = heaps[i];
+               if (h->elements > 0) { // set the timer
+                       ts.tv_sec = 0;
+                       ts.tv_nsec = 1 * 1000000;       // 1ms
+                       timer_enabled = 1;
+                       bsd_timeout(dummynet, NULL, &ts);
+                       break;
+               }
+       }
+
+       if (head != NULL) {
+               serialize++;
+       }
+
        lck_mtx_unlock(dn_mutex);
-       
-    timeout(dummynet, NULL, 1);
+
+       /* Send out the de-queued list of ready-to-send packets */
+       if (head != NULL) {
+               dummynet_send(head);
+               lck_mtx_lock(dn_mutex);
+               serialize--;
+               lck_mtx_unlock(dn_mutex);
+       }
 }
-/*
- * called by an interface when tx_rdy occurs.
- */
-int
-if_tx_rdy(struct ifnet *ifp)
+
+
+static void
+dummynet_send(struct mbuf *m)
 {
-    struct dn_pipe *p;
+       struct dn_pkt_tag *pkt;
+       struct mbuf *n;
 
-       lck_mtx_lock(dn_mutex);
-    for (p = all_pipes; p ; p = p->next )
-       if (p->ifp == ifp)
-           break ;
-    if (p == NULL) {
-       char buf[32];
-       sprintf(buf, "%s%d",ifp->if_name, ifp->if_unit);
-       for (p = all_pipes; p ; p = p->next )
-           if (!strcmp(p->if_name, buf) ) {
-               p->ifp = ifp ;
-               DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf));
-               break ;
-           }
-    }
-    if (p != NULL) {
-       DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
-               ifp->if_unit, ifp->if_snd.ifq_len));
-       p->numbytes = 0 ; /* mark ready for I/O */
-       ready_event_wfq(p);
-    }
-       lck_mtx_lock(dn_mutex);
+       for (; m != NULL; m = n) {
+               n = m->m_nextpkt;
+               m->m_nextpkt = NULL;
+               pkt = dn_tag_get(m);
+
+               DPRINTF(("dummynet_send m: 0x%llx dn_dir: %d dn_flags: 0x%x\n",
+                   (uint64_t)VM_KERNEL_ADDRPERM(m), pkt->dn_dir,
+                   pkt->dn_flags));
+
+               switch (pkt->dn_dir) {
+               case DN_TO_IP_OUT: {
+                       struct route tmp_rt;
+
+                       /* route is already in the packet's dn_ro */
+                       bzero(&tmp_rt, sizeof(tmp_rt));
 
-    return 0;
+                       /* Force IP_RAWOUTPUT as the IP header is fully formed */
+                       pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING;
+                       (void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL);
+                       ROUTE_RELEASE(&tmp_rt);
+                       break;
+               }
+               case DN_TO_IP_IN:
+                       proto_inject(PF_INET, m);
+                       break;
+               case DN_TO_IP6_OUT: {
+                       /* routes already in the packet's dn_{ro6,pmtu} */
+                       ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
+                       break;
+               }
+               case DN_TO_IP6_IN:
+                       proto_inject(PF_INET6, m);
+                       break;
+               default:
+                       printf("dummynet: bad switch %d!\n", pkt->dn_dir);
+                       m_freem(m);
+                       break;
+               }
+       }
 }
 
 /*
@@ -834,31 +1179,36 @@ if_tx_rdy(struct ifnet *ifp)
 static int
 expire_queues(struct dn_flow_set *fs)
 {
-    struct dn_flow_queue *q, *prev ;
-    int i, initial_elements = fs->rq_elements ;
+       struct dn_flow_queue *q, *prev;
+       int i, initial_elements = fs->rq_elements;
        struct timeval timenow;
 
+       /* reviewed for getmicrotime usage */
        getmicrotime(&timenow);
 
-    if (fs->last_expired == timenow.tv_sec)
-       return 0 ;
-    fs->last_expired = timenow.tv_sec ;
-    for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
-       for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
-           if (q->head != NULL || q->S != q->F+1) {
-               prev = q ;
-               q = q->next ;
-           } else { /* entry is idle, expire it */
-               struct dn_flow_queue *old_q = q ;
-
-               if (prev != NULL)
-                   prev->next = q = q->next ;
-               else
-                   fs->rq[i] = q = q->next ;
-               fs->rq_elements-- ;
-               FREE(old_q, M_DUMMYNET);
-           }
-    return initial_elements - fs->rq_elements ;
+       if (fs->last_expired == timenow.tv_sec) {
+               return 0;
+       }
+       fs->last_expired = timenow.tv_sec;
+       for (i = 0; i <= fs->rq_size; i++) { /* last one is overflow */
+               for (prev = NULL, q = fs->rq[i]; q != NULL;) {
+                       if (q->head != NULL || q->S != q->F + 1) {
+                               prev = q;
+                               q = q->next;
+                       } else { /* entry is idle, expire it */
+                               struct dn_flow_queue *old_q = q;
+
+                               if (prev != NULL) {
+                                       prev->next = q = q->next;
+                               } else {
+                                       fs->rq[i] = q = q->next;
+                               }
+                               fs->rq_elements--;
+                               FREE(old_q, M_DUMMYNET);
+                       }
+               }
+       }
+       return initial_elements - fs->rq_elements;
 }
 
 /*
@@ -868,29 +1218,30 @@ expire_queues(struct dn_flow_set *fs)
 static struct dn_flow_queue *
 create_queue(struct dn_flow_set *fs, int i)
 {
-    struct dn_flow_queue *q ;
+       struct dn_flow_queue *q;
 
-    if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
+       if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
            expire_queues(fs) == 0) {
-       /*
-        * No way to get room, use or create overflow queue.
-        */
-       i = fs->rq_size ;
-       if ( fs->rq[i] != NULL )
-           return fs->rq[i] ;
-    }
-    q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
-    if (q == NULL) {
-       printf("dummynet: sorry, cannot allocate queue for new flow\n");
-       return NULL ;
-    }
-    q->fs = fs ;
-    q->hash_slot = i ;
-    q->next = fs->rq[i] ;
-    q->S = q->F + 1;   /* hack - mark timestamp as invalid */
-    fs->rq[i] = q ;
-    fs->rq_elements++ ;
-    return q ;
+               /*
+                * No way to get room, use or create overflow queue.
+                */
+               i = fs->rq_size;
+               if (fs->rq[i] != NULL) {
+                       return fs->rq[i];
+               }
+       }
+       q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
+       if (q == NULL) {
+               printf("dummynet: sorry, cannot allocate queue for new flow\n");
+               return NULL;
+       }
+       q->fs = fs;
+       q->hash_slot = i;
+       q->next = fs->rq[i];
+       q->S = q->F + 1; /* hack - mark timestamp as invalid */
+       fs->rq[i] = q;
+       fs->rq_elements++;
+       return q;
 }
 
 /*
@@ -899,203 +1250,247 @@ create_queue(struct dn_flow_set *fs, int i)
  * so that further searches take less time.
  */
 static struct dn_flow_queue *
-find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
+find_queue(struct dn_flow_set *fs, struct ip_flow_id *id)
 {
-    int i = 0 ; /* we need i and q for new allocations */
-    struct dn_flow_queue *q, *prev;
-
-    if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
-       q = fs->rq[0] ;
-    else {
-       /* first, do the masking */
-       id->dst_ip &= fs->flow_mask.dst_ip ;
-       id->src_ip &= fs->flow_mask.src_ip ;
-       id->dst_port &= fs->flow_mask.dst_port ;
-       id->src_port &= fs->flow_mask.src_port ;
-       id->proto &= fs->flow_mask.proto ;
-       id->flags = 0 ; /* we don't care about this one */
-       /* then, hash function */
-       i = ( (id->dst_ip) & 0xffff ) ^
-           ( (id->dst_ip >> 15) & 0xffff ) ^
-           ( (id->src_ip << 1) & 0xffff ) ^
-           ( (id->src_ip >> 16 ) & 0xffff ) ^
-           (id->dst_port << 1) ^ (id->src_port) ^
-           (id->proto );
-       i = i % fs->rq_size ;
-       /* finally, scan the current list for a match */
-       searches++ ;
-       for (prev=NULL, q = fs->rq[i] ; q ; ) {
-           search_steps++;
-           if (id->dst_ip == q->id.dst_ip &&
-                   id->src_ip == q->id.src_ip &&
-                   id->dst_port == q->id.dst_port &&
-                   id->src_port == q->id.src_port &&
-                   id->proto == q->id.proto &&
-                   id->flags == q->id.flags)
-               break ; /* found */
-           else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
-               /* entry is idle and not in any heap, expire it */
-               struct dn_flow_queue *old_q = q ;
-
-               if (prev != NULL)
-                   prev->next = q = q->next ;
-               else
-                   fs->rq[i] = q = q->next ;
-               fs->rq_elements-- ;
-               FREE(old_q, M_DUMMYNET);
-               continue ;
-           }
-           prev = q ;
-           q = q->next ;
-       }
-       if (q && prev != NULL) { /* found and not in front */
-           prev->next = q->next ;
-           q->next = fs->rq[i] ;
-           fs->rq[i] = q ;
-       }
-    }
-    if (q == NULL) { /* no match, need to allocate a new entry */
-       q = create_queue(fs, i);
-       if (q != NULL)
-       q->id = *id ;
-    }
-    return q ;
+       int i = 0; /* we need i and q for new allocations */
+       struct dn_flow_queue *q, *prev;
+       int is_v6 = IS_IP6_FLOW_ID(id);
+
+       if (!(fs->flags_fs & DN_HAVE_FLOW_MASK)) {
+               q = fs->rq[0];
+       } else {
+               /* first, do the masking, then hash */
+               id->dst_port &= fs->flow_mask.dst_port;
+               id->src_port &= fs->flow_mask.src_port;
+               id->proto &= fs->flow_mask.proto;
+               id->flags = 0; /* we don't care about this one */
+               if (is_v6) {
+                       APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
+                       APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
+                       id->flow_id6 &= fs->flow_mask.flow_id6;
+
+                       i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff) ^
+                           ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff) ^
+                           ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff) ^
+                           ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff) ^
+
+                           ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff) ^
+                           ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff) ^
+                           ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff) ^
+                           ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff) ^
+
+                           ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff) ^
+                           ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff) ^
+                           ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff) ^
+                           ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff) ^
+
+                           ((id->src_ip6.__u6_addr.__u6_addr32[0] >> 16) & 0xffff) ^
+                           ((id->src_ip6.__u6_addr.__u6_addr32[1] >> 16) & 0xffff) ^
+                           ((id->src_ip6.__u6_addr.__u6_addr32[2] >> 16) & 0xffff) ^
+                           ((id->src_ip6.__u6_addr.__u6_addr32[3] >> 16) & 0xffff) ^
+
+                           (id->dst_port << 1) ^ (id->src_port) ^
+                           (id->proto) ^
+                           (id->flow_id6);
+               } else {
+                       id->dst_ip &= fs->flow_mask.dst_ip;
+                       id->src_ip &= fs->flow_mask.src_ip;
+
+                       i = ((id->dst_ip) & 0xffff) ^
+                           ((id->dst_ip >> 15) & 0xffff) ^
+                           ((id->src_ip << 1) & 0xffff) ^
+                           ((id->src_ip >> 16) & 0xffff) ^
+                           (id->dst_port << 1) ^ (id->src_port) ^
+                           (id->proto);
+               }
+               i = i % fs->rq_size;
+               /* finally, scan the current list for a match */
+               searches++;
+               for (prev = NULL, q = fs->rq[i]; q;) {
+                       search_steps++;
+                       if (is_v6 &&
+                           IN6_ARE_ADDR_EQUAL(&id->dst_ip6, &q->id.dst_ip6) &&
+                           IN6_ARE_ADDR_EQUAL(&id->src_ip6, &q->id.src_ip6) &&
+                           id->dst_port == q->id.dst_port &&
+                           id->src_port == q->id.src_port &&
+                           id->proto == q->id.proto &&
+                           id->flags == q->id.flags &&
+                           id->flow_id6 == q->id.flow_id6) {
+                               break; /* found */
+                       }
+                       if (!is_v6 && id->dst_ip == q->id.dst_ip &&
+                           id->src_ip == q->id.src_ip &&
+                           id->dst_port == q->id.dst_port &&
+                           id->src_port == q->id.src_port &&
+                           id->proto == q->id.proto &&
+                           id->flags == q->id.flags) {
+                               break; /* found */
+                       }
+                       /* No match. Check if we can expire the entry */
+                       if (pipe_expire && q->head == NULL && q->S == q->F + 1) {
+                               /* entry is idle and not in any heap, expire it */
+                               struct dn_flow_queue *old_q = q;
+
+                               if (prev != NULL) {
+                                       prev->next = q = q->next;
+                               } else {
+                                       fs->rq[i] = q = q->next;
+                               }
+                               fs->rq_elements--;
+                               FREE(old_q, M_DUMMYNET);
+                               continue;
+                       }
+                       prev = q;
+                       q = q->next;
+               }
+               if (q && prev != NULL) { /* found and not in front */
+                       prev->next = q->next;
+                       q->next = fs->rq[i];
+                       fs->rq[i] = q;
+               }
+       }
+       if (q == NULL) { /* no match, need to allocate a new entry */
+               q = create_queue(fs, i);
+               if (q != NULL) {
+                       q->id = *id;
+               }
+       }
+       return q;
 }
 
 static int
 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
 {
-    /*
-     * RED algorithm
-     *
-     * RED calculates the average queue size (avg) using a low-pass filter
-     * with an exponential weighted (w_q) moving average:
-     *         avg  <-  (1-w_q) * avg + w_q * q_size
-     * where q_size is the queue length (measured in bytes or * packets).
-     *
-     * If q_size == 0, we compute the idle time for the link, and set
-     * avg = (1 - w_q)^(idle/s)
-     * where s is the time needed for transmitting a medium-sized packet.
-     *
-     * Now, if avg < min_th the packet is enqueued.
-     * If avg > max_th the packet is dropped. Otherwise, the packet is
-     * dropped with probability P function of avg.
-     *
-     */
-
-    int64_t p_b = 0;
-    /* queue in bytes or packets ? */
-    u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
-
-    DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
-
-    /* average queue size estimation */
-    if (q_size != 0) {
        /*
-        * queue is not empty, avg <- avg + (q_size - avg) * w_q
+        * RED algorithm
+        *
+        * RED calculates the average queue size (avg) using a low-pass filter
+        * with an exponential weighted (w_q) moving average:
+        *      avg  <-  (1-w_q) * avg + w_q * q_size
+        * where q_size is the queue length (measured in bytes or * packets).
+        *
+        * If q_size == 0, we compute the idle time for the link, and set
+        *      avg = (1 - w_q)^(idle/s)
+        * where s is the time needed for transmitting a medium-sized packet.
+        *
+        * Now, if avg < min_th the packet is enqueued.
+        * If avg > max_th the packet is dropped. Otherwise, the packet is
+        * dropped with probability P function of avg.
+        *
         */
-       int diff = SCALE(q_size) - q->avg;
-       int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
 
-       q->avg += (int) v;
-    } else {
-       /*
-        * queue is empty, find for how long the queue has been
-        * empty and use a lookup table for computing
-        * (1 - * w_q)^(idle_time/s) where s is the time to send a
-        * (small) packet.
-        * XXX check wraps...
-        */
-       if (q->avg) {
-           u_int t = (curr_time - q->q_time) / fs->lookup_step;
-
-           q->avg = (t < fs->lookup_depth) ?
-                   SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
-       }
-    }
-    DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
-
-    /* should i drop ? */
-
-    if (q->avg < fs->min_th) {
-       q->count = -1;
-       return 0; /* accept packet ; */
-    }
-    if (q->avg >= fs->max_th) { /* average queue >=  max threshold */
-       if (fs->flags_fs & DN_IS_GENTLE_RED) {
-           /*
-            * According to Gentle-RED, if avg is greater than max_th the
-            * packet is dropped with a probability
-            *  p_b = c_3 * avg - c_4
-            * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
-            */
-           p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
-       } else {
-           q->count = -1;
-           DPRINTF(("dummynet: - drop"));
-           return 1 ;
-       }
-    } else if (q->avg > fs->min_th) {
-       /*
-        * we compute p_b using the linear dropping function p_b = c_1 *
-        * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
-        * max_p * min_th / (max_th - min_th)
-        */
-       p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
-    }
-    if (fs->flags_fs & DN_QSIZE_IS_BYTES)
-       p_b = (p_b * len) / fs->max_pkt_size;
-    if (++q->count == 0)
-       q->random = random() & 0xffff;
-    else {
-       /*
-        * q->count counts packets arrived since last drop, so a greater
-        * value of q->count means a greater packet drop probability.
-        */
-       if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
-           q->count = 0;
-           DPRINTF(("dummynet: - red drop"));
-           /* after a drop we calculate a new random value */
-           q->random = random() & 0xffff;
-           return 1;    /* drop */
-       }
-    }
-    /* end of RED algorithm */
-    return 0 ; /* accept */
-}
+       int64_t p_b = 0;
+       /* queue in bytes or packets ? */
+       u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
 
-static __inline
+       DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
+
+       /* average queue size estimation */
+       if (q_size != 0) {
+               /*
+                * queue is not empty, avg <- avg + (q_size - avg) * w_q
+                */
+               int diff = SCALE(q_size) - q->avg;
+               int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
+
+               q->avg += (int) v;
+       } else {
+               /*
+                * queue is empty, find for how long the queue has been
+                * empty and use a lookup table for computing
+                * (1 - * w_q)^(idle_time/s) where s is the time to send a
+                * (small) packet.
+                * XXX check wraps...
+                */
+               if (q->avg) {
+                       u_int t = (curr_time - q->q_time) / fs->lookup_step;
+
+                       q->avg = (t < fs->lookup_depth) ?
+                           SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
+               }
+       }
+       DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
+
+       /* should i drop ? */
+
+       if (q->avg < fs->min_th) {
+               q->count = -1;
+               return 0; /* accept packet ; */
+       }
+       if (q->avg >= fs->max_th) { /* average queue >=  max threshold */
+               if (fs->flags_fs & DN_IS_GENTLE_RED) {
+                       /*
+                        * According to Gentle-RED, if avg is greater than max_th the
+                        * packet is dropped with a probability
+                        *      p_b = c_3 * avg - c_4
+                        * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
+                        */
+                       p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
+               } else {
+                       q->count = -1;
+                       DPRINTF(("dummynet: - drop"));
+                       return 1;
+               }
+       } else if (q->avg > fs->min_th) {
+               /*
+                * we compute p_b using the linear dropping function p_b = c_1 *
+                * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
+                * max_p * min_th / (max_th - min_th)
+                */
+               p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
+       }
+       if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
+               p_b = (p_b * len) / fs->max_pkt_size;
+       }
+       if (++q->count == 0) {
+               q->random = (my_random() & 0xffff);
+       } else {
+               /*
+                * q->count counts packets arrived since last drop, so a greater
+                * value of q->count means a greater packet drop probability.
+                */
+               if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
+                       q->count = 0;
+                       DPRINTF(("dummynet: - red drop"));
+                       /* after a drop we calculate a new random value */
+                       q->random = (my_random() & 0xffff);
+                       return 1; /* drop */
+               }
+       }
+       /* end of RED algorithm */
+       return 0; /* accept */
+}
+
+static __inline
 struct dn_flow_set *
-locate_flowset(int pipe_nr, struct ip_fw *rule)
+locate_flowset(int fs_nr)
 {
-    struct dn_flow_set *fs;
-    ipfw_insn *cmd = rule->cmd + rule->act_ofs;
-
-    if (cmd->opcode == O_LOG)
-       cmd += F_LEN(cmd);
+       struct dn_flow_set *fs;
+       SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next) {
+               if (fs->fs_nr == fs_nr) {
+                       return fs;
+               }
+       }
 
-    bcopy(& ((ipfw_insn_pipe *)cmd)->pipe_ptr, &fs, sizeof(fs));
+       return NULL;
+}
 
-    if (fs != NULL)
-       return fs;
+static __inline struct dn_pipe *
+locate_pipe(int pipe_nr)
+{
+       struct dn_pipe *pipe;
 
-    if (cmd->opcode == O_QUEUE) {
-               for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
-                  ;
+       SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next) {
+               if (pipe->pipe_nr == pipe_nr) {
+                       return pipe;
+               }
        }
-    else {
-               struct dn_pipe *p1;
-               for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
-                       ;
-               if (p1 != NULL)
-                       fs = &(p1->fs) ;
-    }
-    /* record for the future */
-    bcopy(&fs, & ((ipfw_insn_pipe *)cmd)->pipe_ptr, sizeof(fs));
 
-    return fs ;
+       return NULL;
 }
 
+
+
 /*
  * dummynet hook for packets. Below 'pipe' is a pipe or a queue
  * depending on whether WF2Q or fixed bw is used.
@@ -1115,202 +1510,279 @@ locate_flowset(int pipe_nr, struct ip_fw *rule)
 static int
 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
 {
-    struct dn_pkt_tag *pkt;
-    struct m_tag *mtag;
-    struct dn_flow_set *fs;
-    struct dn_pipe *pipe ;
-    u_int64_t len = m->m_pkthdr.len ;
-    struct dn_flow_queue *q = NULL ;
-    int is_pipe;
-    
-#if IPFW2
-    ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
-
-    if (cmd->opcode == O_LOG)
-       cmd += F_LEN(cmd);
-    is_pipe = (cmd->opcode == O_PIPE);
-#else
-    is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
-#endif
+       struct mbuf *head = NULL, *tail = NULL;
+       struct dn_pkt_tag *pkt;
+       struct m_tag *mtag;
+       struct dn_flow_set *fs = NULL;
+       struct dn_pipe *pipe;
+       u_int64_t len = m->m_pkthdr.len;
+       struct dn_flow_queue *q = NULL;
+       int is_pipe = 0;
+       struct timespec ts;
+       struct timeval      tv;
 
-    pipe_nr &= 0xffff ;
-
-       lck_mtx_lock(dn_mutex);
-       
-   /*
-     * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
-     */
-    fs = locate_flowset(pipe_nr, fwa->rule);
-    if (fs == NULL)
-       goto dropit ;   /* this queue/pipe does not exist! */
-    pipe = fs->pipe ;
-    if (pipe == NULL) { /* must be a queue, try find a matching pipe */
-       for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
-                pipe = pipe->next)
-           ;
-       if (pipe != NULL)
-           fs->pipe = pipe ;
-       else {
-           printf("dummynet: no pipe %d for queue %d, drop pkt\n",
-               fs->parent_nr, fs->fs_nr);
-           goto dropit ;
-       }
-    }
-    q = find_queue(fs, &(fwa->f_id));
-    if ( q == NULL )
-       goto dropit ;           /* cannot allocate queue                */
-    /*
-     * update statistics, then check reasons to drop pkt
-     */
-    q->tot_bytes += len ;
-    q->tot_pkts++ ;
-    if ( fs->plr && random() < fs->plr )
-       goto dropit ;           /* random pkt drop                      */
-    if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
-       if (q->len_bytes > fs->qsize)
-           goto dropit ;       /* queue size overflow                  */
-    } else {
-       if (q->len >= fs->qsize)
-           goto dropit ;       /* queue count overflow                 */
-    }
-    if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
-       goto dropit ;
-
-    /* XXX expensive to zero, see if we can remove it*/
-    mtag = m_tag_alloc(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
-               sizeof(struct dn_pkt_tag), M_NOWAIT|M_ZERO);
-    if ( mtag == NULL )
-               goto dropit ;           /* cannot allocate packet header        */
-    m_tag_prepend(m, mtag);    /* attach to mbuf chain */
-
-    pkt = (struct dn_pkt_tag *)(mtag+1);
-    /* ok, i can handle the pkt now... */
-    /* build and enqueue packet + parameters */
-    pkt->rule = fwa->rule ;
-    pkt->dn_dir = dir ;
-
-    pkt->ifp = fwa->oif;
-    if (dir == DN_TO_IP_OUT) {
-       /*
-        * We need to copy *ro because for ICMP pkts (and maybe others)
-        * the caller passed a pointer into the stack; dst might also be
-        * a pointer into *ro so it needs to be updated.
+       DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d\n",
+           (uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir));
+
+
+#if DUMMYNET
+       is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0;
+#endif /* DUMMYNET */
+
+       pipe_nr &= 0xffff;
+
+       lck_mtx_lock(dn_mutex);
+
+       /* make all time measurements in milliseconds (ms) -
+        * here we convert secs and usecs to msecs (just divide the
+        * usecs and take the closest whole number).
         */
-       lck_mtx_lock(rt_mtx);
-       pkt->ro = *(fwa->ro);
-       if (fwa->ro->ro_rt)
-           fwa->ro->ro_rt->rt_refcnt++ ;
-       if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
-           fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
-       lck_mtx_unlock(rt_mtx);
-       
-       pkt->dn_dst = fwa->dst;
-       pkt->flags = fwa->flags;
-       }
-    if (q->head == NULL)
-       q->head = m;
-    else
-       q->tail->m_nextpkt = m;
-    q->tail = m;
-    q->len++;
-    q->len_bytes += len ;
-
-    if ( q->head != m )                /* flow was not idle, we are done */
-       goto done;
-    /*
-     * If we reach this point the flow was previously idle, so we need
-     * to schedule it. This involves different actions for fixed-rate or
-     * WF2Q queues.
-     */
-    if (is_pipe) {
+       microuptime(&tv);
+       curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
+
        /*
-        * Fixed-rate queue: just insert into the ready_heap.
+        * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
         */
-       dn_key t = 0 ;
-       if (pipe->bandwidth)
-           t = SET_TICKS(m, q, pipe);
-       q->sched_time = curr_time ;
-       if (t == 0)     /* must process it now */
-           ready_event( q );
-       else
-           heap_insert(&ready_heap, curr_time + t , q );
-    } else {
+       if (is_pipe) {
+               pipe = locate_pipe(pipe_nr);
+               if (pipe != NULL) {
+                       fs = &(pipe->fs);
+               }
+       } else {
+               fs = locate_flowset(pipe_nr);
+       }
+
+
+       if (fs == NULL) {
+               goto dropit; /* this queue/pipe does not exist! */
+       }
+       pipe = fs->pipe;
+       if (pipe == NULL) { /* must be a queue, try find a matching pipe */
+               pipe = locate_pipe(fs->parent_nr);
+
+               if (pipe != NULL) {
+                       fs->pipe = pipe;
+               } else {
+                       printf("dummynet: no pipe %d for queue %d, drop pkt\n",
+                           fs->parent_nr, fs->fs_nr);
+                       goto dropit;
+               }
+       }
+       q = find_queue(fs, &(fwa->fwa_id));
+       if (q == NULL) {
+               goto dropit;    /* cannot allocate queue                */
+       }
        /*
-        * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
-        * set S to the virtual time V for the controlling pipe, and update
-        * the sum of weights for the pipe; otherwise, remove flow from
-        * idle_heap and set S to max(F,V).
-        * Second, compute finish time F = S + len/weight.
-        * Third, if pipe was idle, update V=max(S, V).
-        * Fourth, count one more backlogged flow.
+        * update statistics, then check reasons to drop pkt
         */
-       if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
-           q->S = pipe->V ;
-           pipe->sum += fs->weight ; /* add weight of new queue */
+       q->tot_bytes += len;
+       q->tot_pkts++;
+       if (fs->plr && (my_random() < fs->plr)) {
+               goto dropit;    /* random pkt drop                      */
+       }
+       if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
+               if (q->len_bytes > fs->qsize) {
+                       goto dropit; /* queue size overflow                     */
+               }
        } else {
-           heap_extract(&(pipe->idle_heap), q);
-           q->S = MAX64(q->F, pipe->V ) ;
+               if (q->len >= fs->qsize) {
+                       goto dropit; /* queue count overflow                    */
+               }
+       }
+       if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len)) {
+               goto dropit;
        }
-       q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
 
-       if (pipe->not_eligible_heap.elements == 0 &&
-               pipe->scheduler_heap.elements == 0)
-           pipe->V = MAX64 ( q->S, pipe->V );
-       fs->backlogged++ ;
+       /* XXX expensive to zero, see if we can remove it*/
+       mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
+           sizeof(struct dn_pkt_tag), M_NOWAIT, m);
+       if (mtag == NULL) {
+               goto dropit;            /* cannot allocate packet header        */
+       }
+       m_tag_prepend(m, mtag); /* attach to mbuf chain */
+
+       pkt = (struct dn_pkt_tag *)(mtag + 1);
+       bzero(pkt, sizeof(struct dn_pkt_tag));
+       /* ok, i can handle the pkt now... */
+       /* build and enqueue packet + parameters */
+       pkt->dn_pf_rule = fwa->fwa_pf_rule;
+       pkt->dn_dir = dir;
+
+       pkt->dn_ifp = fwa->fwa_oif;
+       if (dir == DN_TO_IP_OUT) {
+               /*
+                * We need to copy *ro because for ICMP pkts (and maybe others)
+                * the caller passed a pointer into the stack; dst might also be
+                * a pointer into *ro so it needs to be updated.
+                */
+               if (fwa->fwa_ro) {
+                       route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof(pkt->dn_ro));
+               }
+               if (fwa->fwa_dst) {
+                       if (fwa->fwa_dst == (struct sockaddr_in *)&fwa->fwa_ro->ro_dst) { /* dst points into ro */
+                               fwa->fwa_dst = (struct sockaddr_in *)&(pkt->dn_ro.ro_dst);
+                       }
+
+                       bcopy(fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
+               }
+       } else if (dir == DN_TO_IP6_OUT) {
+               if (fwa->fwa_ro6) {
+                       route_copyout((struct route *)&pkt->dn_ro6,
+                           (struct route *)fwa->fwa_ro6, sizeof(pkt->dn_ro6));
+               }
+               if (fwa->fwa_ro6_pmtu) {
+                       route_copyout((struct route *)&pkt->dn_ro6_pmtu,
+                           (struct route *)fwa->fwa_ro6_pmtu, sizeof(pkt->dn_ro6_pmtu));
+               }
+               if (fwa->fwa_dst6) {
+                       if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) { /* dst points into ro */
+                               fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst);
+                       }
+
+                       bcopy(fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6));
+               }
+               pkt->dn_origifp = fwa->fwa_origifp;
+               pkt->dn_mtu = fwa->fwa_mtu;
+               pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen;
+               if (fwa->fwa_exthdrs) {
+                       bcopy(fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs));
+                       /*
+                        * Need to zero out the source structure so the mbufs
+                        * won't be freed by ip6_output()
+                        */
+                       bzero(fwa->fwa_exthdrs, sizeof(struct ip6_exthdrs));
+               }
+       }
+       if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) {
+               pkt->dn_flags = fwa->fwa_oflags;
+               if (fwa->fwa_ipoa != NULL) {
+                       pkt->dn_ipoa = *(fwa->fwa_ipoa);
+               }
+       }
+       if (q->head == NULL) {
+               q->head = m;
+       } else {
+               q->tail->m_nextpkt = m;
+       }
+       q->tail = m;
+       q->len++;
+       q->len_bytes += len;
+
+       if (q->head != m) {     /* flow was not idle, we are done */
+               goto done;
+       }
        /*
-        * Look at eligibility. A flow is not eligibile if S>V (when
-        * this happens, it means that there is some other flow already
-        * scheduled for the same pipe, so the scheduler_heap cannot be
-        * empty). If the flow is not eligible we just store it in the
-        * not_eligible_heap. Otherwise, we store in the scheduler_heap
-        * and possibly invoke ready_event_wfq() right now if there is
-        * leftover credit.
-        * Note that for all flows in scheduler_heap (SCH), S_i <= V,
-        * and for all flows in not_eligible_heap (NEH), S_i > V .
-        * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
-        * we only need to look into NEH.
+        * If we reach this point the flow was previously idle, so we need
+        * to schedule it. This involves different actions for fixed-rate or
+        * WF2Q queues.
         */
-       if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
-           if (pipe->scheduler_heap.elements == 0)
-               printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
-           heap_insert(&(pipe->not_eligible_heap), q->S, q);
+       if (is_pipe) {
+               /*
+                * Fixed-rate queue: just insert into the ready_heap.
+                */
+               dn_key t = 0;
+               if (pipe->bandwidth) {
+                       t = SET_TICKS(m, q, pipe);
+               }
+               q->sched_time = curr_time;
+               if (t == 0) { /* must process it now */
+                       ready_event( q, &head, &tail );
+               } else {
+                       heap_insert(&ready_heap, curr_time + t, q );
+               }
        } else {
-           heap_insert(&(pipe->scheduler_heap), q->F, q);
-           if (pipe->numbytes >= 0) { /* pipe is idle */
-               if (pipe->scheduler_heap.elements != 1)
-                   printf("dummynet: OUCH! pipe should have been idle!\n");
-               DPRINTF(("dummynet: waking up pipe %d at %d\n",
-                       pipe->pipe_nr, (int)(q->F >> MY_M)));
-               pipe->sched_time = curr_time ;
-               ready_event_wfq(pipe);
-           }
-       }
-    }
+               /*
+                * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
+                * set S to the virtual time V for the controlling pipe, and update
+                * the sum of weights for the pipe; otherwise, remove flow from
+                * idle_heap and set S to max(F,V).
+                * Second, compute finish time F = S + len/weight.
+                * Third, if pipe was idle, update V=max(S, V).
+                * Fourth, count one more backlogged flow.
+                */
+               if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
+                       q->S = pipe->V;
+                       pipe->sum += fs->weight; /* add weight of new queue */
+               } else {
+                       heap_extract(&(pipe->idle_heap), q);
+                       q->S = MAX64(q->F, pipe->V );
+               }
+               q->F = q->S + (len << MY_M) / (u_int64_t) fs->weight;
+
+               if (pipe->not_eligible_heap.elements == 0 &&
+                   pipe->scheduler_heap.elements == 0) {
+                       pipe->V = MAX64( q->S, pipe->V );
+               }
+               fs->backlogged++;
+               /*
+                * Look at eligibility. A flow is not eligibile if S>V (when
+                * this happens, it means that there is some other flow already
+                * scheduled for the same pipe, so the scheduler_heap cannot be
+                * empty). If the flow is not eligible we just store it in the
+                * not_eligible_heap. Otherwise, we store in the scheduler_heap
+                * and possibly invoke ready_event_wfq() right now if there is
+                * leftover credit.
+                * Note that for all flows in scheduler_heap (SCH), S_i <= V,
+                * and for all flows in not_eligible_heap (NEH), S_i > V .
+                * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
+                * we only need to look into NEH.
+                */
+               if (DN_KEY_GT(q->S, pipe->V)) { /* not eligible */
+                       if (pipe->scheduler_heap.elements == 0) {
+                               printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
+                       }
+                       heap_insert(&(pipe->not_eligible_heap), q->S, q);
+               } else {
+                       heap_insert(&(pipe->scheduler_heap), q->F, q);
+                       if (pipe->numbytes >= 0) { /* pipe is idle */
+                               if (pipe->scheduler_heap.elements != 1) {
+                                       printf("dummynet: OUCH! pipe should have been idle!\n");
+                               }
+                               DPRINTF(("dummynet: waking up pipe %d at %d\n",
+                                   pipe->pipe_nr, (int)(q->F >> MY_M)));
+                               pipe->sched_time = curr_time;
+                               ready_event_wfq(pipe, &head, &tail);
+                       }
+               }
+       }
 done:
+       /* start the timer and set global if not already set */
+       if (!timer_enabled) {
+               ts.tv_sec = 0;
+               ts.tv_nsec = 1 * 1000000;       // 1ms
+               timer_enabled = 1;
+               bsd_timeout(dummynet, NULL, &ts);
+       }
+
        lck_mtx_unlock(dn_mutex);
-    return 0;
+
+       if (head != NULL) {
+               dummynet_send(head);
+       }
+
+       return 0;
 
 dropit:
-    if (q)
-       q->drops++ ;
+       if (q) {
+               q->drops++;
+       }
        lck_mtx_unlock(dn_mutex);
-    m_freem(m);
-    return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
+       m_freem(m);
+       return (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS;
 }
 
 /*
- * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
+ * Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
  * Doing this would probably save us the initial bzero of dn_pkt
  */
-#define        DN_FREE_PKT(_m) do {                            \
+#define DN_FREE_PKT(_m) do {                                    \
        struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
-       if (tag) {                                      \
-               struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1);    \
-               if (n->ro.ro_rt)                                \
-                       rtfree(n->ro.ro_rt);    \
-       }                                                                       \
-       m_tag_delete(_m, tag);                  \
-       m_freem(_m);                                    \
+       if (tag) {                                              \
+               struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1);    \
+               ROUTE_RELEASE(&n->dn_ro);                       \
+       }                                                       \
+       m_tag_delete(_m, tag);                                  \
+       m_freem(_m);                                            \
 } while (0)
 
 /*
@@ -1322,36 +1794,39 @@ dropit:
 static void
 purge_flow_set(struct dn_flow_set *fs, int all)
 {
-    struct dn_flow_queue *q, *qn ;
-    int i ;
+       struct dn_flow_queue *q, *qn;
+       int i;
 
-       lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+       LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
 
-    for (i = 0 ; i <= fs->rq_size ; i++ ) {
-       for (q = fs->rq[i] ; q ; q = qn ) {
-           struct mbuf *m, *mnext;
+       for (i = 0; i <= fs->rq_size; i++) {
+               for (q = fs->rq[i]; q; q = qn) {
+                       struct mbuf *m, *mnext;
 
-           mnext = q->head;
-           while ((m = mnext) != NULL) {
-               mnext = m->m_nextpkt;
-               DN_FREE_PKT(m);
-           }
-           qn = q->next ;
-           FREE(q, M_DUMMYNET);
-       }
-       fs->rq[i] = NULL ;
-    }
-    fs->rq_elements = 0 ;
-    if (all) {
-       /* RED - free lookup table */
-       if (fs->w_q_lookup)
-           FREE(fs->w_q_lookup, M_DUMMYNET);
-       if (fs->rq)
-           FREE(fs->rq, M_DUMMYNET);
-       /* if this fs is not part of a pipe, free it */
-       if (fs->pipe && fs != &(fs->pipe->fs) )
-           FREE(fs, M_DUMMYNET);
-    }
+                       mnext = q->head;
+                       while ((m = mnext) != NULL) {
+                               mnext = m->m_nextpkt;
+                               DN_FREE_PKT(m);
+                       }
+                       qn = q->next;
+                       FREE(q, M_DUMMYNET);
+               }
+               fs->rq[i] = NULL;
+       }
+       fs->rq_elements = 0;
+       if (all) {
+               /* RED - free lookup table */
+               if (fs->w_q_lookup) {
+                       FREE(fs->w_q_lookup, M_DUMMYNET);
+               }
+               if (fs->rq) {
+                       FREE(fs->rq, M_DUMMYNET);
+               }
+               /* if this fs is not part of a pipe, free it */
+               if (fs->pipe && fs != &(fs->pipe->fs)) {
+                       FREE(fs, M_DUMMYNET);
+               }
+       }
 }
 
 /*
@@ -1362,111 +1837,58 @@ purge_flow_set(struct dn_flow_set *fs, int all)
 static void
 purge_pipe(struct dn_pipe *pipe)
 {
-    struct mbuf *m, *mnext;
+       struct mbuf *m, *mnext;
 
-    purge_flow_set( &(pipe->fs), 1 );
+       purge_flow_set( &(pipe->fs), 1 );
 
-    mnext = pipe->head;
-    while ((m = mnext) != NULL) {
-       mnext = m->m_nextpkt;
-       DN_FREE_PKT(m);
-    }
+       mnext = pipe->head;
+       while ((m = mnext) != NULL) {
+               mnext = m->m_nextpkt;
+               DN_FREE_PKT(m);
+       }
 
-    heap_free( &(pipe->scheduler_heap) );
-    heap_free( &(pipe->not_eligible_heap) );
-    heap_free( &(pipe->idle_heap) );
+       heap_free( &(pipe->scheduler_heap));
+       heap_free( &(pipe->not_eligible_heap));
+       heap_free( &(pipe->idle_heap));
 }
 
 /*
- * Delete all pipes and heaps returning memory. Must also
- * remove references from all ipfw rules to all pipes.
+ * Delete all pipes and heaps returning memory.
  */
 static void
-dummynet_flush()
+dummynet_flush(void)
 {
-    struct dn_pipe *curr_p, *p ;
-    struct dn_flow_set *fs, *curr_fs;
+       struct dn_pipe *pipe, *pipe1;
+       struct dn_flow_set *fs, *fs1;
+       int i;
 
        lck_mtx_lock(dn_mutex);
 
-    /* remove all references to pipes ...*/
-    flush_pipe_ptrs(NULL);
-    /* prevent future matches... */
-    p = all_pipes ;
-    all_pipes = NULL ;
-    fs = all_flow_sets ;
-    all_flow_sets = NULL ;
-    /* and free heaps so we don't have unwanted events */
-    heap_free(&ready_heap);
-    heap_free(&wfq_ready_heap);
-    heap_free(&extract_heap);
-
-    /*
-     * Now purge all queued pkts and delete all pipes
-     */
-    /* scan and purge all flow_sets. */
-    for ( ; fs ; ) {
-       curr_fs = fs ;
-       fs = fs->next ;
-       purge_flow_set(curr_fs, 1);
-    }
-    for ( ; p ; ) {
-       purge_pipe(p);
-       curr_p = p ;
-       p = p->next ;   
-       FREE(curr_p, M_DUMMYNET);
-    }
-       lck_mtx_unlock(dn_mutex);
-}
 
+       /* Free heaps so we don't have unwanted events. */
+       heap_free(&ready_heap);
+       heap_free(&wfq_ready_heap);
+       heap_free(&extract_heap);
 
-extern struct ip_fw *ip_fw_default_rule ;
-static void
-dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
-{
-    int i ;
-    struct dn_flow_queue *q ;
-    struct mbuf *m ;
-
-    for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
-       for (q = fs->rq[i] ; q ; q = q->next )
-           for (m = q->head ; m ; m = m->m_nextpkt ) {
-               struct dn_pkt_tag *pkt = dn_tag_get(m) ;
-               if (pkt->rule == r)
-                   pkt->rule = ip_fw_default_rule ;
-           }
-}
-/*
- * when a firewall rule is deleted, scan all queues and remove the flow-id
- * from packets matching this rule.
- */
-void
-dn_rule_delete(void *r)
-{
-    struct dn_pipe *p ;
-    struct dn_flow_set *fs ;
-    struct dn_pkt_tag *pkt ;
-    struct mbuf *m ;
-
-       lck_mtx_lock(dn_mutex);
-
-    /*
-     * If the rule references a queue (dn_flow_set), then scan
-     * the flow set, otherwise scan pipes. Should do either, but doing
-     * both does not harm.
-     */
-    for ( fs = all_flow_sets ; fs ; fs = fs->next )
-       dn_rule_delete_fs(fs, r);
-    for ( p = all_pipes ; p ; p = p->next ) {
-       fs = &(p->fs) ;
-       dn_rule_delete_fs(fs, r);
-       for (m = p->head ; m ; m = m->m_nextpkt ) {
-           pkt = dn_tag_get(m) ;
-           if (pkt->rule == r)
-               pkt->rule = ip_fw_default_rule ;
-       }
-    }
-    lck_mtx_unlock(dn_mutex);
+       /*
+        * Now purge all queued pkts and delete all pipes.
+        *
+        * XXXGL: can we merge the for(;;) cycles into one or not?
+        */
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
+                       SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
+                       purge_flow_set(fs, 1);
+               }
+       }
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
+                       SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
+                       purge_pipe(pipe);
+                       FREE(pipe, M_DUMMYNET);
+               }
+       }
+       lck_mtx_unlock(dn_mutex);
 }
 
 /*
@@ -1475,226 +1897,241 @@ dn_rule_delete(void *r)
 static int
 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
 {
-    int i;
-
-    x->w_q = p->w_q;
-    x->min_th = SCALE(p->min_th);
-    x->max_th = SCALE(p->max_th);
-    x->max_p = p->max_p;
-
-    x->c_1 = p->max_p / (p->max_th - p->min_th);
-    x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
-    if (x->flags_fs & DN_IS_GENTLE_RED) {
-       x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
-       x->c_4 = (SCALE(1) - 2 * p->max_p);
-    }
-
-    /* if the lookup table already exist, free and create it again */
-    if (x->w_q_lookup) {
-       FREE(x->w_q_lookup, M_DUMMYNET);
-       x->w_q_lookup = NULL ;
-    }
-    if (red_lookup_depth == 0) {
-       printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
-       FREE(x, M_DUMMYNET);
-       return EINVAL;
-    }
-    x->lookup_depth = red_lookup_depth;
-    x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
+       int i;
+
+       x->w_q = p->w_q;
+       x->min_th = SCALE(p->min_th);
+       x->max_th = SCALE(p->max_th);
+       x->max_p = p->max_p;
+
+       x->c_1 = p->max_p / (p->max_th - p->min_th);
+       x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
+       if (x->flags_fs & DN_IS_GENTLE_RED) {
+               x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
+               x->c_4 = (SCALE(1) - 2 * p->max_p);
+       }
+
+       /* if the lookup table already exist, free and create it again */
+       if (x->w_q_lookup) {
+               FREE(x->w_q_lookup, M_DUMMYNET);
+               x->w_q_lookup = NULL;
+       }
+       if (red_lookup_depth == 0) {
+               printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
+               FREE(x, M_DUMMYNET);
+               return EINVAL;
+       }
+       x->lookup_depth = red_lookup_depth;
+       x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
            M_DUMMYNET, M_DONTWAIT);
-    if (x->w_q_lookup == NULL) {
-       printf("dummynet: sorry, cannot allocate red lookup table\n");
-       FREE(x, M_DUMMYNET);
-       return ENOSPC;
-    }
-
-    /* fill the lookup table with (1 - w_q)^x */
-    x->lookup_step = p->lookup_step ;
-    x->lookup_weight = p->lookup_weight ;
-    x->w_q_lookup[0] = SCALE(1) - x->w_q;
-    for (i = 1; i < x->lookup_depth; i++)
-       x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
-    if (red_avg_pkt_size < 1)
-       red_avg_pkt_size = 512 ;
-    x->avg_pkt_size = red_avg_pkt_size ;
-    if (red_max_pkt_size < 1)
-       red_max_pkt_size = 1500 ;
-    x->max_pkt_size = red_max_pkt_size ;
-    return 0 ;
+       if (x->w_q_lookup == NULL) {
+               printf("dummynet: sorry, cannot allocate red lookup table\n");
+               FREE(x, M_DUMMYNET);
+               return ENOSPC;
+       }
+
+       /* fill the lookup table with (1 - w_q)^x */
+       x->lookup_step = p->lookup_step;
+       x->lookup_weight = p->lookup_weight;
+       x->w_q_lookup[0] = SCALE(1) - x->w_q;
+       for (i = 1; i < x->lookup_depth; i++) {
+               x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
+       }
+       if (red_avg_pkt_size < 1) {
+               red_avg_pkt_size = 512;
+       }
+       x->avg_pkt_size = red_avg_pkt_size;
+       if (red_max_pkt_size < 1) {
+               red_max_pkt_size = 1500;
+       }
+       x->max_pkt_size = red_max_pkt_size;
+       return 0;
 }
 
 static int
 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
 {
-    if (x->flags_fs & DN_HAVE_FLOW_MASK) {     /* allocate some slots */
-       int l = pfs->rq_size;
-
-       if (l == 0)
-           l = dn_hash_size;
-       if (l < 4)
-           l = 4;
-       else if (l > DN_MAX_HASH_SIZE)
-           l = DN_MAX_HASH_SIZE;
-       x->rq_size = l;
-    } else                  /* one is enough for null mask */
-       x->rq_size = 1;
-    x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
+       if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
+               int l = pfs->rq_size;
+
+               if (l == 0) {
+                       l = dn_hash_size;
+               }
+               if (l < 4) {
+                       l = 4;
+               } else if (l > DN_MAX_HASH_SIZE) {
+                       l = DN_MAX_HASH_SIZE;
+               }
+               x->rq_size = l;
+       } else {            /* one is enough for null mask */
+               x->rq_size = 1;
+       }
+       x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
            M_DUMMYNET, M_DONTWAIT | M_ZERO);
-    if (x->rq == NULL) {
-       printf("dummynet: sorry, cannot allocate queue\n");
-       return ENOSPC;
-    }
-    x->rq_elements = 0;
-    return 0 ;
+       if (x->rq == NULL) {
+               printf("dummynet: sorry, cannot allocate queue\n");
+               return ENOSPC;
+       }
+       x->rq_elements = 0;
+       return 0;
 }
 
 static void
 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
 {
-    x->flags_fs = src->flags_fs;
-    x->qsize = src->qsize;
-    x->plr = src->plr;
-    x->flow_mask = src->flow_mask;
-    if (x->flags_fs & DN_QSIZE_IS_BYTES) {
-       if (x->qsize > 1024*1024)
-           x->qsize = 1024*1024 ;
-    } else {
-       if (x->qsize == 0)
-           x->qsize = 50 ;
-       if (x->qsize > 100)
-           x->qsize = 50 ;
-    }
-    /* configuring RED */
-    if ( x->flags_fs & DN_IS_RED )
-       config_red(src, x) ;    /* XXX should check errors */
+       x->flags_fs = src->flags_fs;
+       x->qsize = src->qsize;
+       x->plr = src->plr;
+       x->flow_mask = src->flow_mask;
+       if (x->flags_fs & DN_QSIZE_IS_BYTES) {
+               if (x->qsize > 1024 * 1024) {
+                       x->qsize = 1024 * 1024;
+               }
+       } else {
+               if (x->qsize == 0) {
+                       x->qsize = 50;
+               }
+               if (x->qsize > 100) {
+                       x->qsize = 50;
+               }
+       }
+       /* configuring RED */
+       if (x->flags_fs & DN_IS_RED) {
+               config_red(src, x); /* XXX should check errors */
+       }
 }
 
 /*
  * setup pipe or queue parameters.
  */
-
 static int
 config_pipe(struct dn_pipe *p)
 {
-    int i, r;
-    struct dn_flow_set *pfs = &(p->fs);
-    struct dn_flow_queue *q;
-
-    /*
-     * The config program passes parameters as follows:
-     * bw = bits/second (0 means no limits),
-     * delay = ms, must be translated into ticks.
-     * qsize = slots/bytes
-     */
-    p->delay = ( p->delay * hz ) / 1000 ;
-    /* We need either a pipe number or a flow_set number */
-    if (p->pipe_nr == 0 && pfs->fs_nr == 0)
-       return EINVAL ;
-    if (p->pipe_nr != 0 && pfs->fs_nr != 0)
-       return EINVAL ;
-    if (p->pipe_nr != 0) { /* this is a pipe */
-       struct dn_pipe *x, *a, *b;
+       int i, r;
+       struct dn_flow_set *pfs = &(p->fs);
+       struct dn_flow_queue *q;
 
-       lck_mtx_lock(dn_mutex);
-/* locate pipe */
-       for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
-                a = b , b = b->next) ;
-
-       if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
-           x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
-           if (x == NULL) {
-           lck_mtx_unlock(dn_mutex);
-               printf("dummynet: no memory for new pipe\n");
-               return ENOSPC;
-           }
-           x->pipe_nr = p->pipe_nr;
-           x->fs.pipe = x ;
-           /* idle_heap is the only one from which we extract from the middle.
-            */
-           x->idle_heap.size = x->idle_heap.elements = 0 ;
-           x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
-       } else {
-           x = b;
-           /* Flush accumulated credit for all queues */
-           for (i = 0; i <= x->fs.rq_size; i++)
-               for (q = x->fs.rq[i]; q; q = q->next)
-                   q->numbytes = 0;
+       /*
+        * The config program passes parameters as follows:
+        * bw = bits/second (0 means no limits),
+        * delay = ms, must be translated into ticks.
+        * qsize = slots/bytes
+        */
+       p->delay = (p->delay * (hz * 10)) / 1000;
+       /* We need either a pipe number or a flow_set number */
+       if (p->pipe_nr == 0 && pfs->fs_nr == 0) {
+               return EINVAL;
+       }
+       if (p->pipe_nr != 0 && pfs->fs_nr != 0) {
+               return EINVAL;
        }
+       if (p->pipe_nr != 0) { /* this is a pipe */
+               struct dn_pipe *x, *b;
+               struct dummynet_event dn_event;
+               lck_mtx_lock(dn_mutex);
 
-       x->bandwidth = p->bandwidth ;
-       x->numbytes = 0; /* just in case... */
-       bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
-       x->ifp = NULL ; /* reset interface ptr */
-       x->delay = p->delay ;
-       set_fs_parms(&(x->fs), pfs);
+               /* locate pipe */
+               b = locate_pipe(p->pipe_nr);
 
+               if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
+                       x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO);
+                       if (x == NULL) {
+                               lck_mtx_unlock(dn_mutex);
+                               printf("dummynet: no memory for new pipe\n");
+                               return ENOSPC;
+                       }
+                       x->pipe_nr = p->pipe_nr;
+                       x->fs.pipe = x;
+                       /* idle_heap is the only one from which we extract from the middle.
+                        */
+                       x->idle_heap.size = x->idle_heap.elements = 0;
+                       x->idle_heap.offset = offsetof(struct dn_flow_queue, heap_pos);
+               } else {
+                       x = b;
+                       /* Flush accumulated credit for all queues */
+                       for (i = 0; i <= x->fs.rq_size; i++) {
+                               for (q = x->fs.rq[i]; q; q = q->next) {
+                                       q->numbytes = 0;
+                               }
+                       }
+               }
 
-       if ( x->fs.rq == NULL ) { /* a new pipe */
-           r = alloc_hash(&(x->fs), pfs) ;
-           if (r) {
-               lck_mtx_unlock(dn_mutex);
-               FREE(x, M_DUMMYNET);
-               return r ;
-           }
-           x->next = b ;
-           if (a == NULL)
-               all_pipes = x ;
-           else
-               a->next = x ;
-       }
-       lck_mtx_unlock(dn_mutex);
-    } else { /* config queue */
-       struct dn_flow_set *x, *a, *b ;
+               x->bandwidth = p->bandwidth;
+               x->numbytes = 0; /* just in case... */
+               bcopy(p->if_name, x->if_name, sizeof(p->if_name));
+               x->ifp = NULL; /* reset interface ptr */
+               x->delay = p->delay;
+               set_fs_parms(&(x->fs), pfs);
 
-       lck_mtx_lock(dn_mutex);
-       /* locate flow_set */
-       for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
-                a = b , b = b->next) ;
-
-       if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new  */
-           if (pfs->parent_nr == 0) {  /* need link to a pipe */
-               lck_mtx_unlock(dn_mutex);
-                       return EINVAL ;
-               }
-           x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
-           if (x == NULL) {
-               lck_mtx_unlock(dn_mutex);
-                       printf("dummynet: no memory for new flow_set\n");
-                       return ENOSPC;
-           }
-           x->fs_nr = pfs->fs_nr;
-           x->parent_nr = pfs->parent_nr;
-           x->weight = pfs->weight ;
-           if (x->weight == 0)
-               x->weight = 1 ;
-           else if (x->weight > 100)
-               x->weight = 100 ;
-       } else {
-           /* Change parent pipe not allowed; must delete and recreate */
-           if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
-               lck_mtx_unlock(dn_mutex);
-                       return EINVAL ;
+
+               if (x->fs.rq == NULL) { /* a new pipe */
+                       r = alloc_hash(&(x->fs), pfs);
+                       if (r) {
+                               lck_mtx_unlock(dn_mutex);
+                               FREE(x, M_DUMMYNET);
+                               return r;
+                       }
+                       SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
+                           x, next);
                }
-           x = b;
-       }
-       set_fs_parms(x, pfs);
+               lck_mtx_unlock(dn_mutex);
 
-       if ( x->rq == NULL ) { /* a new flow_set */
-           r = alloc_hash(x, pfs) ;
-           if (r) {
+               bzero(&dn_event, sizeof(dn_event));
+               dn_event.dn_event_code = DUMMYNET_PIPE_CONFIG;
+               dn_event.dn_event_pipe_config.bandwidth = p->bandwidth;
+               dn_event.dn_event_pipe_config.delay = p->delay;
+               dn_event.dn_event_pipe_config.plr = pfs->plr;
+
+               dummynet_event_enqueue_nwk_wq_entry(&dn_event);
+       } else { /* config queue */
+               struct dn_flow_set *x, *b;
+
+               lck_mtx_lock(dn_mutex);
+               /* locate flow_set */
+               b = locate_flowset(pfs->fs_nr);
+
+               if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new  */
+                       if (pfs->parent_nr == 0) { /* need link to a pipe */
+                               lck_mtx_unlock(dn_mutex);
+                               return EINVAL;
+                       }
+                       x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
+                       if (x == NULL) {
+                               lck_mtx_unlock(dn_mutex);
+                               printf("dummynet: no memory for new flow_set\n");
+                               return ENOSPC;
+                       }
+                       x->fs_nr = pfs->fs_nr;
+                       x->parent_nr = pfs->parent_nr;
+                       x->weight = pfs->weight;
+                       if (x->weight == 0) {
+                               x->weight = 1;
+                       } else if (x->weight > 100) {
+                               x->weight = 100;
+                       }
+               } else {
+                       /* Change parent pipe not allowed; must delete and recreate */
+                       if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
+                               lck_mtx_unlock(dn_mutex);
+                               return EINVAL;
+                       }
+                       x = b;
+               }
+               set_fs_parms(x, pfs);
+
+               if (x->rq == NULL) { /* a new flow_set */
+                       r = alloc_hash(x, pfs);
+                       if (r) {
+                               lck_mtx_unlock(dn_mutex);
+                               FREE(x, M_DUMMYNET);
+                               return r;
+                       }
+                       SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
+                           x, next);
+               }
                lck_mtx_unlock(dn_mutex);
-               FREE(x, M_DUMMYNET);
-               return r ;
-           }
-           x->next = b;
-           if (a == NULL)
-               all_flow_sets = x;
-           else
-               a->next = x;
        }
-       lck_mtx_unlock(dn_mutex);
-    }
-    return 0 ;
+       return 0;
 }
 
 /*
@@ -1704,16 +2141,19 @@ config_pipe(struct dn_pipe *p)
 static void
 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
 {
-    int i = 0, found = 0 ;
-    for (; i < h->elements ;)
-       if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
-           h->elements-- ;
-           h->p[i] = h->p[h->elements] ;
-           found++ ;
-       } else
-           i++ ;
-    if (found)
-       heapify(h);
+       int i = 0, found = 0;
+       for (; i < h->elements;) {
+               if (((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
+                       h->elements--;
+                       h->p[i] = h->p[h->elements];
+                       found++;
+               } else {
+                       i++;
+               }
+       }
+       if (found) {
+               heapify(h);
+       }
 }
 
 /*
@@ -1722,48 +2162,54 @@ fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
 static void
 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
 {
-    if (h->elements > 0) {
-       int i = 0 ;
-       for (i=0; i < h->elements ; i++ ) {
-           if (h->p[i].object == p) { /* found it */
-               h->elements-- ;
-               h->p[i] = h->p[h->elements] ;
-               heapify(h);
-               break ;
-           }
+       if (h->elements > 0) {
+               int i = 0;
+               for (i = 0; i < h->elements; i++) {
+                       if (h->p[i].object == p) { /* found it */
+                               h->elements--;
+                               h->p[i] = h->p[h->elements];
+                               heapify(h);
+                               break;
+                       }
+               }
        }
-    }
 }
 
 /*
  * drain all queues. Called in case of severe mbuf shortage.
  */
 void
-dummynet_drain()
+dummynet_drain(void)
 {
-    struct dn_flow_set *fs;
-    struct dn_pipe *p;
-    struct mbuf *m, *mnext;
+       struct dn_flow_set *fs;
+       struct dn_pipe *p;
+       struct mbuf *m, *mnext;
+       int i;
 
-       lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+       LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
 
-    heap_free(&ready_heap);
-    heap_free(&wfq_ready_heap);
-    heap_free(&extract_heap);
-    /* remove all references to this pipe from flow_sets */
-    for (fs = all_flow_sets; fs; fs= fs->next )
-       purge_flow_set(fs, 0);
+       heap_free(&ready_heap);
+       heap_free(&wfq_ready_heap);
+       heap_free(&extract_heap);
+       /* remove all references to this pipe from flow_sets */
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_FOREACH(fs, &flowsethash[i], next) {
+                       purge_flow_set(fs, 0);
+               }
+       }
 
-    for (p = all_pipes; p; p= p->next ) {
-       purge_flow_set(&(p->fs), 0);
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_FOREACH(p, &pipehash[i], next) {
+                       purge_flow_set(&(p->fs), 0);
 
-       mnext = p->head;
-       while ((m = mnext) != NULL) {
-           mnext = m->m_nextpkt;
-           DN_FREE_PKT(m);
+                       mnext = p->head;
+                       while ((m = mnext) != NULL) {
+                               mnext = m->m_nextpkt;
+                               DN_FREE_PKT(m);
+                       }
+                       p->head = p->tail = NULL;
+               }
        }
-       p->head = p->tail = NULL ;
-    }
 }
 
 /*
@@ -1772,204 +2218,268 @@ dummynet_drain()
 static int
 delete_pipe(struct dn_pipe *p)
 {
-    if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
-       return EINVAL ;
-    if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
-       return EINVAL ;
-    if (p->pipe_nr != 0) { /* this is an old-style pipe */
-       struct dn_pipe *a, *b;
-       struct dn_flow_set *fs;
-
-       lck_mtx_lock(dn_mutex);
-       /* locate pipe */
-       for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
-                a = b , b = b->next) ;
-       if (b == NULL || (b->pipe_nr != p->pipe_nr) ) {
-               lck_mtx_unlock(dn_mutex);
-           return EINVAL ; /* not found */
+       if (p->pipe_nr == 0 && p->fs.fs_nr == 0) {
+               return EINVAL;
        }
+       if (p->pipe_nr != 0 && p->fs.fs_nr != 0) {
+               return EINVAL;
+       }
+       if (p->pipe_nr != 0) { /* this is an old-style pipe */
+               struct dn_pipe *b;
+               struct dn_flow_set *fs;
+               int i;
 
-       /* unlink from list of pipes */
-       if (a == NULL)
-           all_pipes = b->next ;
-       else
-           a->next = b->next ;
-       /* remove references to this pipe from the ip_fw rules. */
-       flush_pipe_ptrs(&(b->fs));
+               lck_mtx_lock(dn_mutex);
+               /* locate pipe */
+               b = locate_pipe(p->pipe_nr);
+               if (b == NULL) {
+                       lck_mtx_unlock(dn_mutex);
+                       return EINVAL; /* not found */
+               }
 
-       /* remove all references to this pipe from flow_sets */
-       for (fs = all_flow_sets; fs; fs= fs->next )
-           if (fs->pipe == b) {
-               printf("dummynet: ++ ref to pipe %d from fs %d\n",
-                       p->pipe_nr, fs->fs_nr);
-               fs->pipe = NULL ;
-               purge_flow_set(fs, 0);
-           }
-       fs_remove_from_heap(&ready_heap, &(b->fs));
-       purge_pipe(b);  /* remove all data associated to this pipe */
-       /* remove reference to here from extract_heap and wfq_ready_heap */
-       pipe_remove_from_heap(&extract_heap, b);
-       pipe_remove_from_heap(&wfq_ready_heap, b);
-       lck_mtx_unlock(dn_mutex);
-       
-       FREE(b, M_DUMMYNET);
-    } else { /* this is a WF2Q queue (dn_flow_set) */
-       struct dn_flow_set *a, *b;
+               /* Unlink from list of pipes. */
+               SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
 
-       lck_mtx_lock(dn_mutex);
-       /* locate set */
-       for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
-                a = b , b = b->next) ;
-       if (b == NULL || (b->fs_nr != p->fs.fs_nr) ) {
+
+               /* Remove all references to this pipe from flow_sets. */
+               for (i = 0; i < HASHSIZE; i++) {
+                       SLIST_FOREACH(fs, &flowsethash[i], next) {
+                               if (fs->pipe == b) {
+                                       printf("dummynet: ++ ref to pipe %d from fs %d\n",
+                                           p->pipe_nr, fs->fs_nr);
+                                       fs->pipe = NULL;
+                                       purge_flow_set(fs, 0);
+                               }
+                       }
+               }
+               fs_remove_from_heap(&ready_heap, &(b->fs));
+
+               purge_pipe(b); /* remove all data associated to this pipe */
+               /* remove reference to here from extract_heap and wfq_ready_heap */
+               pipe_remove_from_heap(&extract_heap, b);
+               pipe_remove_from_heap(&wfq_ready_heap, b);
                lck_mtx_unlock(dn_mutex);
-           return EINVAL ; /* not found */
-       }
-
-       if (a == NULL)
-           all_flow_sets = b->next ;
-       else
-           a->next = b->next ;
-       /* remove references to this flow_set from the ip_fw rules. */
-       flush_pipe_ptrs(b);
-
-       if (b->pipe != NULL) {
-           /* Update total weight on parent pipe and cleanup parent heaps */
-           b->pipe->sum -= b->weight * b->backlogged ;
-           fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
-           fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
-#if 1  /* XXX should i remove from idle_heap as well ? */
-           fs_remove_from_heap(&(b->pipe->idle_heap), b);
+
+               FREE(b, M_DUMMYNET);
+       } else { /* this is a WF2Q queue (dn_flow_set) */
+               struct dn_flow_set *b;
+
+               lck_mtx_lock(dn_mutex);
+               /* locate set */
+               b = locate_flowset(p->fs.fs_nr);
+               if (b == NULL) {
+                       lck_mtx_unlock(dn_mutex);
+                       return EINVAL; /* not found */
+               }
+
+
+               /* Unlink from list of flowsets. */
+               SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
+
+               if (b->pipe != NULL) {
+                       /* Update total weight on parent pipe and cleanup parent heaps */
+                       b->pipe->sum -= b->weight * b->backlogged;
+                       fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
+                       fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
+#if 1   /* XXX should i remove from idle_heap as well ? */
+                       fs_remove_from_heap(&(b->pipe->idle_heap), b);
 #endif
+               }
+               purge_flow_set(b, 1);
+               lck_mtx_unlock(dn_mutex);
        }
-       purge_flow_set(b, 1);
-       lck_mtx_unlock(dn_mutex);
-    }
-    return 0 ;
+       return 0;
 }
 
 /*
  * helper function used to copy data from kernel in DUMMYNET_GET
  */
-static char *
-dn_copy_set(struct dn_flow_set *set, char *bp)
+static
+char*
+dn_copy_set_32(struct dn_flow_set *set, char *bp)
 {
-    int i, copied = 0 ;
-    struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
-
-       lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
-
-    for (i = 0 ; i <= set->rq_size ; i++)
-       for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
-           if (q->hash_slot != i)
-               printf("dummynet: ++ at %d: wrong slot (have %d, "
-                   "should be %d)\n", copied, q->hash_slot, i);
-           if (q->fs != set)
-               printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
-                       i, q->fs, set);
-           copied++ ;
-           bcopy(q, qp, sizeof( *q ) );
-           /* cleanup pointers */
-           qp->next = NULL ;
-           qp->head = qp->tail = NULL ;
-           qp->fs = NULL ;
-       }
-    if (copied != set->rq_elements)
-       printf("dummynet: ++ wrong count, have %d should be %d\n",
-           copied, set->rq_elements);
-    return (char *)qp ;
+       int i, copied = 0;
+       struct dn_flow_queue *q;
+       struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
+
+       LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
+       for (i = 0; i <= set->rq_size; i++) {
+               for (q = set->rq[i]; q; q = q->next, qp++) {
+                       if (q->hash_slot != i) {
+                               printf("dummynet: ++ at %d: wrong slot (have %d, "
+                                   "should be %d)\n", copied, q->hash_slot, i);
+                       }
+                       if (q->fs != set) {
+                               printf("dummynet: ++ at %d: wrong fs ptr "
+                                   "(have 0x%llx, should be 0x%llx)\n", i,
+                                   (uint64_t)VM_KERNEL_ADDRPERM(q->fs),
+                                   (uint64_t)VM_KERNEL_ADDRPERM(set));
+                       }
+                       copied++;
+                       cp_queue_to_32_user( q, qp );
+                       /* cleanup pointers */
+                       qp->next = (user32_addr_t)0;
+                       qp->head = qp->tail = (user32_addr_t)0;
+                       qp->fs = (user32_addr_t)0;
+               }
+       }
+       if (copied != set->rq_elements) {
+               printf("dummynet: ++ wrong count, have %d should be %d\n",
+                   copied, set->rq_elements);
+       }
+       return (char *)qp;
+}
+
+static
+char*
+dn_copy_set_64(struct dn_flow_set *set, char *bp)
+{
+       int i, copied = 0;
+       struct dn_flow_queue *q;
+       struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
+
+       LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
+       for (i = 0; i <= set->rq_size; i++) {
+               for (q = set->rq[i]; q; q = q->next, qp++) {
+                       if (q->hash_slot != i) {
+                               printf("dummynet: ++ at %d: wrong slot (have %d, "
+                                   "should be %d)\n", copied, q->hash_slot, i);
+                       }
+                       if (q->fs != set) {
+                               printf("dummynet: ++ at %d: wrong fs ptr "
+                                   "(have 0x%llx, should be 0x%llx)\n", i,
+                                   (uint64_t)VM_KERNEL_ADDRPERM(q->fs),
+                                   (uint64_t)VM_KERNEL_ADDRPERM(set));
+                       }
+                       copied++;
+                       //bcopy(q, qp, sizeof(*q));
+                       cp_queue_to_64_user( q, qp );
+                       /* cleanup pointers */
+                       qp->next = USER_ADDR_NULL;
+                       qp->head = qp->tail = USER_ADDR_NULL;
+                       qp->fs = USER_ADDR_NULL;
+               }
+       }
+       if (copied != set->rq_elements) {
+               printf("dummynet: ++ wrong count, have %d should be %d\n",
+                   copied, set->rq_elements);
+       }
+       return (char *)qp;
 }
 
 static size_t
-dn_calc_size(void)
+dn_calc_size(int is64user)
 {
-    struct dn_flow_set *set ;
-    struct dn_pipe *p ;
-    size_t size ;
-
-       lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
-
-    /*
-     * compute size of data structures: list of pipes and flow_sets.
-     */
-    for (p = all_pipes, size = 0 ; p ; p = p->next )
-       size += sizeof( *p ) +
-           p->fs.rq_elements * sizeof(struct dn_flow_queue);
-    for (set = all_flow_sets ; set ; set = set->next )
-       size += sizeof ( *set ) +
-           set->rq_elements * sizeof(struct dn_flow_queue);
-    return size ;
+       struct dn_flow_set *set;
+       struct dn_pipe *p;
+       size_t size = 0;
+       size_t pipesize;
+       size_t queuesize;
+       size_t setsize;
+       int i;
+
+       LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
+       if (is64user) {
+               pipesize = sizeof(struct dn_pipe_64);
+               queuesize = sizeof(struct dn_flow_queue_64);
+               setsize = sizeof(struct dn_flow_set_64);
+       } else {
+               pipesize = sizeof(struct dn_pipe_32);
+               queuesize = sizeof(struct dn_flow_queue_32);
+               setsize = sizeof(struct dn_flow_set_32);
+       }
+       /*
+        * compute size of data structures: list of pipes and flow_sets.
+        */
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_FOREACH(p, &pipehash[i], next) {
+                       size += sizeof(*p) +
+                           p->fs.rq_elements * sizeof(struct dn_flow_queue);
+               }
+               SLIST_FOREACH(set, &flowsethash[i], next) {
+                       size += sizeof(*set) +
+                           set->rq_elements * sizeof(struct dn_flow_queue);
+               }
+       }
+       return size;
 }
 
 static int
 dummynet_get(struct sockopt *sopt)
 {
-    char *buf, *bp ; /* bp is the "copy-pointer" */
-    size_t size ;
-    struct dn_flow_set *set ;
-    struct dn_pipe *p ;
-    int error=0, i ;
-
-    /* XXX lock held too long */
-    lck_mtx_lock(dn_mutex);
-    /*
-     * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
-     *      cannot use this flag while holding a mutex.
-     */
-    for (i = 0; i < 10; i++) {
-               size = dn_calc_size();
+       char *buf = NULL, *bp = NULL; /* bp is the "copy-pointer" */
+       size_t size = 0;
+       struct dn_flow_set *set;
+       struct dn_pipe *p;
+       int error = 0, i;
+       int is64user = 0;
+
+       /* XXX lock held too long */
+       lck_mtx_lock(dn_mutex);
+       /*
+        * XXX: Ugly, but we need to allocate memory with M_WAITOK flag
+        * and we cannot use this flag while holding a mutex.
+        */
+       if (proc_is64bit(sopt->sopt_p)) {
+               is64user = 1;
+       }
+       for (i = 0; i < 10; i++) {
+               size = dn_calc_size(is64user);
                lck_mtx_unlock(dn_mutex);
-               buf = _MALLOC(size, M_TEMP, M_WAITOK);
+               buf = _MALLOC(size, M_TEMP, M_WAITOK | M_ZERO);
+               if (buf == NULL) {
+                       return ENOBUFS;
+               }
                lck_mtx_lock(dn_mutex);
-               if (size == dn_calc_size())
+               if (size == dn_calc_size(is64user)) {
                        break;
+               }
                FREE(buf, M_TEMP);
                buf = NULL;
-    }
-    if (buf == NULL) {
+       }
+       if (buf == NULL) {
                lck_mtx_unlock(dn_mutex);
-               return ENOBUFS ;
-    }
-    for (p = all_pipes, bp = buf ; p ; p = p->next ) {
-       struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
+               return ENOBUFS;
+       }
 
-       /*
-        * copy pipe descriptor into *bp, convert delay back to ms,
-        * then copy the flow_set descriptor(s) one at a time.
-        * After each flow_set, copy the queue descriptor it owns.
-        */
-       bcopy(p, bp, sizeof( *p ) );
-       pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
-       /*
-        * XXX the following is a hack based on ->next being the
-        * first field in dn_pipe and dn_flow_set. The correct
-        * solution would be to move the dn_flow_set to the beginning
-        * of struct dn_pipe.
-        */
-       pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
-       /* clean pointers */
-       pipe_bp->head = pipe_bp->tail = NULL ;
-       pipe_bp->fs.next = NULL ;
-       pipe_bp->fs.pipe = NULL ;
-       pipe_bp->fs.rq = NULL ;
-
-       bp += sizeof( *p ) ;
-       bp = dn_copy_set( &(p->fs), bp );
-    }
-    for (set = all_flow_sets ; set ; set = set->next ) {
-       struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
-       bcopy(set, bp, sizeof( *set ) );
-       /* XXX same hack as above */
-       fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
-       fs_bp->pipe = NULL ;
-       fs_bp->rq = NULL ;
-       bp += sizeof( *set ) ;
-       bp = dn_copy_set( set, bp );
-    }
-    lck_mtx_unlock(dn_mutex);
-
-    error = sooptcopyout(sopt, buf, size);
-    FREE(buf, M_TEMP);
-    return error ;
+       bp = buf;
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_FOREACH(p, &pipehash[i], next) {
+                       /*
+                        * copy pipe descriptor into *bp, convert delay
+                        * back to ms, then copy the flow_set descriptor(s)
+                        * one at a time. After each flow_set, copy the
+                        * queue descriptor it owns.
+                        */
+                       if (is64user) {
+                               bp = cp_pipe_to_64_user(p,
+                                   (struct dn_pipe_64 *)bp);
+                       } else {
+                               bp = cp_pipe_to_32_user(p,
+                                   (struct dn_pipe_32 *)bp);
+                       }
+               }
+       }
+       for (i = 0; i < HASHSIZE; i++) {
+               SLIST_FOREACH(set, &flowsethash[i], next) {
+                       struct dn_flow_set_64 *fs_bp =
+                           (struct dn_flow_set_64 *)bp;
+                       cp_flow_set_to_64_user(set, fs_bp);
+                       /* XXX same hack as above */
+                       fs_bp->next = CAST_DOWN(user64_addr_t,
+                           DN_IS_QUEUE);
+                       fs_bp->pipe = USER_ADDR_NULL;
+                       fs_bp->rq = USER_ADDR_NULL;
+                       bp += sizeof(struct dn_flow_set_64);
+                       bp = dn_copy_set_64( set, bp );
+               }
+       }
+       lck_mtx_unlock(dn_mutex);
+       error = sooptcopyout(sopt, buf, size);
+       FREE(buf, M_TEMP);
+       return error;
 }
 
 /*
@@ -1978,44 +2488,62 @@ dummynet_get(struct sockopt *sopt)
 static int
 ip_dn_ctl(struct sockopt *sopt)
 {
-    int error = 0 ;
-    struct dn_pipe *p, tmp_pipe;
-
-    /* Disallow sets in really-really secure mode. */
-    if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
-       return (EPERM);
-
-    switch (sopt->sopt_name) {
-    default :
-       printf("dummynet: -- unknown option %d", sopt->sopt_name);
-       return EINVAL ;
-
-    case IP_DUMMYNET_GET :
-       error = dummynet_get(sopt);
-       break ;
-
-    case IP_DUMMYNET_FLUSH :
-       dummynet_flush() ;
-       break ;
-
-    case IP_DUMMYNET_CONFIGURE :
-       p = &tmp_pipe ;
-       error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
-       if (error)
-           break ;
-       error = config_pipe(p);
-       break ;
-
-    case IP_DUMMYNET_DEL :     /* remove a pipe or queue */
-       p = &tmp_pipe ;
-       error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
-       if (error)
-           break ;
-
-       error = delete_pipe(p);
-       break ;
-    }
-    return error ;
+       int error = 0;
+       struct dn_pipe *p, tmp_pipe;
+
+       /* Disallow sets in really-really secure mode. */
+       if (sopt->sopt_dir == SOPT_SET && securelevel >= 3) {
+               return EPERM;
+       }
+
+       switch (sopt->sopt_name) {
+       default:
+               printf("dummynet: -- unknown option %d", sopt->sopt_name);
+               return EINVAL;
+
+       case IP_DUMMYNET_GET:
+               error = dummynet_get(sopt);
+               break;
+
+       case IP_DUMMYNET_FLUSH:
+               dummynet_flush();
+               break;
+
+       case IP_DUMMYNET_CONFIGURE:
+               p = &tmp_pipe;
+               if (proc_is64bit(sopt->sopt_p)) {
+                       error = cp_pipe_from_user_64( sopt, p );
+               } else {
+                       error = cp_pipe_from_user_32( sopt, p );
+               }
+
+               if (error) {
+                       break;
+               }
+               error = config_pipe(p);
+               break;
+
+       case IP_DUMMYNET_DEL:   /* remove a pipe or queue */
+               p = &tmp_pipe;
+               if (proc_is64bit(sopt->sopt_p)) {
+                       error = cp_pipe_from_user_64( sopt, p );
+               } else {
+                       error = cp_pipe_from_user_32( sopt, p );
+               }
+               if (error) {
+                       break;
+               }
+
+               error = delete_pipe(p);
+               break;
+       }
+       return error;
+}
+
+void
+dummynet_init(void)
+{
+       eventhandler_lists_ctxt_init(&dummynet_evhdlr_ctxt);
 }
 
 void
@@ -2025,26 +2553,48 @@ ip_dn_init(void)
        dn_mutex_grp_attr = lck_grp_attr_alloc_init();
        dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
        dn_mutex_attr = lck_attr_alloc_init();
-       lck_attr_setdefault(dn_mutex_attr);
+       lck_mtx_init(dn_mutex, dn_mutex_grp, dn_mutex_attr);
 
-       if ((dn_mutex = lck_mtx_alloc_init(dn_mutex_grp, dn_mutex_attr)) == NULL) {
-               printf("ip_dn_init: can't alloc dn_mutex\n");
-               return;
-       }
+       ready_heap.size = ready_heap.elements = 0;
+       ready_heap.offset = 0;
+
+       wfq_ready_heap.size = wfq_ready_heap.elements = 0;
+       wfq_ready_heap.offset = 0;
+
+       extract_heap.size = extract_heap.elements = 0;
+       extract_heap.offset = 0;
+       ip_dn_ctl_ptr = ip_dn_ctl;
+       ip_dn_io_ptr = dummynet_io;
+}
+
+struct dn_event_nwk_wq_entry {
+       struct nwk_wq_entry nwk_wqe;
+       struct dummynet_event dn_ev_arg;
+};
+
+static void
+dummynet_event_callback(void *arg)
+{
+       struct dummynet_event *p_dn_ev = (struct dummynet_event *)arg;
+
+       EVENTHANDLER_INVOKE(&dummynet_evhdlr_ctxt, dummynet_event, p_dn_ev);
+       return;
+}
+
+void
+dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event *p_dn_event)
+{
+       struct dn_event_nwk_wq_entry *p_dn_ev = NULL;
 
-    all_pipes = NULL ;
-    all_flow_sets = NULL ;
-    ready_heap.size = ready_heap.elements = 0 ;
-    ready_heap.offset = 0 ;
+       MALLOC(p_dn_ev, struct dn_event_nwk_wq_entry *,
+           sizeof(struct dn_event_nwk_wq_entry),
+           M_NWKWQ, M_WAITOK | M_ZERO);
 
-    wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
-    wfq_ready_heap.offset = 0 ;
+       p_dn_ev->nwk_wqe.func = dummynet_event_callback;
+       p_dn_ev->nwk_wqe.is_arg_managed = TRUE;
+       p_dn_ev->nwk_wqe.arg = &p_dn_ev->dn_ev_arg;
 
-    extract_heap.size = extract_heap.elements = 0 ;
-    extract_heap.offset = 0 ;
-    ip_dn_ctl_ptr = ip_dn_ctl;
-    ip_dn_io_ptr = dummynet_io;
-    ip_dn_ruledel_ptr = dn_rule_delete;
-    
-    timeout(dummynet, NULL, 1);
+       bcopy(p_dn_event, &(p_dn_ev->dn_ev_arg),
+           sizeof(struct dummynet_event));
+       nwk_wq_enqueue((struct nwk_wq_entry*)p_dn_ev);
 }