#include <mach/vm_map.h>
#include <mach/upl.h>
#include <kern/task.h>
+#include <kern/policy_internal.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <sys/sdt.h>
+#include <stdbool.h>
+
+#include <vfs/vfs_disk_conditioner.h>
+
#if 0
#undef KERNEL_DEBUG
#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
#define MAX_VECTOR_UPL_ELEMENTS 8
#define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES)
+#define CLUSTER_IO_WAITING ((buf_t)1)
+
extern upl_t vector_upl_create(vm_offset_t);
extern boolean_t vector_upl_is_valid(upl_t);
extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t);
int io_wanted; /* someone is sleeping waiting for a change in state */
};
+struct cl_direct_read_lock {
+ LIST_ENTRY(cl_direct_read_lock) chain;
+ int32_t ref_count;
+ vnode_t vp;
+ lck_rw_t rw_lock;
+};
+
+#define CL_DIRECT_READ_LOCK_BUCKETS 61
+
+static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock)
+ cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS];
+
+static lck_spin_t cl_direct_read_spin_lock;
+
static lck_grp_t *cl_mtx_grp;
static lck_attr_t *cl_mtx_attr;
static lck_grp_attr_t *cl_mtx_grp_attr;
static lck_mtx_t *cl_transaction_mtxp;
-
#define IO_UNKNOWN 0
#define IO_DIRECT 1
#define IO_CONTIG 2
static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF,
int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag);
+static void cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes, boolean_t *first_pass,
+ off_t write_off, int write_cnt, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated);
+
static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg);
static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
-static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
+static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra,
+ int (*callback)(buf_t, void *), void *callback_arg, int bflag);
-static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
+static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_ioitiated);
-static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg);
+static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *),
+ void *callback_arg, int *err, boolean_t vm_initiated);
-static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
-static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
-static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
+static int sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated);
+static int sparse_cluster_push(struct cl_writebehind *, void **cmapp, vnode_t vp, off_t EOF, int push_flag,
+ int io_flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated);
+static int sparse_cluster_add(struct cl_writebehind *, void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF,
+ int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated);
static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
#define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
#define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES
#define MAX_VECTS 16
-#define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE)
+/*
+ * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider
+ * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k),
+ * we have not historically allowed the write to bypass the UBC.
+ */
+#define MIN_DIRECT_WRITE_SIZE (16384)
#define WRITE_THROTTLE 6
#define WRITE_THROTTLE_SSD 2
#define WRITE_BEHIND 1
#define WRITE_BEHIND_SSD 1
+#if CONFIG_EMBEDDED
+#define PREFETCH 1
+#define PREFETCH_SSD 1
+uint32_t speculative_prefetch_max = (2048 * 1024); /* maximum bytes in a specluative read-ahead */
+uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead */
+#else
#define PREFETCH 3
#define PREFETCH_SSD 2
uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */
uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/
+#endif
#define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
#define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
-#define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
+#define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd) ? PREFETCH_SSD : PREFETCH)))
-int ignore_is_ssd = 0;
int speculative_reads_disabled = 0;
/*
if (cl_transaction_mtxp == NULL)
panic("cluster_init: failed to allocate cl_transaction_mtxp");
+
+ lck_spin_init(&cl_direct_read_spin_lock, cl_mtx_grp, cl_mtx_attr);
+
+ for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i)
+ LIST_INIT(&cl_direct_read_locks[i]);
}
if (wbp->cl_number) {
lck_mtx_lock(&wbp->cl_lockw);
- cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg);
+ cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg, NULL, FALSE);
lck_mtx_unlock(&wbp->cl_lockw);
}
size_t io_size;
int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
- if (bootcache_check_fn) {
- if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL))
+ if (bootcache_check_fn && vp->v_mount && vp->v_mount->mnt_devvp) {
+ if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ | VNODE_BLOCKMAP_NO_TRACK, NULL))
return(0);
if (io_size == 0)
lck_mtx_unlock(&iostate->io_mtxp);
}
+static void cluster_handle_associated_upl(struct clios *iostate, upl_t upl,
+ upl_offset_t upl_offset, upl_size_t size)
+{
+ if (!size)
+ return;
+
+ upl_t associated_upl = upl_associated_upl(upl);
+
+ if (!associated_upl)
+ return;
+
+#if 0
+ printf("1: %d %d\n", upl_offset, upl_offset + size);
+#endif
+
+ /*
+ * The associated UPL is page aligned to file offsets whereas the
+ * UPL it's attached to has different alignment requirements. The
+ * upl_offset that we have refers to @upl. The code that follows
+ * has to deal with the first and last pages in this transaction
+ * which might straddle pages in the associated UPL. To keep
+ * track of these pages, we use the mark bits: if the mark bit is
+ * set, we know another transaction has completed its part of that
+ * page and so we can unlock that page here.
+ *
+ * The following illustrates what we have to deal with:
+ *
+ * MEM u <------------ 1 PAGE ------------> e
+ * +-------------+----------------------+-----------------
+ * | |######################|#################
+ * +-------------+----------------------+-----------------
+ * FILE | <--- a ---> o <------------ 1 PAGE ------------>
+ *
+ * So here we show a write to offset @o. The data that is to be
+ * written is in a buffer that is not page aligned; it has offset
+ * @a in the page. The upl that carries the data starts in memory
+ * at @u. The associated upl starts in the file at offset @o. A
+ * transaction will always end on a page boundary (like @e above)
+ * except for the very last transaction in the group. We cannot
+ * unlock the page at @o in the associated upl until both the
+ * transaction ending at @e and the following transaction (that
+ * starts at @e) has completed.
+ */
+
+ /*
+ * We record whether or not the two UPLs are aligned as the mark
+ * bit in the first page of @upl.
+ */
+ upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
+ bool is_unaligned = upl_page_get_mark(pl, 0);
+
+ if (is_unaligned) {
+ upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl);
+
+ upl_offset_t upl_end = upl_offset + size;
+ assert(upl_end >= PAGE_SIZE);
+
+ upl_size_t assoc_upl_size = upl_get_size(associated_upl);
+
+ /*
+ * In the very first transaction in the group, upl_offset will
+ * not be page aligned, but after that it will be and in that
+ * case we want the preceding page in the associated UPL hence
+ * the minus one.
+ */
+ assert(upl_offset);
+ if (upl_offset)
+ upl_offset = trunc_page_32(upl_offset - 1);
+
+ lck_mtx_lock_spin(&iostate->io_mtxp);
+
+ // Look at the first page...
+ if (upl_offset
+ && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) {
+ /*
+ * The first page isn't marked so let another transaction
+ * completion handle it.
+ */
+ upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true);
+ upl_offset += PAGE_SIZE;
+ }
+
+ // And now the last page...
+
+ /*
+ * This needs to be > rather than >= because if it's equal, it
+ * means there's another transaction that is sharing the last
+ * page.
+ */
+ if (upl_end > assoc_upl_size)
+ upl_end = assoc_upl_size;
+ else {
+ upl_end = trunc_page_32(upl_end);
+ const int last_pg = (upl_end >> PAGE_SHIFT) - 1;
+
+ if (!upl_page_get_mark(assoc_pl, last_pg)) {
+ /*
+ * The last page isn't marked so mark the page and let another
+ * transaction completion handle it.
+ */
+ upl_page_set_mark(assoc_pl, last_pg, true);
+ upl_end -= PAGE_SIZE;
+ }
+ }
+
+ lck_mtx_unlock(&iostate->io_mtxp);
+
+#if 0
+ printf("2: %d %d\n", upl_offset, upl_end);
+#endif
+
+ if (upl_end <= upl_offset)
+ return;
+
+ size = upl_end - upl_offset;
+ } else {
+ assert(!(upl_offset & PAGE_MASK));
+ assert(!(size & PAGE_MASK));
+ }
+
+ boolean_t empty;
+
+ /*
+ * We can unlock these pages now and as this is for a
+ * direct/uncached write, we want to dump the pages too.
+ */
+ kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size,
+ UPL_ABORT_DUMP_PAGES, &empty);
+
+ assert(!kr);
+
+ if (!kr && empty) {
+ upl_set_associated_upl(upl, NULL);
+ upl_deallocate(associated_upl);
+ }
+}
static int
cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp)
* leave pages in the cache unchanged on error
*/
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
- else if (page_out && ((error != ENXIO) || vnode_isswap(vp)))
+ else if (((io_flags & B_READ) == 0) && ((error != ENXIO) || vnode_isswap(vp)))
/*
- * transient error... leave pages unchanged
+ * transient error on pageout/write path... leave pages unchanged
*/
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
else if (page_in)
struct clios *iostate;
boolean_t transaction_complete = FALSE;
- cbp_head = (buf_t)(bp->b_trans_head);
+ __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head));
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
- boolean_t need_wakeup = FALSE;
-
lck_mtx_lock_spin(cl_transaction_mtxp);
bp->b_flags |= B_TDONE;
-
- if (bp->b_flags & B_TWANTED) {
- CLR(bp->b_flags, B_TWANTED);
- need_wakeup = TRUE;
- }
+
for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
/*
* all I/O requests that are part of this transaction
lck_mtx_unlock(cl_transaction_mtxp);
- if (need_wakeup == TRUE)
- wakeup(bp);
+ return 0;
+ }
+
+ if (cbp->b_trans_next == CLUSTER_IO_WAITING) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
+ cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
+
+ lck_mtx_unlock(cl_transaction_mtxp);
+ wakeup(cbp);
return 0;
}
+
if (cbp->b_flags & B_EOT)
transaction_complete = TRUE;
}
lck_mtx_unlock(cl_transaction_mtxp);
- if (need_wakeup == TRUE)
- wakeup(bp);
-
if (transaction_complete == FALSE) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
cbp_head, 0, 0, 0, 0);
cbp = cbp_next;
}
+
+ if (ISSET(b_flags, B_COMMIT_UPL)) {
+ cluster_handle_associated_upl(iostate,
+ cbp_head->b_upl,
+ upl_offset,
+ transaction_size);
+ }
+
if (error == 0 && total_resid)
error = EIO;
if (b_flags & B_COMMIT_UPL) {
- pg_offset = upl_offset & PAGE_MASK;
+ pg_offset = upl_offset & PAGE_MASK;
commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
- if (error)
+ if (error) {
+ upl_set_iodone_error(upl, error);
+
upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp);
- else {
- upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
+ } else {
+ upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
if ((b_flags & B_PHYS) && (b_flags & B_READ))
upl_flags |= UPL_COMMIT_SET_DIRTY;
buf_t cbp;
if (async) {
- /*
- * async callback completion will not normally
- * generate a wakeup upon I/O completion...
- * by setting B_TWANTED, we will force a wakeup
- * to occur as any outstanding I/Os complete...
- * I/Os already completed will have B_TDONE already
- * set and we won't cause us to block
- * note that we're actually waiting for the bp to have
- * completed the callback function... only then
- * can we safely take back ownership of the bp
+ /*
+ * Async callback completion will not normally generate a
+ * wakeup upon I/O completion. To get woken up, we set
+ * b_trans_next (which is safe for us to modify) on the last
+ * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows
+ * to wake us up when all buffers as part of this transaction
+ * are completed. This is done under the umbrella of
+ * cl_transaction_mtxp which is also taken in cluster_iodone.
*/
+ bool done = true;
+ buf_t last = NULL;
+
lck_mtx_lock_spin(cl_transaction_mtxp);
- for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
- cbp->b_flags |= B_TWANTED;
+ for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) {
+ if (!ISSET(cbp->b_flags, B_TDONE))
+ done = false;
+ }
- lck_mtx_unlock(cl_transaction_mtxp);
- }
- for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
+ if (!done) {
+ last->b_trans_next = CLUSTER_IO_WAITING;
+
+ DTRACE_IO1(wait__start, buf_t, last);
+ do {
+ msleep(last, cl_transaction_mtxp, PSPIN | (PRIBIO+1), "cluster_wait_IO", NULL);
- if (async) {
- while (!ISSET(cbp->b_flags, B_TDONE)) {
+ /*
+ * We should only have been woken up if all the
+ * buffers are completed, but just in case...
+ */
+ done = true;
+ for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) {
+ if (!ISSET(cbp->b_flags, B_TDONE)) {
+ done = false;
+ break;
+ }
+ }
+ } while (!done);
+ DTRACE_IO1(wait__done, buf_t, last);
- lck_mtx_lock_spin(cl_transaction_mtxp);
+ last->b_trans_next = NULL;
+ }
- if (!ISSET(cbp->b_flags, B_TDONE)) {
- DTRACE_IO1(wait__start, buf_t, cbp);
- (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL);
- DTRACE_IO1(wait__done, buf_t, cbp);
- } else
- lck_mtx_unlock(cl_transaction_mtxp);
- }
- } else
- buf_biowait(cbp);
+ lck_mtx_unlock(cl_transaction_mtxp);
+ } else { // !async
+ for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
+ buf_biowait(cbp);
}
}
u_int max_cluster_size;
u_int scale;
- max_cluster_size = MAX_CLUSTER_SIZE(vp);
+ if (vp->v_mount->mnt_minsaturationbytecount) {
+ max_cluster_size = vp->v_mount->mnt_minsaturationbytecount;
+
+ scale = 1;
+ } else {
+ max_cluster_size = MAX_CLUSTER_SIZE(vp);
+ if (disk_conditioner_mount_is_ssd(vp->v_mount))
+ scale = WRITE_THROTTLE_SSD;
+ else
+ scale = WRITE_THROTTLE;
+ }
if (max_iosize > max_cluster_size)
max_cluster = max_cluster_size;
else
if (size < max_cluster)
max_cluster = size;
- if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
- scale = WRITE_THROTTLE_SSD;
- else
- scale = WRITE_THROTTLE;
-
if (flags & CL_CLOSE)
scale += MAX_CLUSTERS;
-
+
async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
}
}
io_flags |= B_PASSIVE;
if (flags & CL_ENCRYPTED)
io_flags |= B_ENCRYPTED_IO;
+
if (vp->v_flag & VSYSTEM)
io_flags |= B_META;
* read in from the file
*/
zero_offset = upl_offset + non_rounded_size;
+ } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) {
+ assert(ISSET(flags, CL_COMMIT));
+
+ // For a direct/uncached write, we need to lock pages...
+
+ upl_t cached_upl;
+
+ /*
+ * Create a UPL to lock the pages in the cache whilst the
+ * write is in progress.
+ */
+ ubc_create_upl_kernel(vp, f_offset, non_rounded_size, &cached_upl,
+ NULL, UPL_SET_LITE, VM_KERN_MEMORY_FILE);
+
+ /*
+ * Attach this UPL to the other UPL so that we can find it
+ * later.
+ */
+ upl_set_associated_upl(upl, cached_upl);
+
+ if (upl_offset & PAGE_MASK) {
+ /*
+ * The two UPLs are not aligned, so mark the first page in
+ * @upl so that cluster_handle_associated_upl can handle
+ * it accordingly.
+ */
+ upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
+ upl_page_set_mark(pl, 0, true);
+ }
}
+
while (size) {
daddr64_t blkno;
daddr64_t lblkno;
pageout_flags |= UPL_NOCOMMIT;
if (cbp_head) {
- buf_t last_cbp;
+ buf_t prev_cbp;
+ int bytes_in_last_page;
/*
* first we have to wait for the the current outstanding I/Os
* to complete... EOT hasn't been set yet on this transaction
- * so the pages won't be released just because all of the current
- * I/O linked to this transaction has completed...
+ * so the pages won't be released
*/
cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
- /*
- * we've got a transcation that
- * includes the page we're about to push out through vnode_pageout...
- * find the last bp in the list which will be the one that
- * includes the head of this page and round it's iosize down
- * to a page boundary...
- */
- for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
- last_cbp = cbp;
-
- cbp->b_bcount &= ~PAGE_MASK;
-
- if (cbp->b_bcount == 0) {
- /*
- * this buf no longer has any I/O associated with it
+ bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK;
+ for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
+ bytes_in_last_page += cbp->b_bcount;
+ bytes_in_last_page &= PAGE_MASK;
+
+ while (bytes_in_last_page) {
+ /*
+ * we've got a transcation that
+ * includes the page we're about to push out through vnode_pageout...
+ * find the bp's in the list which intersect this page and either
+ * remove them entirely from the transaction (there could be multiple bp's), or
+ * round it's iosize down to the page boundary (there can only be one)...
+ *
+ * find the last bp in the list and act on it
*/
- free_io_buf(cbp);
+ for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
+ prev_cbp = cbp;
- if (cbp == cbp_head) {
- /*
- * the buf we just freed was the only buf in
- * this transaction... so there's no I/O to do
+ if (bytes_in_last_page >= cbp->b_bcount) {
+ /*
+ * this buf no longer has any I/O associated with it
*/
- cbp_head = NULL;
+ bytes_in_last_page -= cbp->b_bcount;
+ cbp->b_bcount = 0;
+
+ free_io_buf(cbp);
+
+ if (cbp == cbp_head) {
+ assert(bytes_in_last_page == 0);
+ /*
+ * the buf we just freed was the only buf in
+ * this transaction... so there's no I/O to do
+ */
+ cbp_head = NULL;
+ cbp_tail = NULL;
+ } else {
+ /*
+ * remove the buf we just freed from
+ * the transaction list
+ */
+ prev_cbp->b_trans_next = NULL;
+ cbp_tail = prev_cbp;
+ }
} else {
- /*
- * remove the buf we just freed from
- * the transaction list
+ /*
+ * this is the last bp that has I/O
+ * intersecting the page of interest
+ * only some of the I/O is in the intersection
+ * so clip the size but keep it in the transaction list
*/
- last_cbp->b_trans_next = NULL;
- cbp_tail = last_cbp;
+ cbp->b_bcount -= bytes_in_last_page;
+ cbp_tail = cbp;
+ bytes_in_last_page = 0;
}
}
if (cbp_head) {
commit_offset = upl_offset & ~PAGE_MASK;
}
+
+ // Associated UPL is currently only used in the direct write path
+ assert(!upl_associated_upl(upl));
+
if ( (flags & CL_COMMIT) && pg_count) {
ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
if (flags & CL_PAGEOUT) {
u_int i;
- for (i = 0; i < pg_count; i++) {
- if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
- panic("BUSY bp found in cluster_io");
+ /*
+ * since blocks are in offsets of 0x1000, scale
+ * iteration to (PAGE_SIZE * pg_count) of blks.
+ */
+ for (i = 0; i < (PAGE_SIZE * pg_count)/0x1000; i++) {
+ if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
+ panic("BUSY bp found in cluster_io");
}
}
if (flags & CL_ASYNC) {
}
}
if (error) {
- int abort_size;
+ int abort_size;
io_size = 0;
-
+
if (cbp_head) {
- /*
- * first wait until all of the outstanding I/O
- * for this partial transaction has completed
- */
- cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
+ /*
+ * Wait until all of the outstanding I/O
+ * for this partial transaction has completed
+ */
+ cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
/*
* Rewind the upl offset to the beginning of the
* transaction.
*/
upl_offset = cbp_head->b_uploffset;
+ }
- for (cbp = cbp_head; cbp;) {
- buf_t cbp_next;
-
- size += cbp->b_bcount;
- io_size += cbp->b_bcount;
+ if (ISSET(flags, CL_COMMIT)) {
+ cluster_handle_associated_upl(iostate, upl, upl_offset,
+ upl_end_offset - upl_offset);
+ }
- cbp_next = cbp->b_trans_next;
- free_io_buf(cbp);
- cbp = cbp_next;
- }
+ // Free all the IO buffers in this transaction
+ for (cbp = cbp_head; cbp;) {
+ buf_t cbp_next;
+
+ size += cbp->b_bcount;
+ io_size += cbp->b_bcount;
+
+ cbp_next = cbp->b_trans_next;
+ free_io_buf(cbp);
+ cbp = cbp_next;
}
+
if (iostate) {
int need_wakeup = 0;
if (need_wakeup)
wakeup((caddr_t)&iostate->io_wanted);
}
+
if (flags & CL_COMMIT) {
int upl_flags;
- pg_offset = upl_offset & PAGE_MASK;
+ pg_offset = upl_offset & PAGE_MASK;
abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
-
+
upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
return;
}
- max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD));
+ max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), disk_conditioner_mount_is_ssd(vp->v_mount));
if (max_prefetch > speculative_prefetch_max)
max_prefetch = speculative_prefetch_max;
upl_size_t upl_size, vector_upl_size = 0;
vm_size_t upl_needed_size;
mach_msg_type_number_t pages_in_pl;
- int upl_flags;
+ upl_control_flags_t upl_flags;
kern_return_t kret;
mach_msg_type_number_t i;
int force_data_sync;
u_int32_t max_io_size;
u_int32_t max_upl_size;
u_int32_t max_vector_size;
+ u_int32_t bytes_outstanding_limit;
boolean_t io_throttled = FALSE;
u_int32_t vector_upl_iosize = 0;
goto wait_for_dwrites;
}
+ task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp);
while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
int throttle_type;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
(int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
pages_in_pl = 0;
upl_size = upl_needed_size;
upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
- kret = vm_map_get_upl(current_map(),
+ kret = vm_map_get_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
&upl_size,
&upl,
NULL,
&pages_in_pl,
&upl_flags,
+ VM_KERN_MEMORY_FILE,
force_data_sync);
if (kret != KERN_SUCCESS) {
*/
}
- /*
- * Now look for pages already in the cache
- * and throw them away.
- * uio->uio_offset is page aligned within the file
- * io_size is a multiple of PAGE_SIZE
- */
- ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL);
-
/*
* we want push out these writes asynchronously so that we can overlap
* the preparation of the next I/O
* if there are already too many outstanding writes
* wait until some complete before issuing the next
*/
- cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct");
+ if (vp->v_mount->mnt_minsaturationbytecount)
+ bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount;
+ else
+ bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2);
+
+ cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct");
if (iostate.io_error) {
/*
upl_size_t upl_size;
vm_size_t upl_needed_size;
mach_msg_type_number_t pages_in_pl;
- int upl_flags;
+ upl_control_flags_t upl_flags;
kern_return_t kret;
struct clios iostate;
int error = 0;
upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
- kret = vm_map_get_upl(current_map(),
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+ kret = vm_map_get_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
- &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
+ &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0);
if (kret != KERN_SUCCESS) {
/*
}
+void
+cluster_update_state(vnode_t vp, vm_object_offset_t s_offset, vm_object_offset_t e_offset, boolean_t vm_initiated)
+{
+ struct cl_extent cl;
+ boolean_t first_pass = TRUE;
+
+ assert(s_offset < e_offset);
+ assert((s_offset & PAGE_MASK_64) == 0);
+ assert((e_offset & PAGE_MASK_64) == 0);
+
+ cl.b_addr = (daddr64_t)(s_offset / PAGE_SIZE_64);
+ cl.e_addr = (daddr64_t)(e_offset / PAGE_SIZE_64);
+
+ cluster_update_state_internal(vp, &cl, 0, TRUE, &first_pass, s_offset, (int)(e_offset - s_offset),
+ vp->v_un.vu_ubcinfo->ui_size, NULL, NULL, vm_initiated);
+}
+
+
+static void
+cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes,
+ boolean_t *first_pass, off_t write_off, int write_cnt, off_t newEOF,
+ int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated)
+{
+ struct cl_writebehind *wbp;
+ int cl_index;
+ int ret_cluster_try_push;
+ u_int max_cluster_pgcount;
+
+
+ max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
+
+ /*
+ * take the lock to protect our accesses
+ * of the writebehind and sparse cluster state
+ */
+ wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
+
+ if (wbp->cl_scmap) {
+
+ if ( !(flags & IO_NOCACHE)) {
+ /*
+ * we've fallen into the sparse
+ * cluster method of delaying dirty pages
+ */
+ sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, cl, newEOF, callback, callback_arg, vm_initiated);
+
+ lck_mtx_unlock(&wbp->cl_lockw);
+ return;
+ }
+ /*
+ * must have done cached writes that fell into
+ * the sparse cluster mechanism... we've switched
+ * to uncached writes on the file, so go ahead
+ * and push whatever's in the sparse map
+ * and switch back to normal clustering
+ */
+ wbp->cl_number = 0;
+
+ sparse_cluster_push(wbp, &(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg, vm_initiated);
+ /*
+ * no clusters of either type present at this point
+ * so just go directly to start_new_cluster since
+ * we know we need to delay this I/O since we've
+ * already released the pages back into the cache
+ * to avoid the deadlock with sparse_cluster_push
+ */
+ goto start_new_cluster;
+ }
+ if (*first_pass == TRUE) {
+ if (write_off == wbp->cl_last_write)
+ wbp->cl_seq_written += write_cnt;
+ else
+ wbp->cl_seq_written = write_cnt;
+
+ wbp->cl_last_write = write_off + write_cnt;
+
+ *first_pass = FALSE;
+ }
+ if (wbp->cl_number == 0)
+ /*
+ * no clusters currently present
+ */
+ goto start_new_cluster;
+
+ for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
+ /*
+ * check each cluster that we currently hold
+ * try to merge some or all of this write into
+ * one or more of the existing clusters... if
+ * any portion of the write remains, start a
+ * new cluster
+ */
+ if (cl->b_addr >= wbp->cl_clusters[cl_index].b_addr) {
+ /*
+ * the current write starts at or after the current cluster
+ */
+ if (cl->e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
+ /*
+ * we have a write that fits entirely
+ * within the existing cluster limits
+ */
+ if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr)
+ /*
+ * update our idea of where the cluster ends
+ */
+ wbp->cl_clusters[cl_index].e_addr = cl->e_addr;
+ break;
+ }
+ if (cl->b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
+ /*
+ * we have a write that starts in the middle of the current cluster
+ * but extends beyond the cluster's limit... we know this because
+ * of the previous checks
+ * we'll extend the current cluster to the max
+ * and update the b_addr for the current write to reflect that
+ * the head of it was absorbed into this cluster...
+ * note that we'll always have a leftover tail in this case since
+ * full absorbtion would have occurred in the clause above
+ */
+ wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
+
+ cl->b_addr = wbp->cl_clusters[cl_index].e_addr;
+ }
+ /*
+ * we come here for the case where the current write starts
+ * beyond the limit of the existing cluster or we have a leftover
+ * tail after a partial absorbtion
+ *
+ * in either case, we'll check the remaining clusters before
+ * starting a new one
+ */
+ } else {
+ /*
+ * the current write starts in front of the cluster we're currently considering
+ */
+ if ((wbp->cl_clusters[cl_index].e_addr - cl->b_addr) <= max_cluster_pgcount) {
+ /*
+ * we can just merge the new request into
+ * this cluster and leave it in the cache
+ * since the resulting cluster is still
+ * less than the maximum allowable size
+ */
+ wbp->cl_clusters[cl_index].b_addr = cl->b_addr;
+
+ if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr) {
+ /*
+ * the current write completely
+ * envelops the existing cluster and since
+ * each write is limited to at most max_cluster_pgcount pages
+ * we can just use the start and last blocknos of the write
+ * to generate the cluster limits
+ */
+ wbp->cl_clusters[cl_index].e_addr = cl->e_addr;
+ }
+ break;
+ }
+ /*
+ * if we were to combine this write with the current cluster
+ * we would exceed the cluster size limit.... so,
+ * let's see if there's any overlap of the new I/O with
+ * the cluster we're currently considering... in fact, we'll
+ * stretch the cluster out to it's full limit and see if we
+ * get an intersection with the current write
+ *
+ */
+ if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
+ /*
+ * the current write extends into the proposed cluster
+ * clip the length of the current write after first combining it's
+ * tail with the newly shaped cluster
+ */
+ wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
+
+ cl->e_addr = wbp->cl_clusters[cl_index].b_addr;
+ }
+ /*
+ * if we get here, there was no way to merge
+ * any portion of this write with this cluster
+ * or we could only merge part of it which
+ * will leave a tail...
+ * we'll check the remaining clusters before starting a new one
+ */
+ }
+ }
+ if (cl_index < wbp->cl_number)
+ /*
+ * we found an existing cluster(s) that we
+ * could entirely merge this I/O into
+ */
+ goto delay_io;
+
+ if (defer_writes == FALSE &&
+ wbp->cl_number == MAX_CLUSTERS &&
+ wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
+ uint32_t n;
+
+ if (vp->v_mount->mnt_minsaturationbytecount) {
+ n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp);
+
+ if (n > MAX_CLUSTERS)
+ n = MAX_CLUSTERS;
+ } else
+ n = 0;
+
+ if (n == 0) {
+ if (disk_conditioner_mount_is_ssd(vp->v_mount))
+ n = WRITE_BEHIND_SSD;
+ else
+ n = WRITE_BEHIND;
+ }
+ while (n--)
+ cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg, NULL, vm_initiated);
+ }
+ if (wbp->cl_number < MAX_CLUSTERS) {
+ /*
+ * we didn't find an existing cluster to
+ * merge into, but there's room to start
+ * a new one
+ */
+ goto start_new_cluster;
+ }
+ /*
+ * no exisitng cluster to merge with and no
+ * room to start a new one... we'll try
+ * pushing one of the existing ones... if none of
+ * them are able to be pushed, we'll switch
+ * to the sparse cluster mechanism
+ * cluster_try_push updates cl_number to the
+ * number of remaining clusters... and
+ * returns the number of currently unused clusters
+ */
+ ret_cluster_try_push = 0;
+
+ /*
+ * if writes are not deferred, call cluster push immediately
+ */
+ if (defer_writes == FALSE) {
+
+ ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg, NULL, vm_initiated);
+ }
+ /*
+ * execute following regardless of writes being deferred or not
+ */
+ if (ret_cluster_try_push == 0) {
+ /*
+ * no more room in the normal cluster mechanism
+ * so let's switch to the more expansive but expensive
+ * sparse mechanism....
+ */
+ sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg, vm_initiated);
+ sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, cl, newEOF, callback, callback_arg, vm_initiated);
+
+ lck_mtx_unlock(&wbp->cl_lockw);
+ return;
+ }
+start_new_cluster:
+ wbp->cl_clusters[wbp->cl_number].b_addr = cl->b_addr;
+ wbp->cl_clusters[wbp->cl_number].e_addr = cl->e_addr;
+
+ wbp->cl_clusters[wbp->cl_number].io_flags = 0;
+
+ if (flags & IO_NOCACHE)
+ wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
+
+ if (flags & IO_PASSIVE)
+ wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
+
+ wbp->cl_number++;
+delay_io:
+ lck_mtx_unlock(&wbp->cl_lockw);
+ return;
+}
+
+
static int
cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff,
off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg)
int write_cnt = 0;
boolean_t first_pass = FALSE;
struct cl_extent cl;
- struct cl_writebehind *wbp;
int bflag;
- u_int max_cluster_pgcount;
u_int max_io_size;
if (uio) {
zero_off = 0;
zero_off1 = 0;
- max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
if (flags & IO_HEADZEROFILL) {
* The UPL_WILL_MODIFY flag lets the UPL subsystem know
* that we intend to modify these pages.
*/
- kret = ubc_create_upl(vp,
+ kret = ubc_create_upl_kernel(vp,
upl_f_offset,
upl_size,
&upl,
&pl,
- UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY));
+ UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY),
+ VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
panic("cluster_write_copy: failed to get pagelist");
retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested);
if (retval) {
- ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
+ ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
upl, 0, 0, retval, 0);
io_resid -= bytes_to_move;
xfer_resid -= bytes_to_move;
io_offset += bytes_to_move;
- }
- }
- while (xfer_resid && zero_cnt1 && retval == 0) {
-
- if (zero_cnt1 < (long long)xfer_resid)
- bytes_to_zero = zero_cnt1;
- else
- bytes_to_zero = xfer_resid;
-
- bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero);
-
- xfer_resid -= bytes_to_zero;
- zero_cnt1 -= bytes_to_zero;
- zero_off1 += bytes_to_zero;
- io_offset += bytes_to_zero;
- }
- if (retval == 0) {
- int cl_index;
- int ret_cluster_try_push;
-
- io_size += start_offset;
-
- if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
- /*
- * if we're extending the file with this write
- * we'll zero fill the rest of the page so that
- * if the file gets extended again in such a way as to leave a
- * hole starting at this EOF, we'll have zero's in the correct spot
- */
- cluster_zero(upl, io_size, upl_size - io_size, NULL);
- }
- /*
- * release the upl now if we hold one since...
- * 1) pages in it may be present in the sparse cluster map
- * and may span 2 separate buckets there... if they do and
- * we happen to have to flush a bucket to make room and it intersects
- * this upl, a deadlock may result on page BUSY
- * 2) we're delaying the I/O... from this point forward we're just updating
- * the cluster state... no need to hold the pages, so commit them
- * 3) IO_SYNC is set...
- * because we had to ask for a UPL that provides currenty non-present pages, the
- * UPL has been automatically set to clear the dirty flags (both software and hardware)
- * upon committing it... this is not the behavior we want since it's possible for
- * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
- * we'll pick these pages back up later with the correct behavior specified.
- * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
- * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
- * we hold since the flushing context is holding the cluster lock.
- */
- ubc_upl_commit_range(upl, 0, upl_size,
- UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
-check_cluster:
- /*
- * calculate the last logical block number
- * that this delayed I/O encompassed
- */
- cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
-
- if (flags & IO_SYNC) {
- /*
- * if the IO_SYNC flag is set than we need to
- * bypass any clusters and immediately issue
- * the I/O
- */
- goto issue_io;
- }
- /*
- * take the lock to protect our accesses
- * of the writebehind and sparse cluster state
- */
- wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
-
- if (wbp->cl_scmap) {
-
- if ( !(flags & IO_NOCACHE)) {
- /*
- * we've fallen into the sparse
- * cluster method of delaying dirty pages
- */
- sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
-
- lck_mtx_unlock(&wbp->cl_lockw);
-
- continue;
- }
- /*
- * must have done cached writes that fell into
- * the sparse cluster mechanism... we've switched
- * to uncached writes on the file, so go ahead
- * and push whatever's in the sparse map
- * and switch back to normal clustering
- */
- wbp->cl_number = 0;
-
- sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
- /*
- * no clusters of either type present at this point
- * so just go directly to start_new_cluster since
- * we know we need to delay this I/O since we've
- * already released the pages back into the cache
- * to avoid the deadlock with sparse_cluster_push
- */
- goto start_new_cluster;
- }
- if (first_pass) {
- if (write_off == wbp->cl_last_write)
- wbp->cl_seq_written += write_cnt;
- else
- wbp->cl_seq_written = write_cnt;
-
- wbp->cl_last_write = write_off + write_cnt;
-
- first_pass = FALSE;
- }
- if (wbp->cl_number == 0)
- /*
- * no clusters currently present
- */
- goto start_new_cluster;
-
- for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
- /*
- * check each cluster that we currently hold
- * try to merge some or all of this write into
- * one or more of the existing clusters... if
- * any portion of the write remains, start a
- * new cluster
- */
- if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
- /*
- * the current write starts at or after the current cluster
- */
- if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
- /*
- * we have a write that fits entirely
- * within the existing cluster limits
- */
- if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
- /*
- * update our idea of where the cluster ends
- */
- wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
- break;
- }
- if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
- /*
- * we have a write that starts in the middle of the current cluster
- * but extends beyond the cluster's limit... we know this because
- * of the previous checks
- * we'll extend the current cluster to the max
- * and update the b_addr for the current write to reflect that
- * the head of it was absorbed into this cluster...
- * note that we'll always have a leftover tail in this case since
- * full absorbtion would have occurred in the clause above
- */
- wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
-
- cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
- }
- /*
- * we come here for the case where the current write starts
- * beyond the limit of the existing cluster or we have a leftover
- * tail after a partial absorbtion
- *
- * in either case, we'll check the remaining clusters before
- * starting a new one
- */
- } else {
- /*
- * the current write starts in front of the cluster we're currently considering
- */
- if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) {
- /*
- * we can just merge the new request into
- * this cluster and leave it in the cache
- * since the resulting cluster is still
- * less than the maximum allowable size
- */
- wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
-
- if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
- /*
- * the current write completely
- * envelops the existing cluster and since
- * each write is limited to at most max_cluster_pgcount pages
- * we can just use the start and last blocknos of the write
- * to generate the cluster limits
- */
- wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
- }
- break;
- }
-
- /*
- * if we were to combine this write with the current cluster
- * we would exceed the cluster size limit.... so,
- * let's see if there's any overlap of the new I/O with
- * the cluster we're currently considering... in fact, we'll
- * stretch the cluster out to it's full limit and see if we
- * get an intersection with the current write
- *
- */
- if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
- /*
- * the current write extends into the proposed cluster
- * clip the length of the current write after first combining it's
- * tail with the newly shaped cluster
- */
- wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
-
- cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
- }
- /*
- * if we get here, there was no way to merge
- * any portion of this write with this cluster
- * or we could only merge part of it which
- * will leave a tail...
- * we'll check the remaining clusters before starting a new one
- */
- }
- }
- if (cl_index < wbp->cl_number)
- /*
- * we found an existing cluster(s) that we
- * could entirely merge this I/O into
- */
- goto delay_io;
+ }
+ }
+ while (xfer_resid && zero_cnt1 && retval == 0) {
- if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
- wbp->cl_number == MAX_CLUSTERS &&
- wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
- uint32_t n;
+ if (zero_cnt1 < (long long)xfer_resid)
+ bytes_to_zero = zero_cnt1;
+ else
+ bytes_to_zero = xfer_resid;
- if (vp->v_mount->mnt_kern_flag & MNTK_SSD)
- n = WRITE_BEHIND_SSD;
- else
- n = WRITE_BEHIND;
+ bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero);
+
+ xfer_resid -= bytes_to_zero;
+ zero_cnt1 -= bytes_to_zero;
+ zero_off1 += bytes_to_zero;
+ io_offset += bytes_to_zero;
+ }
+ if (retval == 0) {
+ int do_zeroing = 1;
+
+ io_size += start_offset;
- while (n--)
- cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg);
+ /* Force more restrictive zeroing behavior only on APFS */
+ if ((vnode_tag(vp) == VT_APFS) && (newEOF < oldEOF)) {
+ do_zeroing = 0;
}
- if (wbp->cl_number < MAX_CLUSTERS) {
- /*
- * we didn't find an existing cluster to
- * merge into, but there's room to start
- * a new one
+
+ if (do_zeroing && (upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
+
+ /*
+ * if we're extending the file with this write
+ * we'll zero fill the rest of the page so that
+ * if the file gets extended again in such a way as to leave a
+ * hole starting at this EOF, we'll have zero's in the correct spot
*/
- goto start_new_cluster;
+ cluster_zero(upl, io_size, upl_size - io_size, NULL);
}
/*
- * no exisitng cluster to merge with and no
- * room to start a new one... we'll try
- * pushing one of the existing ones... if none of
- * them are able to be pushed, we'll switch
- * to the sparse cluster mechanism
- * cluster_try_push updates cl_number to the
- * number of remaining clusters... and
- * returns the number of currently unused clusters
+ * release the upl now if we hold one since...
+ * 1) pages in it may be present in the sparse cluster map
+ * and may span 2 separate buckets there... if they do and
+ * we happen to have to flush a bucket to make room and it intersects
+ * this upl, a deadlock may result on page BUSY
+ * 2) we're delaying the I/O... from this point forward we're just updating
+ * the cluster state... no need to hold the pages, so commit them
+ * 3) IO_SYNC is set...
+ * because we had to ask for a UPL that provides currenty non-present pages, the
+ * UPL has been automatically set to clear the dirty flags (both software and hardware)
+ * upon committing it... this is not the behavior we want since it's possible for
+ * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
+ * we'll pick these pages back up later with the correct behavior specified.
+ * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
+ * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
+ * we hold since the flushing context is holding the cluster lock.
*/
- ret_cluster_try_push = 0;
-
+ ubc_upl_commit_range(upl, 0, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+check_cluster:
/*
- * if writes are not deferred, call cluster push immediately
+ * calculate the last logical block number
+ * that this delayed I/O encompassed
*/
- if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
-
- ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg);
- }
+ cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
- /*
- * execute following regardless of writes being deferred or not
- */
- if (ret_cluster_try_push == 0) {
- /*
- * no more room in the normal cluster mechanism
- * so let's switch to the more expansive but expensive
- * sparse mechanism....
+ if (flags & IO_SYNC) {
+ /*
+ * if the IO_SYNC flag is set than we need to bypass
+ * any clustering and immediately issue the I/O
+ *
+ * we don't hold the lock at this point
+ *
+ * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
+ * so that we correctly deal with a change in state of the hardware modify bit...
+ * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
+ * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
+ * responsible for generating the correct sized I/O(s)
*/
- sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg);
- sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
+ retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg, FALSE);
+ } else {
+ boolean_t defer_writes = FALSE;
- lck_mtx_unlock(&wbp->cl_lockw);
+ if (vfs_flags(vp->v_mount) & MNT_DEFWRITE)
+ defer_writes = TRUE;
- continue;
+ cluster_update_state_internal(vp, &cl, flags, defer_writes, &first_pass,
+ write_off, write_cnt, newEOF, callback, callback_arg, FALSE);
}
-start_new_cluster:
- wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
- wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
-
- wbp->cl_clusters[wbp->cl_number].io_flags = 0;
-
- if (flags & IO_NOCACHE)
- wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
-
- if (bflag & CL_PASSIVE)
- wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
-
- wbp->cl_number++;
-delay_io:
- lck_mtx_unlock(&wbp->cl_lockw);
-
- continue;
-issue_io:
- /*
- * we don't hold the lock at this point
- *
- * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
- * so that we correctly deal with a change in state of the hardware modify bit...
- * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
- * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
- * responsible for generating the correct sized I/O(s)
- */
- retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg);
}
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0);
flags |= IO_NOCACHE;
if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
flags |= IO_RAOFF;
-
+
if (flags & IO_SKIP_ENCRYPTION)
flags |= IO_ENCRYPTED;
- /*
- * If we're doing an encrypted IO, then first check to see
- * if the IO requested was page aligned. If not, then bail
- * out immediately.
- */
- if (flags & IO_ENCRYPTED) {
- if (read_length & PAGE_MASK) {
- retval = EINVAL;
- return retval;
- }
- }
/*
* do a read through the cache if one of the following is true....
retval = cluster_io_type(uio, &read_type, &read_length, 0);
}
-
+
while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
switch (read_type) {
bflag |= CL_ENCRYPTED;
max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
- max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD));
+ max_prefetch = MAX_PREFETCH(vp, max_io_size, disk_conditioner_mount_is_ssd(vp->v_mount));
max_rd_size = max_prefetch;
last_request_offset = uio->uio_offset + io_req_size;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
upl, (int)upl_f_offset, upl_size, start_offset, 0);
- kret = ubc_create_upl(vp,
+ kret = ubc_create_upl_kernel(vp,
upl_f_offset,
upl_size,
&upl,
&pl,
- UPL_FILE_IO | UPL_SET_LITE);
+ UPL_FILE_IO | UPL_SET_LITE,
+ VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
panic("cluster_read_copy: failed to get pagelist");
return (retval);
}
+/*
+ * We don't want another read/write lock for every vnode in the system
+ * so we keep a hash of them here. There should never be very many of
+ * these around at any point in time.
+ */
+cl_direct_read_lock_t *cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type)
+{
+ struct cl_direct_read_locks *head
+ = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp)
+ % CL_DIRECT_READ_LOCK_BUCKETS];
+
+ struct cl_direct_read_lock *lck, *new_lck = NULL;
+
+ for (;;) {
+ lck_spin_lock(&cl_direct_read_spin_lock);
+
+ LIST_FOREACH(lck, head, chain) {
+ if (lck->vp == vp) {
+ ++lck->ref_count;
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+ if (new_lck) {
+ // Someone beat us to it, ditch the allocation
+ lck_rw_destroy(&new_lck->rw_lock, cl_mtx_grp);
+ FREE(new_lck, M_TEMP);
+ }
+ lck_rw_lock(&lck->rw_lock, type);
+ return lck;
+ }
+ }
+
+ if (new_lck) {
+ // Use the lock we allocated
+ LIST_INSERT_HEAD(head, new_lck, chain);
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+ lck_rw_lock(&new_lck->rw_lock, type);
+ return new_lck;
+ }
+
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+
+ // Allocate a new lock
+ MALLOC(new_lck, cl_direct_read_lock_t *, sizeof(*new_lck),
+ M_TEMP, M_WAITOK);
+ lck_rw_init(&new_lck->rw_lock, cl_mtx_grp, cl_mtx_attr);
+ new_lck->vp = vp;
+ new_lck->ref_count = 1;
+
+ // Got to go round again
+ }
+}
+
+void cluster_unlock_direct_read(cl_direct_read_lock_t *lck)
+{
+ lck_rw_done(&lck->rw_lock);
+
+ lck_spin_lock(&cl_direct_read_spin_lock);
+ if (lck->ref_count == 1) {
+ LIST_REMOVE(lck, chain);
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+ lck_rw_destroy(&lck->rw_lock, cl_mtx_grp);
+ FREE(lck, M_TEMP);
+ } else {
+ --lck->ref_count;
+ lck_spin_unlock(&cl_direct_read_spin_lock);
+ }
+}
+
static int
cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
int flags, int (*callback)(buf_t, void *), void *callback_arg)
upl_size_t upl_size, vector_upl_size = 0;
vm_size_t upl_needed_size;
unsigned int pages_in_pl;
- int upl_flags;
+ upl_control_flags_t upl_flags;
kern_return_t kret;
unsigned int i;
int force_data_sync;
u_int32_t max_rd_size;
u_int32_t max_rd_ahead;
u_int32_t max_vector_size;
- boolean_t strict_uncached_IO = FALSE;
boolean_t io_throttled = FALSE;
u_int32_t vector_upl_iosize = 0;
off_t v_upl_uio_offset = 0;
int vector_upl_index=0;
upl_t vector_upl = NULL;
+ cl_direct_read_lock_t *lock = NULL;
user_addr_t orig_iov_base = 0;
user_addr_t last_iov_base = 0;
devblocksize = PAGE_SIZE;
}
- strict_uncached_IO = ubc_strict_uncached_IO(vp);
-
orig_iov_base = uio_curriovbase(uio);
last_iov_base = orig_iov_base;
io_req_size = *read_length;
iov_base = uio_curriovbase(uio);
- max_io_size = filesize - uio->uio_offset;
-
- if ((off_t)io_req_size > max_io_size)
- io_req_size = max_io_size;
-
offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
misaligned = 1;
}
+ max_io_size = filesize - uio->uio_offset;
+
/*
* The user must request IO in aligned chunks. If the
* offset into the file is bad, or the userland pointer
* is non-aligned, then we cannot service the encrypted IO request.
*/
- if ((flags & IO_ENCRYPTED) && (misaligned)) {
- retval = EINVAL;
+ if (flags & IO_ENCRYPTED) {
+ if (misaligned || (io_req_size & (devblocksize - 1)))
+ retval = EINVAL;
+
+ max_io_size = roundup(max_io_size, devblocksize);
}
+ if ((off_t)io_req_size > max_io_size)
+ io_req_size = max_io_size;
+
/*
* When we get to this point, we know...
* -- the offset into the file is on a devblocksize boundary
* cluster_copy_ubc_data returns the resid
* in io_size
*/
- if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
+ if ((flags & IO_ENCRYPTED) == 0) {
retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
}
/*
* (which overlaps the end of the direct read) in order to
* get at the overhang bytes
*/
- if (io_size & (devblocksize - 1)) {
- if (flags & IO_ENCRYPTED) {
- /*
- * Normally, we'd round down to the previous page boundary to
- * let the UBC manage the zero-filling of the file past the EOF.
- * But if we're doing encrypted IO, we can't let any of
- * the data hit the UBC. This means we have to do the full
- * IO to the upper block boundary of the device block that
- * contains the EOF. The user will be responsible for not
- * interpreting data PAST the EOF in its buffer.
- *
- * So just bump the IO back up to a multiple of devblocksize
- */
- io_size = ((io_size + devblocksize) & ~(devblocksize - 1));
- io_min = io_size;
- }
- else {
- /*
- * Clip the request to the previous page size boundary
- * since request does NOT end on a device block boundary
- */
- io_size &= ~PAGE_MASK;
- io_min = PAGE_SIZE;
- }
-
+ if (io_size & (devblocksize - 1)) {
+ assert(!(flags & IO_ENCRYPTED));
+ /*
+ * Clip the request to the previous page size boundary
+ * since request does NOT end on a device block boundary
+ */
+ io_size &= ~PAGE_MASK;
+ io_min = PAGE_SIZE;
}
if (retval || io_size < io_min) {
/*
goto wait_for_dreads;
}
- /*
+ /*
* Don't re-check the UBC data if we are looking for uncached IO
* or asking for encrypted blocks.
*/
- if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
+ if ((flags & IO_ENCRYPTED) == 0) {
if ((xsize = io_size) > max_rd_size)
xsize = max_rd_size;
io_size = 0;
+ if (!lock) {
+ /*
+ * We hold a lock here between the time we check the
+ * cache and the time we issue I/O. This saves us
+ * from having to lock the pages in the cache. Not
+ * all clients will care about this lock but some
+ * clients may want to guarantee stability between
+ * here and when the I/O is issued in which case they
+ * will take the lock exclusively.
+ */
+ lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED);
+ }
+
ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
if (io_size == 0) {
else
no_zero_fill = 0;
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
pages_in_pl = 0;
upl_size = upl_needed_size;
upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
-
if (no_zero_fill)
upl_flags |= UPL_NOZEROFILL;
if (force_data_sync)
upl_flags |= UPL_FORCE_DATA_SYNC;
- kret = vm_map_create_upl(current_map(),
+ kret = vm_map_create_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
- &upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
+ &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
-
if(!useVectorUPL) {
if (no_zero_fill)
io_flag &= ~CL_PRESERVE;
}
last_iov_base = iov_base + io_size;
+ if (lock) {
+ // We don't need to wait for the I/O to complete
+ cluster_unlock_direct_read(lock);
+ lock = NULL;
+ }
+
/*
* update the uio structure
*/
else {
uio_update(uio, (user_size_t)io_size);
}
- /*
- * Under normal circumstances, the io_size should not be
- * bigger than the io_req_size, but we may have had to round up
- * to the end of the page in the encrypted IO case. In that case only,
- * ensure that we only decrement io_req_size to 0.
- */
- if ((flags & IO_ENCRYPTED) && (io_size > io_req_size)) {
- io_req_size = 0;
- }
- else {
- io_req_size -= io_size;
- }
+
+ io_req_size -= io_size;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
upl, (int)uio->uio_offset, io_req_size, retval, 0);
retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
reset_vector_run_state();
}
+
+ // We don't need to wait for the I/O to complete
+ if (lock)
+ cluster_unlock_direct_read(lock);
+
/*
* make sure all async reads that are part of this stream
* have completed before we return
* we couldn't handle the tail of this request in DIRECT mode
* so fire it through the copy path
*/
- retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
+ if (flags & IO_ENCRYPTED) {
+ /*
+ * We cannot fall back to the copy path for encrypted I/O. If this
+ * happens, there is something wrong with the user buffer passed
+ * down.
+ */
+ retval = EFAULT;
+ } else {
+ retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
+ }
*read_type = IO_UNKNOWN;
}
upl_size_t upl_size;
vm_size_t upl_needed_size;
mach_msg_type_number_t pages_in_pl;
- int upl_flags;
+ upl_control_flags_t upl_flags;
kern_return_t kret;
struct clios iostate;
int error= 0;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
(int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
- kret = vm_map_get_upl(current_map(),
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+ kret = vm_map_get_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
- &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
+ &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END,
(int)upl_offset, upl_size, io_size, kret, 0);
user_addr_t iov_base = 0;
upl_t upl;
upl_size_t upl_size;
- int upl_flags;
+ upl_control_flags_t upl_flags;
int retval = 0;
/*
upl_size = (u_int32_t)iov_len;
upl_flags = UPL_QUERY_OBJECT_TYPE;
-
- if ((vm_map_get_upl(current_map(),
+
+ vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
+ if ((vm_map_get_upl(map,
(vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
- &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
+ &upl_size, &upl, NULL, NULL, &upl_flags, VM_KERN_MEMORY_FILE, 0)) != KERN_SUCCESS) {
/*
* the user app must have passed in an invalid address
*/
max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
- if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) {
+#if CONFIG_EMBEDDED
+ if (max_io_size > speculative_prefetch_max_iosize)
+ max_io_size = speculative_prefetch_max_iosize;
+#else
+ if (disk_conditioner_mount_is_ssd(vp->v_mount)) {
if (max_io_size > speculative_prefetch_max_iosize)
max_io_size = speculative_prefetch_max_iosize;
}
+#endif
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
(int)f_offset, resid, (int)filesize, 0, 0);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
upl, (int)upl_f_offset, upl_size, start_offset, 0);
- kret = ubc_create_upl(vp,
+ kret = ubc_create_upl_kernel(vp,
upl_f_offset,
upl_size,
&upl,
&pl,
- UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
+ UPL_RET_ONLY_ABSENT | UPL_SET_LITE,
+ VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
return(retval);
issued_io = 0;
int
cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+{
+ return cluster_push_err(vp, flags, callback, callback_arg, NULL);
+}
+
+/* write errors via err, but return the number of clusters written */
+int
+cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err)
{
int retval;
int my_sparse_wait = 0;
struct cl_writebehind *wbp;
+ int local_err = 0;
+
+ if (err)
+ *err = 0;
if ( !UBCINFOEXISTS(vp)) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0);
return (0);
}
/* return if deferred write is set */
return (0);
}
if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0);
return (0);
}
if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
lck_mtx_unlock(&wbp->cl_lockw);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0);
return(0);
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
* in the sparse map case
*/
while (wbp->cl_sparse_wait) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
}
if (flags & IO_SYNC) {
my_sparse_wait = 1;
* fsync actually get cleaned to the disk before this fsync returns
*/
while (wbp->cl_sparse_pushes) {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
}
}
if (wbp->cl_scmap) {
lck_mtx_unlock(&wbp->cl_lockw);
- sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
+ retval = sparse_cluster_push(wbp, &scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, FALSE);
lck_mtx_lock(&wbp->cl_lockw);
wbp->cl_sparse_pushes--;
+
+ if (retval) {
+ if (wbp->cl_scmap != NULL) {
+ panic("cluster_push_err: Expected NULL cl_scmap\n");
+ }
+
+ wbp->cl_scmap = scmap;
+ }
if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
wakeup((caddr_t)&wbp->cl_sparse_pushes);
} else {
- sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
+ retval = sparse_cluster_push(wbp, &(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, FALSE);
}
+
+ local_err = retval;
+
+ if (err)
+ *err = retval;
retval = 1;
- } else {
- retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
+ } else {
+ retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, &local_err, FALSE);
+ if (err)
+ *err = local_err;
}
lck_mtx_unlock(&wbp->cl_lockw);
lck_mtx_unlock(&wbp->cl_lockw);
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
- wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
+ wbp->cl_scmap, wbp->cl_number, retval, local_err, 0);
return (retval);
}
static int
-cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
+cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err, boolean_t vm_initiated)
{
int cl_index;
int cl_index1;
int cl_pushed = 0;
struct cl_wextent l_clusters[MAX_CLUSTERS];
u_int max_cluster_pgcount;
-
+ int error = 0;
max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
/*
cl_len = cl_index;
- if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) {
+ /* skip switching to the sparse cluster mechanism if on diskimage */
+ if ( ((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) &&
+ !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) ) {
int i;
/*
goto dont_try;
}
}
+ if (vm_initiated == TRUE)
+ lck_mtx_unlock(&wbp->cl_lockw);
+
for (cl_index = 0; cl_index < cl_len; cl_index++) {
int flags;
struct cl_extent cl;
+ int retval;
flags = io_flags & (IO_PASSIVE|IO_CLOSE);
cl.b_addr = l_clusters[cl_index].b_addr;
cl.e_addr = l_clusters[cl_index].e_addr;
- cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
+ retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg, vm_initiated);
- l_clusters[cl_index].b_addr = 0;
- l_clusters[cl_index].e_addr = 0;
+ if (retval == 0) {
+ cl_pushed++;
- cl_pushed++;
+ l_clusters[cl_index].b_addr = 0;
+ l_clusters[cl_index].e_addr = 0;
+ } else if (error == 0) {
+ error = retval;
+ }
if ( !(push_flag & PUSH_ALL) )
break;
}
+ if (vm_initiated == TRUE)
+ lck_mtx_lock(&wbp->cl_lockw);
+
+ if (err)
+ *err = error;
+
dont_try:
if (cl_len > cl_pushed) {
/*
*
* collect the active public clusters...
*/
- sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
+ sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated);
for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
* and collect the original clusters that were moved into the
* local storage for sorting purposes
*/
- sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
+ sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated);
} else {
/*
static int
-cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg)
+cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags,
+ int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated)
{
upl_page_info_t *pl;
upl_t upl;
} else
size = upl_size;
+
+ if (vm_initiated) {
+ vnode_pageout(vp, NULL, (upl_offset_t)0, upl_f_offset, (upl_size_t)upl_size,
+ UPL_MSYNC | UPL_VNODE_PAGER | UPL_KEEPCACHED, &error);
+
+ return (error);
+ }
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
/*
else
upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
- kret = ubc_create_upl(vp,
+ kret = ubc_create_upl_kernel(vp,
upl_f_offset,
upl_size,
&upl,
&pl,
- upl_flags);
+ upl_flags,
+ VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
panic("cluster_push: failed to get pagelist");
size -= io_size;
}
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, error, 0, 0);
return(error);
}
/*
* sparse_cluster_switch is called with the write behind lock held
*/
-static void
-sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
+static int
+sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated)
{
int cl_index;
+ int error;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, 0, 0);
for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
int flags;
if (flags & UPL_POP_DIRTY) {
cl.e_addr = cl.b_addr + 1;
- sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg);
+ error = sparse_cluster_add(wbp, &(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg, vm_initiated);
+
+ if (error) {
+ break;
+ }
}
}
}
}
- wbp->cl_number = 0;
+ wbp->cl_number -= cl_index;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, error, 0);
+
+ return error;
}
* still associated with the write-behind context... however, if the scmap has been disassociated
* from the write-behind context (the cluster_push case), the wb lock is not held
*/
-static void
-sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
+static int
+sparse_cluster_push(struct cl_writebehind *wbp, void **scmap, vnode_t vp, off_t EOF, int push_flag,
+ int io_flags, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated)
{
struct cl_extent cl;
off_t offset;
u_int length;
+ void *l_scmap;
+ int error = 0;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0);
if (push_flag & PUSH_ALL)
vfs_drt_control(scmap, 1);
+ l_scmap = *scmap;
+
for (;;) {
+ int retval;
+
if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS)
break;
+ if (vm_initiated == TRUE)
+ lck_mtx_unlock(&wbp->cl_lockw);
+
cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
- cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
+ retval = cluster_push_now(vp, &cl, EOF, io_flags, callback, callback_arg, vm_initiated);
+ if (error == 0 && retval)
+ error = retval;
- if ( !(push_flag & PUSH_ALL) )
+ if (vm_initiated == TRUE) {
+ lck_mtx_lock(&wbp->cl_lockw);
+
+ if (*scmap != l_scmap)
+ break;
+ }
+
+ if (error) {
+ if (vfs_drt_mark_pages(scmap, offset, length, NULL) != KERN_SUCCESS) {
+ panic("Failed to restore dirty state on failure\n");
+ }
+
+ break;
+ }
+
+ if ( !(push_flag & PUSH_ALL)) {
break;
+ }
}
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0);
+
+ return error;
}
/*
* sparse_cluster_add is called with the write behind lock held
*/
-static void
-sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
+static int
+sparse_cluster_add(struct cl_writebehind *wbp, void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF,
+ int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated)
{
u_int new_dirty;
u_int length;
off_t offset;
+ int error;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0);
* only a partial update was done
* push out some pages and try again
*/
- sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
+ error = sparse_cluster_push(wbp, scmap, vp, EOF, 0, 0, callback, callback_arg, vm_initiated);
+
+ if (error) {
+ break;
+ }
offset += (new_dirty * PAGE_SIZE_64);
length -= (new_dirty * PAGE_SIZE);
}
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0);
+
+ return error;
}
*/
upl_flags |= UPL_FILE_IO;
}
- kret = ubc_create_upl(vp,
+ kret = ubc_create_upl_kernel(vp,
uio->uio_offset & ~PAGE_MASK_64,
PAGE_SIZE,
&upl,
&pl,
- upl_flags);
+ upl_flags,
+ VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
return(EINVAL);
return (error);
}
-
-
int
cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
{
int retval = 0;
int xsize;
upl_page_info_t *pl;
+ int dirty_count;
xsize = *io_resid;
pg_offset = upl_offset & PAGE_MASK;
csize = min(PAGE_SIZE - pg_offset, xsize);
+ dirty_count = 0;
while (xsize && retval == 0) {
addr64_t paddr;
paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset;
+ if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE))
+ dirty_count++;
retval = uiomove64(paddr, csize, uio);
uio->uio_segflg = segflg;
+ task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl));
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
(int)uio->uio_offset, xsize, retval, segflg, 0);
-
+
return (retval);
}
* single hashtable entry. Each hashtable entry is aligned to this
* size within the file.
*/
-#define DRT_BITVECTOR_PAGES 256
+#define DRT_BITVECTOR_PAGES ((1024 * 256) / PAGE_SIZE)
/*
* File offset handling.
*
- * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
- * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)
+ * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
+ * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
*/
-#define DRT_ADDRESS_MASK (~((1 << 20) - 1))
+#define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
#define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
/*
} while(0);
+#if CONFIG_EMBEDDED
/*
* Hash table moduli.
*
* both being prime and fitting within the desired allocation
* size, these values need to be manually determined.
*
- * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
+ * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes.
*
- * The small hashtable allocation is 1024 bytes, so the modulus is 23.
- * The large hashtable allocation is 16384 bytes, so the modulus is 401.
+ * The small hashtable allocation is 4096 bytes, so the modulus is 251.
+ * The large hashtable allocation is 32768 bytes, so the modulus is 2039.
*/
-#define DRT_HASH_SMALL_MODULUS 23
-#define DRT_HASH_LARGE_MODULUS 401
+
+#define DRT_HASH_SMALL_MODULUS 251
+#define DRT_HASH_LARGE_MODULUS 2039
/*
* Physical memory required before the large hash modulus is permitted.
*/
#define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
-#define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
-#define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
+#define DRT_SMALL_ALLOCATION 4096 /* 80 bytes spare */
+#define DRT_LARGE_ALLOCATION 32768 /* 144 bytes spare */
+
+#else
+/*
+ * Hash table moduli.
+ *
+ * Since the hashtable entry's size is dependent on the size of
+ * the bitvector, and since the hashtable size is constrained to
+ * both being prime and fitting within the desired allocation
+ * size, these values need to be manually determined.
+ *
+ * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes.
+ *
+ * The small hashtable allocation is 16384 bytes, so the modulus is 1019.
+ * The large hashtable allocation is 131072 bytes, so the modulus is 8179.
+ */
+
+#define DRT_HASH_SMALL_MODULUS 1019
+#define DRT_HASH_LARGE_MODULUS 8179
+
+/*
+ * Physical memory required before the large hash modulus is permitted.
+ *
+ * On small memory systems, the large hash modulus can lead to phsyical
+ * memory starvation, so we avoid using it there.
+ */
+#define DRT_HASH_LARGE_MEMORY_REQUIRED (4 * 1024LL * 1024LL * 1024LL) /* 4GiB */
+
+#define DRT_SMALL_ALLOCATION 16384 /* 80 bytes spare */
+#define DRT_LARGE_ALLOCATION 131072 /* 208 bytes spare */
+
+#endif
/* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
+/*
+ * Hashtable entry.
+ */
+struct vfs_drt_hashentry {
+ u_int64_t dhe_control;
+/*
+* dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
+* DRT_BITVECTOR_PAGES is defined as ((1024 * 256) / PAGE_SIZE)
+* Since PAGE_SIZE is only known at boot time,
+* -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k)
+* -declare dhe_bitvector array for largest possible length
+*/
+#define MAX_DRT_BITVECTOR_PAGES (1024 * 256)/( 4 * 1024)
+ u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES/32];
+};
+
/*
* Hashtable bitvector handling.
*
((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
#define DRT_BITVECTOR_CLEAR(scm, i) \
- bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
+ bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
#define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
&(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
- (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
-
-
-
-/*
- * Hashtable entry.
- */
-struct vfs_drt_hashentry {
- u_int64_t dhe_control;
- u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
-};
+ (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
/*
* Dirty Region Tracking structure.
*/
kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
- (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
+ (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION, VM_KERN_MEMORY_FILE);
if (kret != KERN_SUCCESS)
return(kret);
cmap->scm_magic = DRT_SCM_MAGIC;
for (i = 0; i < pgcount; i++) {
if (dirty) {
if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
+ if (ecount >= DRT_BITVECTOR_PAGES)
+ panic("ecount >= DRT_BITVECTOR_PAGES, cmap = %p, index = %d, bit = %d", cmap, index, pgoff+i);
DRT_HASH_SET_BIT(cmap, index, pgoff + i);
ecount++;
setcount++;
}
} else {
if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
+ if (ecount <= 0)
+ panic("ecount <= 0, cmap = %p, index = %d, bit = %d", cmap, index, pgoff+i);
+ assert(ecount > 0);
DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
ecount--;
setcount++;
}
if (fs == -1) {
/* didn't find any bits set */
- panic("vfs_drt: entry summary count > 0 but no bits set in map");
+ panic("vfs_drt: entry summary count > 0 but no bits set in map, cmap = %p, index = %d, count = %lld",
+ cmap, index, DRT_HASH_GET_COUNT(cmap, index));
}
for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
if (!DRT_HASH_TEST_BIT(cmap, index, i))