vm_offset_t zone_map_min_address = 0; /* initialized in zone_init */
vm_offset_t zone_map_max_address = 0;
+/* Globals for random boolean generator for elements in free list */
+#define MAX_ENTROPY_PER_ZCRAM 4
+#define RANDOM_BOOL_GEN_SEED_COUNT 4
+static unsigned int bool_gen_seed[RANDOM_BOOL_GEN_SEED_COUNT];
+static unsigned int bool_gen_global = 0;
+decl_simple_lock_data(, bool_gen_lock)
+
/* Helpful for walking through a zone's free element list. */
struct zone_free_element {
struct zone_free_element *next;
static inline struct zone_page_metadata *
get_zone_page_metadata(struct zone_free_element *element)
{
- return (struct zone_page_metadata *)(trunc_page((vm_offset_t)element) + PAGE_SIZE - sizeof(struct zone_page_metadata));
+ return (struct zone_page_metadata *)(trunc_page((vm_offset_t)element));
}
/*
zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
}
-
/*
* Sets the next element of tail to elem.
* elem can be NULL.
};
static const struct fake_zone_info fake_zones[] = {
- {
- .name = "kernel_stacks",
- .init = stack_fake_zone_init,
- .query = stack_fake_zone_info,
- },
- {
- .name = "page_tables",
- .init = pt_fake_zone_init,
- .query = pt_fake_zone_info,
- },
- {
- .name = "kalloc.large",
- .init = kalloc_fake_zone_init,
- .query = kalloc_fake_zone_info,
- },
};
static const unsigned int num_fake_zones =
sizeof (fake_zones) / sizeof (fake_zones[0]);
vm_offset_t zdata;
vm_size_t zdata_size;
+/*
+ * Align elements that use the zone page list to 32 byte boundaries.
+ */
+#define ZONE_ELEMENT_ALIGNMENT 32
#define zone_wakeup(zone) thread_wakeup((event_t)(zone))
#define zone_sleep(zone) \
boolean_t panic_include_zprint = FALSE;
boolean_t zone_gc_allowed_by_time_throttle = TRUE;
+vm_offset_t panic_kext_memory_info = 0;
+vm_size_t panic_kext_memory_size = 0;
+
#define ZALLOC_DEBUG_ZONEGC 0x00000001
#define ZALLOC_DEBUG_ZCRAM 0x00000002
uint32_t zalloc_debug = 0;
lck_spin_unlock(&zleak_lock);
/* Allocate and zero tables */
- retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size);
+ retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size, VM_KERN_MEMORY_OSFMK);
if (retval != KERN_SUCCESS) {
goto fail;
}
- retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size);
+ retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size, VM_KERN_MEMORY_OSFMK);
if (retval != KERN_SUCCESS) {
goto fail;
}
* to its page_metadata, and if the wastage in the tail of
* the allocation is not too large
*/
- if (alloc == PAGE_SIZE) {
- if ((PAGE_SIZE % size) >= sizeof(struct zone_page_metadata)) {
- use_page_list = TRUE;
- } else if ((PAGE_SIZE - sizeof(struct zone_page_metadata)) % size <= PAGE_SIZE / 100) {
+
+ /* zone_zone can't use page metadata since the page metadata will overwrite zone metadata */
+ if (alloc == PAGE_SIZE && zone_zone != ZONE_NULL) {
+ vm_offset_t first_element_offset;
+ size_t zone_page_metadata_size = sizeof(struct zone_page_metadata);
+
+ if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0) {
+ first_element_offset = zone_page_metadata_size;
+ } else {
+ first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT));
+ }
+
+ if (((PAGE_SIZE - first_element_offset) % size) <= PAGE_SIZE / 100) {
use_page_list = TRUE;
}
}
z->count = 0;
z->countfree = 0;
z->sum_count = 0LL;
- z->doing_alloc = FALSE;
+ z->doing_alloc_without_vm_priv = FALSE;
+ z->doing_alloc_with_vm_priv = FALSE;
z->doing_gc = FALSE;
z->exhaustible = FALSE;
z->collectable = TRUE;
lock_zone(z);
assert(z->prio_refill_watermark != 0);
while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) {
- assert(z->doing_alloc == FALSE);
+ assert(z->doing_alloc_without_vm_priv == FALSE);
+ assert(z->doing_alloc_with_vm_priv == FALSE);
assert(z->async_prio_refill == TRUE);
unlock_zone(z);
if (z->noencrypt)
zflags |= KMA_NOENCRYPT;
- kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags);
+ kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (kr == KERN_SUCCESS) {
#if ZONE_ALIAS_ADDR
if (alloc_size == PAGE_SIZE)
space = zone_alias_addr(space);
#endif
- ZONE_PAGE_COUNT_INCR(z, (alloc_size / PAGE_SIZE));
zcram(z, space, alloc_size);
} else if (kr == KERN_RESOURCE_SHORTAGE) {
VM_PAGE_WAIT();
} else if (kr == KERN_NO_SPACE) {
- kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags);
+ kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (kr == KERN_SUCCESS) {
#if ZONE_ALIAS_ADDR
if (alloc_size == PAGE_SIZE)
}
/*
- * Cram the given memory into the specified zone.
+ * Boolean Random Number Generator for generating booleans to randomize
+ * the order of elements in newly zcram()'ed memory. The algorithm is a
+ * modified version of the KISS RNG proposed in the paper:
+ * http://stat.fsu.edu/techreports/M802.pdf
+ * The modifications have been documented in the technical paper
+ * paper from UCL:
+ * http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf
+ */
+
+static void random_bool_gen_entropy(
+ int *buffer,
+ int count)
+{
+
+ int i, t;
+ simple_lock(&bool_gen_lock);
+ for (i = 0; i < count; i++) {
+ bool_gen_seed[1] ^= (bool_gen_seed[1] << 5);
+ bool_gen_seed[1] ^= (bool_gen_seed[1] >> 7);
+ bool_gen_seed[1] ^= (bool_gen_seed[1] << 22);
+ t = bool_gen_seed[2] + bool_gen_seed[3] + bool_gen_global;
+ bool_gen_seed[2] = bool_gen_seed[3];
+ bool_gen_global = t < 0;
+ bool_gen_seed[3] = t &2147483647;
+ bool_gen_seed[0] += 1411392427;
+ buffer[i] = (bool_gen_seed[0] + bool_gen_seed[1] + bool_gen_seed[3]);
+ }
+ simple_unlock(&bool_gen_lock);
+}
+
+static boolean_t random_bool_gen(
+ int *buffer,
+ int index,
+ int bufsize)
+{
+ int valindex, bitpos;
+ valindex = (index / (8 * sizeof(int))) % bufsize;
+ bitpos = index % (8 * sizeof(int));
+ return (boolean_t)(buffer[valindex] & (1 << bitpos));
+}
+
+static void
+random_free_to_zone(
+ zone_t zone,
+ vm_offset_t newmem,
+ vm_offset_t first_element_offset,
+ int element_count,
+ boolean_t from_zm,
+ int *entropy_buffer)
+{
+ vm_offset_t last_element_offset;
+ vm_offset_t element_addr;
+ vm_size_t elem_size;
+ int index;
+
+ elem_size = zone->elem_size;
+ last_element_offset = first_element_offset + ((element_count * elem_size) - elem_size);
+ for (index = 0; index < element_count; index++) {
+ assert(first_element_offset <= last_element_offset);
+ if (random_bool_gen(entropy_buffer, index, MAX_ENTROPY_PER_ZCRAM)) {
+ element_addr = newmem + first_element_offset;
+ first_element_offset += elem_size;
+ } else {
+ element_addr = newmem + last_element_offset;
+ last_element_offset -= elem_size;
+ }
+ if (element_addr != (vm_offset_t)zone) {
+ zone->count++; /* compensate for free_to_zone */
+ free_to_zone(zone, element_addr, FALSE);
+ }
+ if (!zone->use_page_list && from_zm) {
+ zone_page_alloc(element_addr, elem_size);
+ }
+ zone->cur_size += elem_size;
+ }
+}
+
+/*
+ * Cram the given memory into the specified zone. Update the zone page count accordingly.
*/
void
zcram(
{
vm_size_t elem_size;
boolean_t from_zm = FALSE;
+ vm_offset_t first_element_offset;
+ int element_count;
+ int entropy_buffer[MAX_ENTROPY_PER_ZCRAM];
/* Basic sanity checks */
assert(zone != ZONE_NULL && newmem != (vm_offset_t)0);
elem_size = zone->elem_size;
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, VM_KERNEL_ADDRPERM(zone), size, 0, 0, 0);
+
if (from_zone_map(newmem, size))
from_zm = TRUE;
if (from_zm && !zone->use_page_list)
zone_page_init(newmem, size);
+ ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE));
+
+ random_bool_gen_entropy(entropy_buffer, MAX_ENTROPY_PER_ZCRAM);
+
lock_zone(zone);
if (zone->use_page_list) {
struct zone_page_metadata *page_metadata;
+ size_t zone_page_metadata_size = sizeof(struct zone_page_metadata);
assert((newmem & PAGE_MASK) == 0);
assert((size & PAGE_MASK) == 0);
for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) {
- vm_size_t pos_in_page;
- page_metadata = (struct zone_page_metadata *)(newmem + PAGE_SIZE - sizeof(struct zone_page_metadata));
+ page_metadata = (struct zone_page_metadata *)(newmem);
page_metadata->pages.next = NULL;
page_metadata->pages.prev = NULL;
enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_metadata);
- for (pos_in_page = 0; (newmem + pos_in_page + elem_size) < (vm_offset_t)page_metadata; pos_in_page += elem_size) {
- page_metadata->alloc_count++;
- zone->count++; /* compensate for free_to_zone */
- if ((newmem + pos_in_page) == (vm_offset_t)zone) {
- /*
- * special case for the "zone_zone" zone, which is using the first
- * allocation of its pmap_steal_memory()-ed allocation for
- * the "zone_zone" variable already.
- */
- } else {
- free_to_zone(zone, newmem + pos_in_page, FALSE);
- }
- zone->cur_size += elem_size;
- }
- }
- } else {
- while (size >= elem_size) {
- zone->count++; /* compensate for free_to_zone */
- if (newmem == (vm_offset_t)zone) {
- /* Don't free zone_zone zone */
+ if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0){
+ first_element_offset = zone_page_metadata_size;
} else {
- free_to_zone(zone, newmem, FALSE);
+ first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT));
}
- if (from_zm)
- zone_page_alloc(newmem, elem_size);
- size -= elem_size;
- newmem += elem_size;
- zone->cur_size += elem_size;
+ element_count = (int)((PAGE_SIZE - first_element_offset) / elem_size);
+ page_metadata->alloc_count += element_count;
+ random_free_to_zone(zone, newmem, first_element_offset, element_count, from_zm, entropy_buffer);
}
+ } else {
+ first_element_offset = 0;
+ element_count = (int)((size - first_element_offset) / elem_size);
+ random_free_to_zone(zone, newmem, first_element_offset, element_count, from_zm, entropy_buffer);
}
unlock_zone(zone);
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, VM_KERNEL_ADDRPERM(zone), 0, 0, 0, 0);
+
}
return 0;
size = nelem * zone->elem_size;
size = round_page(size);
- kr = kmem_alloc_kobject(kernel_map, &memory, size);
+ kr = kmem_alloc_kobject(kernel_map, &memory, size, VM_KERN_MEMORY_ZONE);
if (kr != KERN_SUCCESS)
return 0;
zone_change(zone, Z_FOREIGN, TRUE);
- ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE));
zcram(zone, memory, size);
nalloc = (int)(size / zone->elem_size);
assert(nalloc >= nelem);
zone_bootstrap(void)
{
char temp_buf[16];
+ unsigned int i;
if (PE_parse_boot_argn("-zinfop", temp_buf, sizeof(temp_buf))) {
zinfo_per_task = TRUE;
/* Set up zone element poisoning */
zp_init();
+ /* Seed the random boolean generator for elements in zone free list */
+ for (i = 0; i < RANDOM_BOOL_GEN_SEED_COUNT; i++) {
+ bool_gen_seed[i] = (unsigned int)early_random();
+ }
+ simple_lock_init(&bool_gen_lock, 0);
+
/* should zlog log to debug zone corruption instead of leaks? */
if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) {
corruption_debug_flag = TRUE;
zone_change(zone_zone, Z_NOENCRYPT, TRUE);
zcram(zone_zone, zdata, zdata_size);
+ VM_PAGE_MOVE_STOLEN(atop_64(zdata_size));
/* initialize fake zones and zone info if tracking by task */
if (zinfo_per_task) {
vm_size_t zisize = sizeof(zinfo_usage_store_t) * ZINFO_SLOTS;
- unsigned int i;
for (i = 0; i < num_fake_zones; i++)
fake_zones[i].init(ZINFO_SLOTS - num_fake_zones + i);
vm_offset_t zone_max;
retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size,
- FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT,
+ FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(VM_KERN_MEMORY_ZONE),
&zone_map);
if (retval != KERN_SUCCESS)
struct zone_page_table_entry *entry_array;
if (kmem_alloc_kobject(zone_map, &second_level_array,
- second_level_size) != KERN_SUCCESS) {
+ second_level_size, VM_KERN_MEMORY_OSFMK) != KERN_SUCCESS) {
panic("zone_page_table_expand");
}
zone_map_table_page_count += (second_level_size / PAGE_SIZE);
#endif
thread_t thr = current_thread();
boolean_t check_poison = FALSE;
+ boolean_t set_doing_alloc_with_vm_priv = FALSE;
#if CONFIG_ZLEAKS
uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */
while ((addr == 0) && canblock) {
/*
- * If nothing was there, try to get more
+ * zone is empty, try to expand it
+ *
+ * Note that we now allow up to 2 threads (1 vm_privliged and 1 non-vm_privliged)
+ * to expand the zone concurrently... this is necessary to avoid stalling
+ * vm_privileged threads running critical code necessary to continue compressing/swapping
+ * pages (i.e. making new free pages) from stalling behind non-vm_privileged threads
+ * waiting to acquire free pages when the vm_page_free_count is below the
+ * vm_page_free_reserved limit.
*/
- if (zone->doing_alloc) {
+ if ((zone->doing_alloc_without_vm_priv || zone->doing_alloc_with_vm_priv) &&
+ (((thr->options & TH_OPT_VMPRIV) == 0) || zone->doing_alloc_with_vm_priv)) {
/*
- * Someone is allocating memory for this zone.
- * Wait for it to show up, then try again.
+ * This is a non-vm_privileged thread and a non-vm_privileged or
+ * a vm_privileged thread is already expanding the zone...
+ * OR
+ * this is a vm_privileged thread and a vm_privileged thread is
+ * already expanding the zone...
+ *
+ * In either case wait for a thread to finish, then try again.
*/
zone->waiting = TRUE;
zone_sleep(zone);
} else if (zone->doing_gc) {
- /* zone_gc() is running. Since we need an element
+ /*
+ * zone_gc() is running. Since we need an element
* from the free list that is currently being
- * collected, set the waiting bit and try to
- * interrupt the GC process, and try again
- * when we obtain the lock.
+ * collected, set the waiting bit and
+ * wait for the GC process to finish
+ * before trying again
*/
zone->waiting = TRUE;
zone_sleep(zone);
panic("zalloc: zone \"%s\" empty.", zone->zone_name);
}
}
- zone->doing_alloc = TRUE;
+ if ((thr->options & TH_OPT_VMPRIV)) {
+ zone->doing_alloc_with_vm_priv = TRUE;
+ set_doing_alloc_with_vm_priv = TRUE;
+ } else {
+ zone->doing_alloc_without_vm_priv = TRUE;
+ }
unlock_zone(zone);
for (;;) {
if (zone->noencrypt)
zflags |= KMA_NOENCRYPT;
- retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags);
+ retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (retval == KERN_SUCCESS) {
#if ZONE_ALIAS_ADDR
if (alloc_size == PAGE_SIZE)
}
}
#endif /* CONFIG_ZLEAKS */
- ZONE_PAGE_COUNT_INCR(zone, (alloc_size / PAGE_SIZE));
zcram(zone, space, alloc_size);
break;
}
}
lock_zone(zone);
- zone->doing_alloc = FALSE;
+
+ if (set_doing_alloc_with_vm_priv == TRUE)
+ zone->doing_alloc_with_vm_priv = FALSE;
+ else
+ zone->doing_alloc_without_vm_priv = FALSE;
+
if (zone->waiting) {
- zone->waiting = FALSE;
+ zone->waiting = FALSE;
zone_wakeup(zone);
}
addr = try_alloc_from_zone(zone, &check_poison);
break;
case Z_ALIGNMENT_REQUIRED:
zone->alignment_required = value;
+ /*
+ * Disable the page list optimization here to provide
+ * more of an alignment guarantee. This prevents
+ * the alignment from being modified by the metadata stored
+ * at the beginning of the page.
+ */
+ zone->use_page_list = FALSE;
#if ZONE_DEBUG
zone_debug_disable(zone);
#endif
}
-
+#define ZONEGC_SMALL_ELEMENT_SIZE 4096
struct {
uint64_t zgc_invoked;
if (!z->collectable)
continue;
- if (all_zones == FALSE && z->elem_size < PAGE_SIZE && !z->use_page_list)
+ if (all_zones == FALSE && z->elem_size < ZONEGC_SMALL_ELEMENT_SIZE && !z->use_page_list)
continue;
lock_zone(z);
names_size = round_page(max_zones * sizeof *names);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &names_addr, names_size);
+ &names_addr, names_size, VM_KERN_MEMORY_IPC);
if (kr != KERN_SUCCESS)
return kr;
names = (mach_zone_name_t *) names_addr;
info_size = round_page(max_zones * sizeof *info);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &info_addr, info_size);
+ &info_addr, info_size, VM_KERN_MEMORY_IPC);
if (kr != KERN_SUCCESS) {
kmem_free(ipc_kernel_map,
names_addr, names_size);
zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
zi->tzi_count = (uint64_t)zcopy.count;
- zi->tzi_cur_size = (uint64_t)zcopy.cur_size;
+ zi->tzi_cur_size = ptoa_64(zcopy.page_count);
zi->tzi_max_size = (uint64_t)zcopy.max_size;
zi->tzi_elem_size = (uint64_t)zcopy.elem_size;
zi->tzi_alloc_size = (uint64_t)zcopy.alloc_size;
bzero((char *) (names_addr + used), names_size - used);
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
- (vm_map_size_t)names_size, TRUE, ©);
+ (vm_map_size_t)used, TRUE, ©);
assert(kr == KERN_SUCCESS);
*namesp = (mach_zone_name_t *) copy;
bzero((char *) (info_addr + used), info_size - used);
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
- (vm_map_size_t)info_size, TRUE, ©);
+ (vm_map_size_t)used, TRUE, ©);
assert(kr == KERN_SUCCESS);
*infop = (task_zone_info_t *) copy;
mach_msg_type_number_t *namesCntp,
mach_zone_info_array_t *infop,
mach_msg_type_number_t *infoCntp)
+{
+ return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL));
+}
+
+kern_return_t
+mach_memory_info(
+ host_priv_t host,
+ mach_zone_name_array_t *namesp,
+ mach_msg_type_number_t *namesCntp,
+ mach_zone_info_array_t *infop,
+ mach_msg_type_number_t *infoCntp,
+ mach_memory_info_array_t *memoryInfop,
+ mach_msg_type_number_t *memoryInfoCntp)
{
mach_zone_name_t *names;
vm_offset_t names_addr;
vm_size_t names_size;
+
mach_zone_info_t *info;
vm_offset_t info_addr;
vm_size_t info_size;
+
+ mach_memory_info_t *memory_info;
+ vm_offset_t memory_info_addr;
+ vm_size_t memory_info_size;
+ vm_size_t memory_info_vmsize;
+ unsigned int num_sites;
+
unsigned int max_zones, i;
zone_t z;
mach_zone_name_t *zn;
names_size = round_page(max_zones * sizeof *names);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &names_addr, names_size);
+ &names_addr, names_size, VM_KERN_MEMORY_IPC);
if (kr != KERN_SUCCESS)
return kr;
names = (mach_zone_name_t *) names_addr;
info_size = round_page(max_zones * sizeof *info);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &info_addr, info_size);
+ &info_addr, info_size, VM_KERN_MEMORY_IPC);
if (kr != KERN_SUCCESS) {
kmem_free(ipc_kernel_map,
names_addr, names_size);
return kr;
}
-
info = (mach_zone_info_t *) info_addr;
+ num_sites = 0;
+ memory_info_addr = 0;
+ if (memoryInfop && memoryInfoCntp)
+ {
+ num_sites = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT;
+ memory_info_size = num_sites * sizeof(*info);
+ memory_info_vmsize = round_page(memory_info_size);
+ kr = kmem_alloc_pageable(ipc_kernel_map,
+ &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS) {
+ kmem_free(ipc_kernel_map,
+ names_addr, names_size);
+ kmem_free(ipc_kernel_map,
+ info_addr, info_size);
+ return kr;
+ }
+
+ kr = vm_map_wire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize,
+ VM_PROT_READ|VM_PROT_WRITE|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_IPC), FALSE);
+ assert(kr == KERN_SUCCESS);
+
+ memory_info = (mach_memory_info_t *) memory_info_addr;
+ vm_page_diagnose(memory_info, num_sites);
+
+ kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE);
+ assert(kr == KERN_SUCCESS);
+ }
+
zn = &names[0];
zi = &info[0];
zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
zi->mzi_count = (uint64_t)zcopy.count;
- zi->mzi_cur_size = (uint64_t)zcopy.cur_size;
+ zi->mzi_cur_size = ptoa_64(zcopy.page_count);
zi->mzi_max_size = (uint64_t)zcopy.max_size;
zi->mzi_elem_size = (uint64_t)zcopy.elem_size;
zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size;
bzero((char *) (names_addr + used), names_size - used);
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
- (vm_map_size_t)names_size, TRUE, ©);
+ (vm_map_size_t)used, TRUE, ©);
assert(kr == KERN_SUCCESS);
*namesp = (mach_zone_name_t *) copy;
bzero((char *) (info_addr + used), info_size - used);
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
- (vm_map_size_t)info_size, TRUE, ©);
+ (vm_map_size_t)used, TRUE, ©);
assert(kr == KERN_SUCCESS);
*infop = (mach_zone_info_t *) copy;
*infoCntp = max_zones;
+ if (memoryInfop && memoryInfoCntp)
+ {
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr,
+ (vm_map_size_t)memory_info_size, TRUE, ©);
+ assert(kr == KERN_SUCCESS);
+
+ *memoryInfop = (mach_memory_info_t *) copy;
+ *memoryInfoCntp = num_sites;
+ }
+
return KERN_SUCCESS;
}
names_size = round_page(max_zones * sizeof *names);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &names_addr, names_size);
+ &names_addr, names_size, VM_KERN_MEMORY_IPC);
if (kr != KERN_SUCCESS)
return kr;
names = (zone_name_t *) names_addr;
info_size = round_page(max_zones * sizeof *info);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &info_addr, info_size);
+ &info_addr, info_size, VM_KERN_MEMORY_IPC);
if (kr != KERN_SUCCESS) {
kmem_free(ipc_kernel_map,
names_addr, names_size);
zn->zn_name[sizeof zn->zn_name - 1] = '\0';
zi->zi_count = zcopy.count;
- zi->zi_cur_size = zcopy.cur_size;
+ zi->zi_cur_size = ptoa(zcopy.page_count);
zi->zi_max_size = zcopy.max_size;
zi->zi_elem_size = zcopy.elem_size;
zi->zi_alloc_size = zcopy.alloc_size;
bzero((char *) (names_addr + used), names_size - used);
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
- (vm_map_size_t)names_size, TRUE, ©);
+ (vm_map_size_t)used, TRUE, ©);
assert(kr == KERN_SUCCESS);
*namesp = (zone_name_t *) copy;
bzero((char *) (info_addr + used), info_size - used);
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
- (vm_map_size_t)info_size, TRUE, ©);
+ (vm_map_size_t)used, TRUE, ©);
assert(kr == KERN_SUCCESS);
*infop = (zone_info_t *) copy;