/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 1998-2019 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- *
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*
*
* @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
*/
-/* HISTORY
- *
- * 10/15/97 Annette DeSchon (deschon@apple.com)
- * Fixed bug in which all cluster mbufs were broken up
- * into regular mbufs: Some clusters are now reserved.
- * When a cluster is needed, regular mbufs are no longer
- * used. (Radar 1683621)
- * 20-May-95 Mac Gillon (mgillon) at NeXT
- * New version based on 4.4
+/*
+ * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
+ * support for mandatory and extensible security protections. This notice
+ * is included in support of clause 2.2 (b) of the Apple Public License,
+ * Version 2.0.
*/
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
+#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/protosw.h>
#include <sys/domain.h>
-#include <net/netisr.h>
+#include <sys/queue.h>
+#include <sys/proc.h>
+
+#include <dev/random/randomdev.h>
+#include <kern/kern_types.h>
+#include <kern/simple_lock.h>
#include <kern/queue.h>
+#include <kern/sched_prim.h>
+#include <kern/backtrace.h>
+#include <kern/cpu_number.h>
+#include <kern/zalloc.h>
-extern kernel_pmap; /* The kernel's pmap */
+#include <libkern/OSAtomic.h>
+#include <libkern/OSDebug.h>
+#include <libkern/libkern.h>
-decl_simple_lock_data(, mbuf_slock);
-struct mbuf *mfree; /* mbuf free list */
-struct mbuf *mfreelater; /* mbuf deallocation list */
-extern vm_map_t mb_map; /* special map */
-int m_want; /* sleepers on mbufs */
-extern int nmbclusters; /* max number of mapped clusters */
-short *mclrefcnt; /* mapped cluster reference counts */
-int *mcl_paddr;
-union mcluster *mclfree; /* mapped cluster free list */
-int max_linkhdr; /* largest link-level header */
-int max_protohdr; /* largest protocol header */
-int max_hdr; /* largest link+protocol header */
-int max_datalen; /* MHLEN - max_hdr */
-struct mbstat mbstat; /* statistics */
-union mcluster *mbutl; /* first mapped cluster address */
-union mcluster *embutl; /* ending virtual address of mclusters */
+#include <os/log.h>
-static int nclpp; /* # clusters per physical page */
-static char mbfail[] = "mbuf not mapped";
+#include <IOKit/IOMapper.h>
-static int m_howmany();
+#include <machine/limits.h>
+#include <machine/machine_routines.h>
-/* The number of cluster mbufs that are allocated, to start. */
-#define MINCL max(16, 2)
+#if CONFIG_MACF_NET
+#include <security/mac_framework.h>
+#endif /* MAC_NET */
-extern int dlil_input_thread_wakeup;
-extern int dlil_expand_mcl;
-extern int dlil_initialized;
+#include <sys/mcache.h>
+#include <net/ntstat.h>
+/*
+ * MBUF IMPLEMENTATION NOTES.
+ *
+ * There is a total of 5 per-CPU caches:
+ *
+ * MC_MBUF:
+ * This is a cache of rudimentary objects of MSIZE in size; each
+ * object represents an mbuf structure. This cache preserves only
+ * the m_type field of the mbuf during its transactions.
+ *
+ * MC_CL:
+ * This is a cache of rudimentary objects of MCLBYTES in size; each
+ * object represents a mcluster structure. This cache does not
+ * preserve the contents of the objects during its transactions.
+ *
+ * MC_BIGCL:
+ * This is a cache of rudimentary objects of MBIGCLBYTES in size; each
+ * object represents a mbigcluster structure. This cache does not
+ * preserve the contents of the objects during its transaction.
+ *
+ * MC_MBUF_CL:
+ * This is a cache of mbufs each having a cluster attached to it.
+ * It is backed by MC_MBUF and MC_CL rudimentary caches. Several
+ * fields of the mbuf related to the external cluster are preserved
+ * during transactions.
+ *
+ * MC_MBUF_BIGCL:
+ * This is a cache of mbufs each having a big cluster attached to it.
+ * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several
+ * fields of the mbuf related to the external cluster are preserved
+ * during transactions.
+ *
+ * OBJECT ALLOCATION:
+ *
+ * Allocation requests are handled first at the per-CPU (mcache) layer
+ * before falling back to the slab layer. Performance is optimal when
+ * the request is satisfied at the CPU layer because global data/lock
+ * never gets accessed. When the slab layer is entered for allocation,
+ * the slab freelist will be checked first for available objects before
+ * the VM backing store is invoked. Slab layer operations are serialized
+ * for all of the caches as the mbuf global lock is held most of the time.
+ * Allocation paths are different depending on the class of objects:
+ *
+ * a. Rudimentary object:
+ *
+ * { m_get_common(), m_clattach(), m_mclget(),
+ * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(),
+ * composite object allocation }
+ * | ^
+ * | |
+ * | +-----------------------+
+ * v |
+ * mcache_alloc/mcache_alloc_ext() mbuf_slab_audit()
+ * | ^
+ * v |
+ * [CPU cache] -------> (found?) -------+
+ * | |
+ * v |
+ * mbuf_slab_alloc() |
+ * | |
+ * v |
+ * +---------> [freelist] -------> (found?) -------+
+ * | |
+ * | v
+ * | m_clalloc()
+ * | |
+ * | v
+ * +---<<---- kmem_mb_alloc()
+ *
+ * b. Composite object:
+ *
+ * { m_getpackets_internal(), m_allocpacket_internal() }
+ * | ^
+ * | |
+ * | +------ (done) ---------+
+ * v |
+ * mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit()
+ * | ^
+ * v |
+ * [CPU cache] -------> (found?) -------+
+ * | |
+ * v |
+ * mbuf_cslab_alloc() |
+ * | |
+ * v |
+ * [freelist] -------> (found?) -------+
+ * | |
+ * v |
+ * (rudimentary object) |
+ * mcache_alloc/mcache_alloc_ext() ------>>-----+
+ *
+ * Auditing notes: If auditing is enabled, buffers will be subjected to
+ * integrity checks by the audit routine. This is done by verifying their
+ * contents against DEADBEEF (free) pattern before returning them to caller.
+ * As part of this step, the routine will also record the transaction and
+ * pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will
+ * also restore any constructed data structure fields if necessary.
+ *
+ * OBJECT DEALLOCATION:
+ *
+ * Freeing an object simply involves placing it into the CPU cache; this
+ * pollutes the cache to benefit subsequent allocations. The slab layer
+ * will only be entered if the object is to be purged out of the cache.
+ * During normal operations, this happens only when the CPU layer resizes
+ * its bucket while it's adjusting to the allocation load. Deallocation
+ * paths are different depending on the class of objects:
+ *
+ * a. Rudimentary object:
+ *
+ * { m_free(), m_freem_list(), composite object deallocation }
+ * | ^
+ * | |
+ * | +------ (done) ---------+
+ * v |
+ * mcache_free/mcache_free_ext() |
+ * | |
+ * v |
+ * mbuf_slab_audit() |
+ * | |
+ * v |
+ * [CPU cache] ---> (not purging?) -----+
+ * | |
+ * v |
+ * mbuf_slab_free() |
+ * | |
+ * v |
+ * [freelist] ----------->>------------+
+ * (objects get purged to VM only on demand)
+ *
+ * b. Composite object:
+ *
+ * { m_free(), m_freem_list() }
+ * | ^
+ * | |
+ * | +------ (done) ---------+
+ * v |
+ * mcache_free/mcache_free_ext() |
+ * | |
+ * v |
+ * mbuf_cslab_audit() |
+ * | |
+ * v |
+ * [CPU cache] ---> (not purging?) -----+
+ * | |
+ * v |
+ * mbuf_cslab_free() |
+ * | |
+ * v |
+ * [freelist] ---> (not purging?) -----+
+ * | |
+ * v |
+ * (rudimentary object) |
+ * mcache_free/mcache_free_ext() ------->>------+
+ *
+ * Auditing notes: If auditing is enabled, the audit routine will save
+ * any constructed data structure fields (if necessary) before filling the
+ * contents of the buffers with DEADBEEF (free) pattern and recording the
+ * transaction. Buffers that are freed (whether at CPU or slab layer) are
+ * expected to contain the free pattern.
+ *
+ * DEBUGGING:
+ *
+ * Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this
+ * translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally,
+ * the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag,
+ * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak
+ * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g.
+ * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory.
+ *
+ * Each object is associated with exactly one mcache_audit_t structure that
+ * contains the information related to its last buffer transaction. Given
+ * an address of an object, the audit structure can be retrieved by finding
+ * the position of the object relevant to the base address of the cluster:
+ *
+ * +------------+ +=============+
+ * | mbuf addr | | mclaudit[i] |
+ * +------------+ +=============+
+ * | | cl_audit[0] |
+ * i = MTOBG(addr) +-------------+
+ * | +-----> | cl_audit[1] | -----> mcache_audit_t
+ * b = BGTOM(i) | +-------------+
+ * | | | ... |
+ * x = MCLIDX(b, addr) | +-------------+
+ * | | | cl_audit[7] |
+ * +-----------------+ +-------------+
+ * (e.g. x == 1)
+ *
+ * The mclaudit[] array is allocated at initialization time, but its contents
+ * get populated when the corresponding cluster is created. Because a page
+ * can be turned into NMBPG number of mbufs, we preserve enough space for the
+ * mbufs so that there is a 1-to-1 mapping between them. A page that never
+ * gets (or has not yet) turned into mbufs will use only cl_audit[0] with the
+ * remaining entries unused. For 16KB cluster, only one entry from the first
+ * page is allocated and used for the entire object.
+ */
-void
-mbinit()
-{
- int s,m;
- int initmcl = 32;
+/* TODO: should be in header file */
+/* kernel translater */
+extern vm_offset_t kmem_mb_alloc(vm_map_t, int, int, kern_return_t *);
+extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va);
+extern vm_map_t mb_map; /* special map */
+
+static uint32_t mb_kmem_contig_failed;
+static uint32_t mb_kmem_failed;
+static uint32_t mb_kmem_one_failed;
+/* Timestamp of allocation failures. */
+static uint64_t mb_kmem_contig_failed_ts;
+static uint64_t mb_kmem_failed_ts;
+static uint64_t mb_kmem_one_failed_ts;
+static uint64_t mb_kmem_contig_failed_size;
+static uint64_t mb_kmem_failed_size;
+static uint32_t mb_kmem_stats[6];
+static const char *mb_kmem_stats_labels[] = { "INVALID_ARGUMENT",
+ "INVALID_ADDRESS",
+ "RESOURCE_SHORTAGE",
+ "NO_SPACE",
+ "KERN_FAILURE",
+ "OTHERS" };
+
+/* Global lock */
+decl_lck_mtx_data(static, mbuf_mlock_data);
+static lck_mtx_t *mbuf_mlock = &mbuf_mlock_data;
+static lck_attr_t *mbuf_mlock_attr;
+static lck_grp_t *mbuf_mlock_grp;
+static lck_grp_attr_t *mbuf_mlock_grp_attr;
+
+/* Back-end (common) layer */
+static uint64_t mb_expand_cnt;
+static uint64_t mb_expand_cl_cnt;
+static uint64_t mb_expand_cl_total;
+static uint64_t mb_expand_bigcl_cnt;
+static uint64_t mb_expand_bigcl_total;
+static uint64_t mb_expand_16kcl_cnt;
+static uint64_t mb_expand_16kcl_total;
+static boolean_t mbuf_worker_needs_wakeup; /* wait channel for mbuf worker */
+static uint32_t mbuf_worker_run_cnt;
+static uint64_t mbuf_worker_last_runtime;
+static uint64_t mbuf_drain_last_runtime;
+static int mbuf_worker_ready; /* worker thread is runnable */
+static int ncpu; /* number of CPUs */
+static ppnum_t *mcl_paddr; /* Array of cluster physical addresses */
+static ppnum_t mcl_pages; /* Size of array (# physical pages) */
+static ppnum_t mcl_paddr_base; /* Handle returned by IOMapper::iovmAlloc() */
+static mcache_t *ref_cache; /* Cache of cluster reference & flags */
+static mcache_t *mcl_audit_con_cache; /* Audit contents cache */
+static unsigned int mbuf_debug; /* patchable mbuf mcache flags */
+static unsigned int mb_normalized; /* number of packets "normalized" */
+
+#define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */
+#define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */
+
+typedef enum {
+ MC_MBUF = 0, /* Regular mbuf */
+ MC_CL, /* Cluster */
+ MC_BIGCL, /* Large (4KB) cluster */
+ MC_16KCL, /* Jumbo (16KB) cluster */
+ MC_MBUF_CL, /* mbuf + cluster */
+ MC_MBUF_BIGCL, /* mbuf + large (4KB) cluster */
+ MC_MBUF_16KCL /* mbuf + jumbo (16KB) cluster */
+} mbuf_class_t;
+
+#define MBUF_CLASS_MIN MC_MBUF
+#define MBUF_CLASS_MAX MC_MBUF_16KCL
+#define MBUF_CLASS_LAST MC_16KCL
+#define MBUF_CLASS_VALID(c) \
+ ((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX)
+#define MBUF_CLASS_COMPOSITE(c) \
+ ((int)(c) > MBUF_CLASS_LAST)
- if (nclpp)
- return;
- nclpp = round_page(MCLBYTES) / MCLBYTES; /* see mbufgc() */
- if (nclpp < 1) nclpp = 1;
- MBUF_LOCKINIT();
-// NETISR_LOCKINIT();
-
- mbstat.m_msize = MSIZE;
- mbstat.m_mclbytes = MCLBYTES;
- mbstat.m_minclsize = MINCLSIZE;
- mbstat.m_mlen = MLEN;
- mbstat.m_mhlen = MHLEN;
-
- if (nmbclusters == 0)
- nmbclusters = NMBCLUSTERS;
- MALLOC(mclrefcnt, short *, nmbclusters * sizeof (short),
- M_TEMP, M_WAITOK);
- if (mclrefcnt == 0)
- panic("mbinit");
- for (m = 0; m < nmbclusters; m++)
- mclrefcnt[m] = -1;
-
- MALLOC(mcl_paddr, int *, (nmbclusters/(PAGE_SIZE/CLBYTES)) * sizeof (int),
- M_TEMP, M_WAITOK);
- if (mcl_paddr == 0)
- panic("mbinit1");
- bzero((char *)mcl_paddr, (nmbclusters/(PAGE_SIZE/CLBYTES)) * sizeof (int));
-
- embutl = (union mcluster *)((unsigned char *)mbutl + (nmbclusters * MCLBYTES));
-
- PE_parse_boot_arg("initmcl", &initmcl);
-
- if (m_clalloc(max(PAGE_SIZE/CLBYTES, 1) * initmcl, M_WAIT) == 0)
- goto bad;
- MBUF_UNLOCK();
- return;
-bad:
- panic("mbinit");
-}
/*
- * Allocate some number of mbuf clusters
- * and place on cluster free list.
+ * mbuf specific mcache allocation request flags.
*/
-/* ARGSUSED */
-m_clalloc(ncl, nowait)
- register int ncl;
- int nowait;
-{
- register union mcluster *mcl;
- register int i;
- vm_size_t size;
- static char doing_alloc;
-
- /*
- * Honor the caller's wish to block or not block.
- * We have a way to grow the pool asynchronously,
- * by kicking the dlil_input_thread.
- */
- if ((i = m_howmany()) <= 0)
- goto out;
-
- if ((nowait == M_DONTWAIT))
- goto out;
+#define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */
- if (ncl < i)
- ncl = i;
- size = round_page(ncl * MCLBYTES);
- mcl = (union mcluster *)kmem_mb_alloc(mb_map, size);
+/*
+ * Per-cluster slab structure.
+ *
+ * A slab is a cluster control structure that contains one or more object
+ * chunks; the available chunks are chained in the slab's freelist (sl_head).
+ * Each time a chunk is taken out of the slab, the slab's reference count
+ * gets incremented. When all chunks have been taken out, the empty slab
+ * gets removed (SLF_DETACHED) from the class's slab list. A chunk that is
+ * returned to a slab causes the slab's reference count to be decremented;
+ * it also causes the slab to be reinserted back to class's slab list, if
+ * it's not already done.
+ *
+ * Compartmentalizing of the object chunks into slabs allows us to easily
+ * merge one or more slabs together when the adjacent slabs are idle, as
+ * well as to convert or move a slab from one class to another; e.g. the
+ * mbuf cluster slab can be converted to a regular cluster slab when all
+ * mbufs in the slab have been freed.
+ *
+ * A slab may also span across multiple clusters for chunks larger than
+ * a cluster's size. In this case, only the slab of the first cluster is
+ * used. The rest of the slabs are marked with SLF_PARTIAL to indicate
+ * that they are part of the larger slab.
+ *
+ * Each slab controls a page of memory.
+ */
+typedef struct mcl_slab {
+ struct mcl_slab *sl_next; /* neighboring slab */
+ u_int8_t sl_class; /* controlling mbuf class */
+ int8_t sl_refcnt; /* outstanding allocations */
+ int8_t sl_chunks; /* chunks (bufs) in this slab */
+ u_int16_t sl_flags; /* slab flags (see below) */
+ u_int16_t sl_len; /* slab length */
+ void *sl_base; /* base of allocated memory */
+ void *sl_head; /* first free buffer */
+ TAILQ_ENTRY(mcl_slab) sl_link; /* next/prev slab on freelist */
+} mcl_slab_t;
+
+#define SLF_MAPPED 0x0001 /* backed by a mapped page */
+#define SLF_PARTIAL 0x0002 /* part of another slab */
+#define SLF_DETACHED 0x0004 /* not in slab freelist */
- if (mcl == 0 && ncl > 1) {
- size = round_page(MCLBYTES); /* Try for 1 if failed */
- mcl = (union mcluster *)kmem_mb_alloc(mb_map, size);
- }
+/*
+ * The array of slabs are broken into groups of arrays per 1MB of kernel
+ * memory to reduce the footprint. Each group is allocated on demand
+ * whenever a new piece of memory mapped in from the VM crosses the 1MB
+ * boundary.
+ */
+#define NSLABSPMB ((1 << MBSHIFT) >> PAGE_SHIFT)
- if (mcl) {
- MBUF_LOCK();
- ncl = size / MCLBYTES;
- for (i = 0; i < ncl; i++) {
- if (++mclrefcnt[mtocl(mcl)] != 0)
- panic("m_clalloc already there");
- if (((int)mcl & PAGE_MASK) == 0)
- mcl_paddr[((char *)mcl - (char *)mbutl)/PAGE_SIZE] = pmap_extract(kernel_pmap, (char *)mcl);
+typedef struct mcl_slabg {
+ mcl_slab_t *slg_slab; /* group of slabs */
+} mcl_slabg_t;
- mcl->mcl_next = mclfree;
- mclfree = mcl++;
- }
- mbstat.m_clfree += ncl;
- mbstat.m_clusters += ncl;
- return (ncl);
- } /* else ... */
-out:
- MBUF_LOCK();
+/*
+ * Number of slabs needed to control a 16KB cluster object.
+ */
+#define NSLABSP16KB (M16KCLBYTES >> PAGE_SHIFT)
- /*
- * When non-blocking we kick the dlil thread if we havve to grow the
- * pool or if the number of free clusters is less than requested.
+/*
+ * Per-cluster audit structure.
+ */
+typedef struct {
+ mcache_audit_t **cl_audit; /* array of audits */
+} mcl_audit_t;
+
+typedef struct {
+ struct thread *msa_thread; /* thread doing transaction */
+ struct thread *msa_pthread; /* previous transaction thread */
+ uint32_t msa_tstamp; /* transaction timestamp (ms) */
+ uint32_t msa_ptstamp; /* prev transaction timestamp (ms) */
+ uint16_t msa_depth; /* pc stack depth */
+ uint16_t msa_pdepth; /* previous transaction pc stack */
+ void *msa_stack[MCACHE_STACK_DEPTH];
+ void *msa_pstack[MCACHE_STACK_DEPTH];
+} mcl_scratch_audit_t;
+
+typedef struct {
+ /*
+ * Size of data from the beginning of an mbuf that covers m_hdr,
+ * pkthdr and m_ext structures. If auditing is enabled, we allocate
+ * a shadow mbuf structure of this size inside each audit structure,
+ * and the contents of the real mbuf gets copied into it when the mbuf
+ * is freed. This allows us to pattern-fill the mbuf for integrity
+ * check, and to preserve any constructed mbuf fields (e.g. mbuf +
+ * cluster cache case). Note that we don't save the contents of
+ * clusters when they are freed; we simply pattern-fill them.
*/
- if ((nowait == M_DONTWAIT) && (i > 0 || ncl >= mbstat.m_clfree)) {
- dlil_expand_mcl = 1;
- if (dlil_initialized)
- wakeup((caddr_t)&dlil_input_thread_wakeup);
- }
-
- if (mbstat.m_clfree >= ncl)
- return 1;
+ u_int8_t sc_mbuf[(MSIZE - _MHLEN) + sizeof(_m_ext_t)];
+ mcl_scratch_audit_t sc_scratch __attribute__((aligned(8)));
+} mcl_saved_contents_t;
- mbstat.m_drops++;
+#define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t))
- return 0;
-}
+#define MCA_SAVED_MBUF_PTR(_mca) \
+ ((struct mbuf *)(void *)((mcl_saved_contents_t *) \
+ (_mca)->mca_contents)->sc_mbuf)
+#define MCA_SAVED_MBUF_SIZE \
+ (sizeof (((mcl_saved_contents_t *)0)->sc_mbuf))
+#define MCA_SAVED_SCRATCH_PTR(_mca) \
+ (&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch)
/*
- * Add more free mbufs by cutting up a cluster.
+ * mbuf specific mcache audit flags
*/
-m_expand(canwait)
- int canwait;
-{
- register caddr_t mcl;
+#define MB_INUSE 0x01 /* object has not been returned to slab */
+#define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */
+#define MB_SCVALID 0x04 /* object has valid saved contents */
- if (mbstat.m_clfree < (mbstat.m_clusters >> 4))
- /* 1/16th of the total number of cluster mbufs allocated is
- reserved for large packets. The number reserved must
- always be < 1/2, or future allocation will be prevented.
- */
- return 0;
+/*
+ * Each of the following two arrays hold up to nmbclusters elements.
+ */
+static mcl_audit_t *mclaudit; /* array of cluster audit information */
+static unsigned int maxclaudit; /* max # of entries in audit table */
+static mcl_slabg_t **slabstbl; /* cluster slabs table */
+static unsigned int maxslabgrp; /* max # of entries in slabs table */
+static unsigned int slabgrp; /* # of entries in slabs table */
+
+/* Globals */
+int nclusters; /* # of clusters for non-jumbo (legacy) sizes */
+int njcl; /* # of clusters for jumbo sizes */
+int njclbytes; /* size of a jumbo cluster */
+unsigned char *mbutl; /* first mapped cluster address */
+unsigned char *embutl; /* ending virtual address of mclusters */
+int _max_linkhdr; /* largest link-level header */
+int _max_protohdr; /* largest protocol header */
+int max_hdr; /* largest link+protocol header */
+int max_datalen; /* MHLEN - max_hdr */
+
+static boolean_t mclverify; /* debug: pattern-checking */
+static boolean_t mcltrace; /* debug: stack tracing */
+static boolean_t mclfindleak; /* debug: leak detection */
+static boolean_t mclexpleak; /* debug: expose leak info to user space */
+
+static struct timeval mb_start; /* beginning of time */
+
+/* mbuf leak detection variables */
+static struct mleak_table mleak_table;
+static mleak_stat_t *mleak_stat;
+
+#define MLEAK_STAT_SIZE(n) \
+ __builtin_offsetof(mleak_stat_t, ml_trace[n])
+
+struct mallocation {
+ mcache_obj_t *element; /* the alloc'ed element, NULL if unused */
+ u_int32_t trace_index; /* mtrace index for corresponding backtrace */
+ u_int32_t count; /* How many objects were requested */
+ u_int64_t hitcount; /* for determining hash effectiveness */
+};
+
+struct mtrace {
+ u_int64_t collisions;
+ u_int64_t hitcount;
+ u_int64_t allocs;
+ u_int64_t depth;
+ uintptr_t addr[MLEAK_STACK_DEPTH];
+};
+
+/* Size must be a power of two for the zhash to be able to just mask off bits */
+#define MLEAK_ALLOCATION_MAP_NUM 512
+#define MLEAK_TRACE_MAP_NUM 256
- MCLALLOC(mcl, canwait);
- if (mcl) {
- register struct mbuf *m = (struct mbuf *)mcl;
- register int i = NMBPCL;
- MBUF_LOCK();
- mbstat.m_mtypes[MT_FREE] += i;
- mbstat.m_mbufs += i;
- while (i--) {
- m->m_type = MT_FREE;
- m->m_next = mfree;
- mfree = m++;
- }
- i = m_want;
- m_want = 0;
- MBUF_UNLOCK();
- if (i) wakeup((caddr_t)&mfree);
- return 1;
- }
- return 0;
-}
+/*
+ * Sample factor for how often to record a trace. This is overwritable
+ * by the boot-arg mleak_sample_factor.
+ */
+#define MLEAK_SAMPLE_FACTOR 500
/*
- * When MGET failes, ask protocols to free space when short of memory,
- * then re-attempt to allocate an mbuf.
+ * Number of top leakers recorded.
*/
-struct mbuf *
-m_retry(canwait, type)
- int canwait, type;
+#define MLEAK_NUM_TRACES 5
+
+#define MB_LEAK_SPACING_64 " "
+#define MB_LEAK_SPACING_32 " "
+
+
+#define MB_LEAK_HDR_32 "\n\
+ trace [1] trace [2] trace [3] trace [4] trace [5] \n\
+ ---------- ---------- ---------- ---------- ---------- \n\
+"
+
+#define MB_LEAK_HDR_64 "\n\
+ trace [1] trace [2] trace [3] \
+ trace [4] trace [5] \n\
+ ------------------ ------------------ ------------------ \
+ ------------------ ------------------ \n\
+"
+
+static uint32_t mleak_alloc_buckets = MLEAK_ALLOCATION_MAP_NUM;
+static uint32_t mleak_trace_buckets = MLEAK_TRACE_MAP_NUM;
+
+/* Hashmaps of allocations and their corresponding traces */
+static struct mallocation *mleak_allocations;
+static struct mtrace *mleak_traces;
+static struct mtrace *mleak_top_trace[MLEAK_NUM_TRACES];
+
+/* Lock to protect mleak tables from concurrent modification */
+decl_lck_mtx_data(static, mleak_lock_data);
+static lck_mtx_t *mleak_lock = &mleak_lock_data;
+static lck_attr_t *mleak_lock_attr;
+static lck_grp_t *mleak_lock_grp;
+static lck_grp_attr_t *mleak_lock_grp_attr;
+
+/* *Failed* large allocations. */
+struct mtracelarge {
+ uint64_t size;
+ uint64_t depth;
+ uintptr_t addr[MLEAK_STACK_DEPTH];
+};
+
+#define MTRACELARGE_NUM_TRACES 5
+static struct mtracelarge mtracelarge_table[MTRACELARGE_NUM_TRACES];
+
+static void mtracelarge_register(size_t size);
+
+/* Lock to protect the completion callback table */
+static lck_grp_attr_t *mbuf_tx_compl_tbl_lck_grp_attr = NULL;
+static lck_attr_t *mbuf_tx_compl_tbl_lck_attr = NULL;
+static lck_grp_t *mbuf_tx_compl_tbl_lck_grp = NULL;
+decl_lck_rw_data(, mbuf_tx_compl_tbl_lck_rw_data);
+lck_rw_t *mbuf_tx_compl_tbl_lock = &mbuf_tx_compl_tbl_lck_rw_data;
+
+extern u_int32_t high_sb_max;
+
+/* The minimum number of objects that are allocated, to start. */
+#define MINCL 32
+#define MINBIGCL (MINCL >> 1)
+#define MIN16KCL (MINCL >> 2)
+
+/* Low watermarks (only map in pages once free counts go below) */
+#define MBIGCL_LOWAT MINBIGCL
+#define M16KCL_LOWAT MIN16KCL
+
+typedef struct {
+ mbuf_class_t mtbl_class; /* class type */
+ mcache_t *mtbl_cache; /* mcache for this buffer class */
+ TAILQ_HEAD(mcl_slhead, mcl_slab) mtbl_slablist; /* slab list */
+ mcache_obj_t *mtbl_cobjlist; /* composite objects freelist */
+ mb_class_stat_t *mtbl_stats; /* statistics fetchable via sysctl */
+ u_int32_t mtbl_maxsize; /* maximum buffer size */
+ int mtbl_minlimit; /* minimum allowed */
+ int mtbl_maxlimit; /* maximum allowed */
+ u_int32_t mtbl_wantpurge; /* purge during next reclaim */
+ uint32_t mtbl_avgtotal; /* average total on iOS */
+ u_int32_t mtbl_expand; /* worker should expand the class */
+} mbuf_table_t;
+
+#define m_class(c) mbuf_table[c].mtbl_class
+#define m_cache(c) mbuf_table[c].mtbl_cache
+#define m_slablist(c) mbuf_table[c].mtbl_slablist
+#define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist
+#define m_maxsize(c) mbuf_table[c].mtbl_maxsize
+#define m_minlimit(c) mbuf_table[c].mtbl_minlimit
+#define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit
+#define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge
+#define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname
+#define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size
+#define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total
+#define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active
+#define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree
+#define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt
+#define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt
+#define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt
+#define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified
+#define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt
+#define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt
+#define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal
+#define m_peak(c) mbuf_table[c].mtbl_stats->mbcl_peak_reported
+#define m_release_cnt(c) mbuf_table[c].mtbl_stats->mbcl_release_cnt
+#define m_region_expand(c) mbuf_table[c].mtbl_expand
+
+static mbuf_table_t mbuf_table[] = {
+ /*
+ * The caches for mbufs, regular clusters and big clusters.
+ * The average total values were based on data gathered by actual
+ * usage patterns on iOS.
+ */
+ { MC_MBUF, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF)),
+ NULL, NULL, 0, 0, 0, 0, 3000, 0 },
+ { MC_CL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL)),
+ NULL, NULL, 0, 0, 0, 0, 2000, 0 },
+ { MC_BIGCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL)),
+ NULL, NULL, 0, 0, 0, 0, 1000, 0 },
+ { MC_16KCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL)),
+ NULL, NULL, 0, 0, 0, 0, 200, 0 },
+ /*
+ * The following are special caches; they serve as intermediate
+ * caches backed by the above rudimentary caches. Each object
+ * in the cache is an mbuf with a cluster attached to it. Unlike
+ * the above caches, these intermediate caches do not directly
+ * deal with the slab structures; instead, the constructed
+ * cached elements are simply stored in the freelists.
+ */
+ { MC_MBUF_CL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 2000, 0 },
+ { MC_MBUF_BIGCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 1000, 0 },
+ { MC_MBUF_16KCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 200, 0 },
+};
+
+#define NELEM(a) (sizeof (a) / sizeof ((a)[0]))
+
+
+static uint32_t
+m_avgtotal(mbuf_class_t c)
{
-#define m_retry(h, t) 0
- register struct mbuf *m;
- int wait, s;
- funnel_t * fnl;
- int fnl_switch = 0;
- boolean_t funnel_state;
+ return mbuf_table[c].mtbl_avgtotal;
+}
- for (;;) {
- (void) m_expand(canwait);
- MGET(m, XXX, type);
- if (m || canwait == M_DONTWAIT)
- break;
- MBUF_LOCK();
- wait = m_want++;
+static void *mb_waitchan = &mbuf_table; /* wait channel for all caches */
+static int mb_waiters; /* number of waiters */
- dlil_expand_mcl = 1;
- MBUF_UNLOCK();
-
- if (dlil_initialized)
- wakeup((caddr_t)&dlil_input_thread_wakeup);
+boolean_t mb_peak_newreport = FALSE;
+boolean_t mb_peak_firstreport = FALSE;
- if (wait == 0) {
- mbstat.m_drain++;
- }
- else {
- assert_wait((caddr_t)&mfree, THREAD_UNINT);
- mbstat.m_wait++;
- }
+/* generate a report by default after 1 week of uptime */
+#define MBUF_PEAK_FIRST_REPORT_THRESHOLD 604800
- /*
- * Grab network funnel because m_reclaim calls into the
- * socket domains and tsleep end-up calling splhigh
- */
- fnl = thread_funnel_get();
- if (fnl && (fnl == kernel_flock)) {
- fnl_switch = 1;
- thread_funnel_switch(KERNEL_FUNNEL, NETWORK_FUNNEL);
- } else
- funnel_state = thread_funnel_set(network_flock, TRUE);
- if (wait == 0) {
- m_reclaim();
- } else {
- /* Sleep with a small timeout as insurance */
- (void) tsleep((caddr_t)0, PZERO-1, "m_retry", hz);
- }
- if (fnl_switch)
- thread_funnel_switch(NETWORK_FUNNEL, KERNEL_FUNNEL);
- else
- thread_funnel_set(network_flock, funnel_state);
- }
- return (m);
-#undef m_retry
-}
+#define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */
+static struct timeval mb_wdtstart; /* watchdog start timestamp */
+static char *mbuf_dump_buf;
+
+#define MBUF_DUMP_BUF_SIZE 4096
/*
- * As above; retry an MGETHDR.
+ * mbuf watchdog is enabled by default. It is also toggeable via the
+ * kern.ipc.mb_watchdog sysctl.
+ * Garbage collection is enabled by default on embedded platforms.
+ * mb_drain_maxint controls the amount of time to wait (in seconds) before
+ * consecutive calls to mbuf_drain().
*/
-struct mbuf *
-m_retryhdr(canwait, type)
- int canwait, type;
-{
- register struct mbuf *m;
-
- if (m = m_retry(canwait, type)) {
- m->m_flags |= M_PKTHDR;
- m->m_data = m->m_pktdat;
- m->m_pkthdr.rcvif = NULL;
- m->m_pkthdr.len = 0;
- m->m_pkthdr.header = NULL;
- m->m_pkthdr.csum_flags = 0;
- m->m_pkthdr.csum_data = 0;
- m->m_pkthdr.aux = (struct mbuf *)NULL;
- m->m_pkthdr.reserved1 = NULL;
- m->m_pkthdr.reserved2 = NULL;
- }
- return (m);
-}
+#if CONFIG_EMBEDDED || DEVELOPMENT || DEBUG
+static unsigned int mb_watchdog = 1;
+#else
+static unsigned int mb_watchdog = 0;
+#endif
+#if CONFIG_EMBEDDED
+static unsigned int mb_drain_maxint = 60;
+#else
+static unsigned int mb_drain_maxint = 0;
+#endif /* CONFIG_EMBEDDED */
+
+uintptr_t mb_obscure_extfree __attribute__((visibility("hidden")));
+uintptr_t mb_obscure_extref __attribute__((visibility("hidden")));
+
+/* Red zone */
+static u_int32_t mb_redzone_cookie;
+static void m_redzone_init(struct mbuf *);
+static void m_redzone_verify(struct mbuf *m);
+
+/* The following are used to serialize m_clalloc() */
+static boolean_t mb_clalloc_busy;
+static void *mb_clalloc_waitchan = &mb_clalloc_busy;
+static int mb_clalloc_waiters;
+
+static void mbuf_mtypes_sync(boolean_t);
+static int mbstat_sysctl SYSCTL_HANDLER_ARGS;
+static void mbuf_stat_sync(void);
+static int mb_stat_sysctl SYSCTL_HANDLER_ARGS;
+static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS;
+static int mleak_table_sysctl SYSCTL_HANDLER_ARGS;
+static char *mbuf_dump(void);
+static void mbuf_table_init(void);
+static inline void m_incref(struct mbuf *);
+static inline u_int16_t m_decref(struct mbuf *);
+static int m_clalloc(const u_int32_t, const int, const u_int32_t);
+static void mbuf_worker_thread_init(void);
+static mcache_obj_t *slab_alloc(mbuf_class_t, int);
+static void slab_free(mbuf_class_t, mcache_obj_t *);
+static unsigned int mbuf_slab_alloc(void *, mcache_obj_t ***,
+ unsigned int, int);
+static void mbuf_slab_free(void *, mcache_obj_t *, int);
+static void mbuf_slab_audit(void *, mcache_obj_t *, boolean_t);
+static void mbuf_slab_notify(void *, u_int32_t);
+static unsigned int cslab_alloc(mbuf_class_t, mcache_obj_t ***,
+ unsigned int);
+static unsigned int cslab_free(mbuf_class_t, mcache_obj_t *, int);
+static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t ***,
+ unsigned int, int);
+static void mbuf_cslab_free(void *, mcache_obj_t *, int);
+static void mbuf_cslab_audit(void *, mcache_obj_t *, boolean_t);
+static int freelist_populate(mbuf_class_t, unsigned int, int);
+static void freelist_init(mbuf_class_t);
+static boolean_t mbuf_cached_above(mbuf_class_t, int);
+static boolean_t mbuf_steal(mbuf_class_t, unsigned int);
+static void m_reclaim(mbuf_class_t, unsigned int, boolean_t);
+static int m_howmany(int, size_t);
+static void mbuf_worker_thread(void);
+static void mbuf_watchdog(void);
+static boolean_t mbuf_sleep(mbuf_class_t, unsigned int, int);
+
+static void mcl_audit_init(void *, mcache_audit_t **, mcache_obj_t **,
+ size_t, unsigned int);
+static void mcl_audit_free(void *, unsigned int);
+static mcache_audit_t *mcl_audit_buf2mca(mbuf_class_t, mcache_obj_t *);
+static void mcl_audit_mbuf(mcache_audit_t *, void *, boolean_t, boolean_t);
+static void mcl_audit_cluster(mcache_audit_t *, void *, size_t, boolean_t,
+ boolean_t);
+static void mcl_audit_restore_mbuf(struct mbuf *, mcache_audit_t *, boolean_t);
+static void mcl_audit_save_mbuf(struct mbuf *, mcache_audit_t *);
+static void mcl_audit_scratch(mcache_audit_t *);
+static void mcl_audit_mcheck_panic(struct mbuf *);
+static void mcl_audit_verify_nextptr(void *, mcache_audit_t *);
+
+static void mleak_activate(void);
+static void mleak_logger(u_int32_t, mcache_obj_t *, boolean_t);
+static boolean_t mleak_log(uintptr_t *, mcache_obj_t *, uint32_t, int);
+static void mleak_free(mcache_obj_t *);
+static void mleak_sort_traces(void);
+static void mleak_update_stats(void);
+
+static mcl_slab_t *slab_get(void *);
+static void slab_init(mcl_slab_t *, mbuf_class_t, u_int32_t,
+ void *, void *, unsigned int, int, int);
+static void slab_insert(mcl_slab_t *, mbuf_class_t);
+static void slab_remove(mcl_slab_t *, mbuf_class_t);
+static boolean_t slab_inrange(mcl_slab_t *, void *);
+static void slab_nextptr_panic(mcl_slab_t *, void *);
+static void slab_detach(mcl_slab_t *);
+static boolean_t slab_is_detached(mcl_slab_t *);
+
+static int m_copyback0(struct mbuf **, int, int, const void *, int, int);
+static struct mbuf *m_split0(struct mbuf *, int, int, int);
+__private_extern__ void mbuf_report_peak_usage(void);
+static boolean_t mbuf_report_usage(mbuf_class_t);
+#if DEBUG || DEVELOPMENT
+#define mbwdog_logger(fmt, ...) _mbwdog_logger(__func__, __LINE__, fmt, ## __VA_ARGS__)
+static void _mbwdog_logger(const char *func, const int line, const char *fmt, ...);
+static char *mbwdog_logging;
+const unsigned mbwdog_logging_size = 4096;
+static size_t mbwdog_logging_used;
+#else
+#define mbwdog_logger(fmt, ...) do { } while (0)
+#endif
+static void mbuf_drain_locked(boolean_t);
-m_reclaim()
-{
- register struct domain *dp;
- register struct protosw *pr;
+/* flags for m_copyback0 */
+#define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */
+#define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */
+#define M_COPYBACK0_COW 0x0004 /* do copy-on-write */
+#define M_COPYBACK0_EXTEND 0x0008 /* extend chain */
- for (dp = domains; dp; dp = dp->dom_next)
- for (pr = dp->dom_protosw; pr; pr = pr->pr_next)
- if (pr->pr_drain)
- (*pr->pr_drain)();
- mbstat.m_drain++;
-}
+/*
+ * This flag is set for all mbufs that come out of and into the composite
+ * mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that
+ * are marked with such a flag have clusters attached to them, and will be
+ * treated differently when they are freed; instead of being placed back
+ * into the mbuf and cluster freelists, the composite mbuf + cluster objects
+ * are placed back into the appropriate composite cache's freelist, and the
+ * actual freeing is deferred until the composite objects are purged. At
+ * such a time, this flag will be cleared from the mbufs and the objects
+ * will be freed into their own separate freelists.
+ */
+#define EXTF_COMPOSITE 0x1
/*
- * Space allocation routines.
- * These are also available as macros
- * for critical paths.
+ * This flag indicates that the external cluster is read-only, i.e. it is
+ * or was referred to by more than one mbufs. Once set, this flag is never
+ * cleared.
*/
-struct mbuf *
-m_get(nowait, type)
- int nowait, type;
-{
- register struct mbuf *m;
+#define EXTF_READONLY 0x2
+/*
+ * This flag indicates that the external cluster is paired with the mbuf.
+ * Pairing implies an external free routine defined which will be invoked
+ * when the reference count drops to the minimum at m_free time. This
+ * flag is never cleared.
+ */
+#define EXTF_PAIRED 0x4
+
+#define EXTF_MASK \
+ (EXTF_COMPOSITE | EXTF_READONLY | EXTF_PAIRED)
+
+#define MEXT_MINREF(m) ((m_get_rfa(m))->minref)
+#define MEXT_REF(m) ((m_get_rfa(m))->refcnt)
+#define MEXT_PREF(m) ((m_get_rfa(m))->prefcnt)
+#define MEXT_FLAGS(m) ((m_get_rfa(m))->flags)
+#define MEXT_PRIV(m) ((m_get_rfa(m))->priv)
+#define MEXT_PMBUF(m) ((m_get_rfa(m))->paired)
+#define MEXT_TOKEN(m) ((m_get_rfa(m))->ext_token)
+#define MBUF_IS_COMPOSITE(m) \
+ (MEXT_REF(m) == MEXT_MINREF(m) && \
+ (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE)
+/*
+ * This macro can be used to test if the mbuf is paired to an external
+ * cluster. The test for MEXT_PMBUF being equal to the mbuf in subject
+ * is important, as EXTF_PAIRED alone is insufficient since it is immutable,
+ * and thus survives calls to m_free_paired.
+ */
+#define MBUF_IS_PAIRED(m) \
+ (((m)->m_flags & M_EXT) && \
+ (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_PAIRED && \
+ MEXT_PMBUF(m) == (m))
- MGET(m, nowait, type);
- return (m);
+/*
+ * Macros used to verify the integrity of the mbuf.
+ */
+#define _MCHECK(m) { \
+ if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \
+ if (mclaudit == NULL) \
+ panic("MCHECK: m_type=%d m=%p", \
+ (u_int16_t)(m)->m_type, m); \
+ else \
+ mcl_audit_mcheck_panic(m); \
+ } \
}
-struct mbuf *
-m_gethdr(nowait, type)
- int nowait, type;
-{
- register struct mbuf *m;
+#define MBUF_IN_MAP(addr) \
+ ((unsigned char *)(addr) >= mbutl && \
+ (unsigned char *)(addr) < embutl)
- MGETHDR(m, nowait, type);
- return (m);
+#define MRANGE(addr) { \
+ if (!MBUF_IN_MAP(addr)) \
+ panic("MRANGE: address out of range 0x%p", addr); \
}
-struct mbuf *
-m_getclr(nowait, type)
- int nowait, type;
-{
- register struct mbuf *m;
+/*
+ * Macro version of mtod.
+ */
+#define MTOD(m, t) ((t)((m)->m_data))
- MGET(m, nowait, type);
- if (m == 0)
- return (0);
- bzero(mtod(m, caddr_t), MLEN);
- return (m);
-}
+/*
+ * Macros to obtain page index given a base cluster address
+ */
+#define MTOPG(x) (((unsigned char *)x - mbutl) >> PAGE_SHIFT)
+#define PGTOM(x) (mbutl + (x << PAGE_SHIFT))
-struct mbuf *
-m_free(m)
- struct mbuf *m;
-{
- struct mbuf *n = m->m_next;
- int i, s;
+/*
+ * Macro to find the mbuf index relative to a base.
+ */
+#define MBPAGEIDX(c, m) \
+ (((unsigned char *)(m) - (unsigned char *)(c)) >> MSIZESHIFT)
- if (m->m_type == MT_FREE)
- panic("freeing free mbuf");
+/*
+ * Same thing for 2KB cluster index.
+ */
+#define CLPAGEIDX(c, m) \
+ (((unsigned char *)(m) - (unsigned char *)(c)) >> MCLSHIFT)
- MBUF_LOCK();
- if (m->m_flags & M_EXT) {
- if (MCLHASREFERENCE(m)) {
- remque((queue_t)&m->m_ext.ext_refs);
- } else if (m->m_ext.ext_free == NULL) {
- union mcluster *mcl= (union mcluster *)m->m_ext.ext_buf;
- if (MCLUNREF(mcl)) {
- mcl->mcl_next = mclfree;
- mclfree = mcl;
- ++mbstat.m_clfree;
- }
-#ifdef COMMENT_OUT
-/* *** Since m_split() increments "mclrefcnt[mtocl(m->m_ext.ext_buf)]",
- and AppleTalk ADSP uses m_split(), this incorrect sanity check
- caused a panic.
-*** */
- else /* sanity check - not referenced this way */
- panic("m_free m_ext cluster not free");
-#endif
- } else {
- (*(m->m_ext.ext_free))(m->m_ext.ext_buf,
- m->m_ext.ext_size, m->m_ext.ext_arg);
- }
- }
- mbstat.m_mtypes[m->m_type]--;
- (void) MCLUNREF(m);
- m->m_type = MT_FREE;
- mbstat.m_mtypes[m->m_type]++;
- m->m_flags = 0;
- m->m_next = mfree;
- m->m_len = 0;
- mfree = m;
- i = m_want;
- m_want = 0;
- MBUF_UNLOCK();
- if (i) wakeup((caddr_t)&mfree);
- return (n);
-}
+/*
+ * Macro to find 4KB cluster index relative to a base
+ */
+#define BCLPAGEIDX(c, m) \
+ (((unsigned char *)(m) - (unsigned char *)(c)) >> MBIGCLSHIFT)
-/* Best effort to get a mbuf cluster + pkthdr under one lock.
- * If we don't have them avail, just bail out and use the regular
- * path.
- * Used by drivers to allocated packets on receive ring.
+/*
+ * Macros used during mbuf and cluster initialization.
*/
-struct mbuf *
-m_getpacket(void)
-{
- struct mbuf *m;
- m_clalloc(1, M_DONTWAIT); /* takes the MBUF_LOCK, but doesn't release it... */
- if ((mfree != 0) && (mclfree != 0)) { /* mbuf + cluster are available */
- m = mfree;
- mfree = m->m_next;
- MCHECK(m);
- ++mclrefcnt[mtocl(m)];
- mbstat.m_mtypes[MT_FREE]--;
- mbstat.m_mtypes[MT_DATA]++;
- m->m_ext.ext_buf = (caddr_t)mclfree; /* get the cluster */
- ++mclrefcnt[mtocl(m->m_ext.ext_buf)];
- mbstat.m_clfree--;
- mclfree = ((union mcluster *)(m->m_ext.ext_buf))->mcl_next;
-
- m->m_next = m->m_nextpkt = 0;
- m->m_type = MT_DATA;
- m->m_data = m->m_ext.ext_buf;
- m->m_flags = M_PKTHDR | M_EXT;
- m->m_pkthdr.len = 0;
- m->m_pkthdr.rcvif = NULL;
- m->m_pkthdr.header = NULL;
- m->m_pkthdr.csum_data = 0;
- m->m_pkthdr.csum_flags = 0;
- m->m_pkthdr.aux = (struct mbuf *)NULL;
- m->m_pkthdr.reserved1 = 0;
- m->m_pkthdr.reserved2 = 0;
- m->m_ext.ext_free = 0;
- m->m_ext.ext_size = MCLBYTES;
- m->m_ext.ext_refs.forward = m->m_ext.ext_refs.backward =
- &m->m_ext.ext_refs;
- MBUF_UNLOCK();
- }
- else { /* slow path: either mbuf or cluster need to be allocated anyway */
- MBUF_UNLOCK();
-
- MGETHDR(m, M_WAITOK, MT_DATA );
-
- if ( m == 0 )
- return (NULL);
-
- MCLGET( m, M_WAITOK );
- if ( ( m->m_flags & M_EXT ) == 0 )
- {
- m_free(m); m = 0;
- }
- }
- return (m);
+#define MBUF_INIT_PKTHDR(m) { \
+ (m)->m_pkthdr.rcvif = NULL; \
+ (m)->m_pkthdr.pkt_hdr = NULL; \
+ (m)->m_pkthdr.len = 0; \
+ (m)->m_pkthdr.csum_flags = 0; \
+ (m)->m_pkthdr.csum_data = 0; \
+ (m)->m_pkthdr.vlan_tag = 0; \
+ m_classifier_init(m, 0); \
+ m_tag_init(m, 1); \
+ m_scratch_init(m); \
+ m_redzone_init(m); \
}
+#define MBUF_INIT(m, pkthdr, type) { \
+ _MCHECK(m); \
+ (m)->m_next = (m)->m_nextpkt = NULL; \
+ (m)->m_len = 0; \
+ (m)->m_type = type; \
+ if ((pkthdr) == 0) { \
+ (m)->m_data = (m)->m_dat; \
+ (m)->m_flags = 0; \
+ } else { \
+ (m)->m_data = (m)->m_pktdat; \
+ (m)->m_flags = M_PKTHDR; \
+ MBUF_INIT_PKTHDR(m); \
+ } \
+}
-struct mbuf *
-m_getpackets(int num_needed, int num_with_pkthdrs, int how)
-{
- struct mbuf *m;
- struct mbuf **np, *top;
+#define MEXT_INIT(m, buf, size, free, arg, rfa, min, ref, pref, flag, \
+ priv, pm) { \
+ (m)->m_data = (m)->m_ext.ext_buf = (buf); \
+ (m)->m_flags |= M_EXT; \
+ m_set_ext((m), (rfa), (free), (arg)); \
+ (m)->m_ext.ext_size = (size); \
+ MEXT_MINREF(m) = (min); \
+ MEXT_REF(m) = (ref); \
+ MEXT_PREF(m) = (pref); \
+ MEXT_FLAGS(m) = (flag); \
+ MEXT_PRIV(m) = (priv); \
+ MEXT_PMBUF(m) = (pm); \
+}
- top = NULL;
- np = ⊤
+#define MBUF_CL_INIT(m, buf, rfa, ref, flag) \
+ MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, 0, \
+ ref, 0, flag, 0, NULL)
- m_clalloc(num_needed, how); /* takes the MBUF_LOCK, but doesn't release it... */
+#define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \
+ MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, 0, \
+ ref, 0, flag, 0, NULL)
- while (num_needed--) {
- if (mfree && mclfree) { /* mbuf + cluster are available */
- m = mfree;
- MCHECK(m);
- mfree = m->m_next;
- ++mclrefcnt[mtocl(m)];
- mbstat.m_mtypes[MT_FREE]--;
- mbstat.m_mtypes[MT_DATA]++;
- m->m_ext.ext_buf = (caddr_t)mclfree; /* get the cluster */
- ++mclrefcnt[mtocl(m->m_ext.ext_buf)];
- mbstat.m_clfree--;
- mclfree = ((union mcluster *)(m->m_ext.ext_buf))->mcl_next;
-
- m->m_next = m->m_nextpkt = 0;
- m->m_type = MT_DATA;
- m->m_data = m->m_ext.ext_buf;
- m->m_ext.ext_free = 0;
- m->m_ext.ext_size = MCLBYTES;
- m->m_ext.ext_refs.forward = m->m_ext.ext_refs.backward = &m->m_ext.ext_refs;
-
- if (num_with_pkthdrs == 0)
- m->m_flags = M_EXT;
- else {
- m->m_flags = M_PKTHDR | M_EXT;
- m->m_pkthdr.len = 0;
- m->m_pkthdr.rcvif = NULL;
- m->m_pkthdr.header = NULL;
- m->m_pkthdr.csum_flags = 0;
- m->m_pkthdr.csum_data = 0;
- m->m_pkthdr.aux = (struct mbuf *)NULL;
- m->m_pkthdr.reserved1 = NULL;
- m->m_pkthdr.reserved2 = NULL;
-
- num_with_pkthdrs--;
- }
-
- } else {
-
- MBUF_UNLOCK();
-
- if (num_with_pkthdrs == 0) {
- MGET(m, how, MT_DATA );
- } else {
- MGETHDR(m, how, MT_DATA);
-
- if (m)
- m->m_pkthdr.len = 0;
- num_with_pkthdrs--;
- }
- if (m == 0)
- return(top);
+#define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \
+ MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, 0, \
+ ref, 0, flag, 0, NULL)
- MCLGET(m, how);
- if ((m->m_flags & M_EXT) == 0) {
- m_free(m);
- return(top);
- }
- MBUF_LOCK();
- }
- *np = m;
+/*
+ * Macro to convert BSD malloc sleep flag to mcache's
+ */
+#define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP)
- if (num_with_pkthdrs)
- np = &m->m_nextpkt;
- else
- np = &m->m_next;
- }
- MBUF_UNLOCK();
+/*
+ * The structure that holds all mbuf class statistics exportable via sysctl.
+ * Similar to mbstat structure, the mb_stat structure is protected by the
+ * global mbuf lock. It contains additional information about the classes
+ * that allows for a more accurate view of the state of the allocator.
+ */
+struct mb_stat *mb_stat;
+struct omb_stat *omb_stat; /* For backwards compatibility */
- return (top);
-}
+#define MB_STAT_SIZE(n) \
+ __builtin_offsetof(mb_stat_t, mbs_class[n])
+#define OMB_STAT_SIZE(n) \
+ __builtin_offsetof(struct omb_stat, mbs_class[n])
+/*
+ * The legacy structure holding all of the mbuf allocation statistics.
+ * The actual statistics used by the kernel are stored in the mbuf_table
+ * instead, and are updated atomically while the global mbuf lock is held.
+ * They are mirrored in mbstat to support legacy applications (e.g. netstat).
+ * Unlike before, the kernel no longer relies on the contents of mbstat for
+ * its operations (e.g. cluster expansion) because the structure is exposed
+ * to outside and could possibly be modified, therefore making it unsafe.
+ * With the exception of the mbstat.m_mtypes array (see below), all of the
+ * statistics are updated as they change.
+ */
+struct mbstat mbstat;
-struct mbuf *
-m_getpackethdrs(int num_needed, int how)
-{
- struct mbuf *m;
- struct mbuf **np, *top;
+#define MBSTAT_MTYPES_MAX \
+ (sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0]))
- top = NULL;
- np = ⊤
+/*
+ * Allocation statistics related to mbuf types (up to MT_MAX-1) are updated
+ * atomically and stored in a per-CPU structure which is lock-free; this is
+ * done in order to avoid writing to the global mbstat data structure which
+ * would cause false sharing. During sysctl request for kern.ipc.mbstat,
+ * the statistics across all CPUs will be converged into the mbstat.m_mtypes
+ * array and returned to the application. Any updates for types greater or
+ * equal than MT_MAX would be done atomically to the mbstat; this slows down
+ * performance but is okay since the kernel uses only up to MT_MAX-1 while
+ * anything beyond that (up to type 255) is considered a corner case.
+ */
+typedef struct {
+ unsigned int cpu_mtypes[MT_MAX];
+} __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE), packed)) mtypes_cpu_t;
- MBUF_LOCK();
+typedef struct {
+ mtypes_cpu_t mbs_cpu[1];
+} mbuf_mtypes_t;
- while (num_needed--) {
- if (m = mfree) { /* mbufs are available */
- MCHECK(m);
- mfree = m->m_next;
- ++mclrefcnt[mtocl(m)];
- mbstat.m_mtypes[MT_FREE]--;
- mbstat.m_mtypes[MT_DATA]++;
+static mbuf_mtypes_t *mbuf_mtypes; /* per-CPU statistics */
- m->m_next = m->m_nextpkt = 0;
- m->m_type = MT_DATA;
- m->m_flags = M_PKTHDR;
- m->m_data = m->m_pktdat;
- m->m_pkthdr.len = 0;
- m->m_pkthdr.rcvif = NULL;
- m->m_pkthdr.header = NULL;
- m->m_pkthdr.csum_flags = 0;
- m->m_pkthdr.csum_data = 0;
- m->m_pkthdr.aux = (struct mbuf *)NULL;
- m->m_pkthdr.reserved1 = NULL;
- m->m_pkthdr.reserved2 = NULL;
+#define MBUF_MTYPES_SIZE(n) \
+ __builtin_offsetof(mbuf_mtypes_t, mbs_cpu[n])
- } else {
+#define MTYPES_CPU(p) \
+ ((mtypes_cpu_t *)(void *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number())))
- MBUF_UNLOCK();
+#define mtype_stat_add(type, n) { \
+ if ((unsigned)(type) < MT_MAX) { \
+ mtypes_cpu_t *mbs = MTYPES_CPU(mbuf_mtypes); \
+ atomic_add_32(&mbs->cpu_mtypes[type], n); \
+ } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \
+ atomic_add_16((int16_t *)&mbstat.m_mtypes[type], n); \
+ } \
+}
- m = m_retryhdr(how, MT_DATA);
+#define mtype_stat_sub(t, n) mtype_stat_add(t, -(n))
+#define mtype_stat_inc(t) mtype_stat_add(t, 1)
+#define mtype_stat_dec(t) mtype_stat_sub(t, 1)
- if (m == 0)
- return(top);
+static void
+mbuf_mtypes_sync(boolean_t locked)
+{
+ int m, n;
+ mtypes_cpu_t mtc;
- MBUF_LOCK();
- }
- *np = m;
- np = &m->m_nextpkt;
+ if (locked) {
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
}
- MBUF_UNLOCK();
- return (top);
+ bzero(&mtc, sizeof(mtc));
+ for (m = 0; m < ncpu; m++) {
+ mtypes_cpu_t *scp = &mbuf_mtypes->mbs_cpu[m];
+ mtypes_cpu_t temp;
+
+ bcopy(&scp->cpu_mtypes, &temp.cpu_mtypes,
+ sizeof(temp.cpu_mtypes));
+
+ for (n = 0; n < MT_MAX; n++) {
+ mtc.cpu_mtypes[n] += temp.cpu_mtypes[n];
+ }
+ }
+ if (!locked) {
+ lck_mtx_lock(mbuf_mlock);
+ }
+ for (n = 0; n < MT_MAX; n++) {
+ mbstat.m_mtypes[n] = mtc.cpu_mtypes[n];
+ }
+ if (!locked) {
+ lck_mtx_unlock(mbuf_mlock);
+ }
}
+static int
+mbstat_sysctl SYSCTL_HANDLER_ARGS
+{
+#pragma unused(oidp, arg1, arg2)
+ mbuf_mtypes_sync(FALSE);
-/* free and mbuf list (m_nextpkt) while following m_next under one lock.
- * returns the count for mbufs packets freed. Used by the drivers.
- */
-int
-m_freem_list(m)
- struct mbuf *m;
+ return SYSCTL_OUT(req, &mbstat, sizeof(mbstat));
+}
+
+static void
+mbuf_stat_sync(void)
{
- struct mbuf *nextpkt;
- int i, count=0;
+ mb_class_stat_t *sp;
+ mcache_cpu_t *ccp;
+ mcache_t *cp;
+ int k, m, bktsize;
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ for (k = 0; k < NELEM(mbuf_table); k++) {
+ cp = m_cache(k);
+ ccp = &cp->mc_cpu[0];
+ bktsize = ccp->cc_bktsize;
+ sp = mbuf_table[k].mtbl_stats;
+
+ if (cp->mc_flags & MCF_NOCPUCACHE) {
+ sp->mbcl_mc_state = MCS_DISABLED;
+ } else if (cp->mc_purge_cnt > 0) {
+ sp->mbcl_mc_state = MCS_PURGING;
+ } else if (bktsize == 0) {
+ sp->mbcl_mc_state = MCS_OFFLINE;
+ } else {
+ sp->mbcl_mc_state = MCS_ONLINE;
+ }
- MBUF_LOCK();
+ sp->mbcl_mc_cached = 0;
+ for (m = 0; m < ncpu; m++) {
+ ccp = &cp->mc_cpu[m];
+ if (ccp->cc_objs > 0) {
+ sp->mbcl_mc_cached += ccp->cc_objs;
+ }
+ if (ccp->cc_pobjs > 0) {
+ sp->mbcl_mc_cached += ccp->cc_pobjs;
+ }
+ }
+ sp->mbcl_mc_cached += (cp->mc_full.bl_total * bktsize);
+ sp->mbcl_active = sp->mbcl_total - sp->mbcl_mc_cached -
+ sp->mbcl_infree;
+
+ sp->mbcl_mc_waiter_cnt = cp->mc_waiter_cnt;
+ sp->mbcl_mc_wretry_cnt = cp->mc_wretry_cnt;
+ sp->mbcl_mc_nwretry_cnt = cp->mc_nwretry_cnt;
+
+ /* Calculate total count specific to each class */
+ sp->mbcl_ctotal = sp->mbcl_total;
+ switch (m_class(k)) {
+ case MC_MBUF:
+ /* Deduct mbufs used in composite caches */
+ sp->mbcl_ctotal -= (m_total(MC_MBUF_CL) +
+ m_total(MC_MBUF_BIGCL));
+ break;
- while (m) {
- if (m)
- nextpkt = m->m_nextpkt; /* chain of linked mbufs from driver */
- else
- nextpkt = 0;
- count++;
+ case MC_CL:
+ /* Deduct clusters used in composite cache */
+ sp->mbcl_ctotal -= m_total(MC_MBUF_CL);
+ break;
- while (m) { /* free the mbuf chain (like mfreem) */
- struct mbuf *n = m->m_next;
+ case MC_BIGCL:
+ /* Deduct clusters used in composite cache */
+ sp->mbcl_ctotal -= m_total(MC_MBUF_BIGCL);
+ break;
- if (n && n->m_nextpkt)
- panic("m_freem_list: m_nextpkt of m_next != NULL");
- if (m->m_type == MT_FREE)
- panic("freeing free mbuf");
+ case MC_16KCL:
+ /* Deduct clusters used in composite cache */
+ sp->mbcl_ctotal -= m_total(MC_MBUF_16KCL);
+ break;
- if (m->m_flags & M_EXT) {
- if (MCLHASREFERENCE(m)) {
- remque((queue_t)&m->m_ext.ext_refs);
- } else if (m->m_ext.ext_free == NULL) {
- union mcluster *mcl= (union mcluster *)m->m_ext.ext_buf;
- if (MCLUNREF(mcl)) {
- mcl->mcl_next = mclfree;
- mclfree = mcl;
- ++mbstat.m_clfree;
- }
- } else {
- (*(m->m_ext.ext_free))(m->m_ext.ext_buf,
- m->m_ext.ext_size, m->m_ext.ext_arg);
- }
- }
- mbstat.m_mtypes[m->m_type]--;
- (void) MCLUNREF(m);
- mbstat.m_mtypes[MT_FREE]++;
- m->m_type = MT_FREE;
- m->m_flags = 0;
- m->m_len = 0;
- m->m_next = mfree;
- mfree = m;
- m = n;
+ default:
+ break;
}
- m = nextpkt; /* bump m with saved nextpkt if any */
}
- if (i = m_want)
- m_want = 0;
+}
- MBUF_UNLOCK();
+static int
+mb_stat_sysctl SYSCTL_HANDLER_ARGS
+{
+#pragma unused(oidp, arg1, arg2)
+ void *statp;
+ int k, statsz, proc64 = proc_is64bit(req->p);
+
+ lck_mtx_lock(mbuf_mlock);
+ mbuf_stat_sync();
+
+ if (!proc64) {
+ struct omb_class_stat *oc;
+ struct mb_class_stat *c;
+
+ omb_stat->mbs_cnt = mb_stat->mbs_cnt;
+ oc = &omb_stat->mbs_class[0];
+ c = &mb_stat->mbs_class[0];
+ for (k = 0; k < omb_stat->mbs_cnt; k++, oc++, c++) {
+ (void) snprintf(oc->mbcl_cname, sizeof(oc->mbcl_cname),
+ "%s", c->mbcl_cname);
+ oc->mbcl_size = c->mbcl_size;
+ oc->mbcl_total = c->mbcl_total;
+ oc->mbcl_active = c->mbcl_active;
+ oc->mbcl_infree = c->mbcl_infree;
+ oc->mbcl_slab_cnt = c->mbcl_slab_cnt;
+ oc->mbcl_alloc_cnt = c->mbcl_alloc_cnt;
+ oc->mbcl_free_cnt = c->mbcl_free_cnt;
+ oc->mbcl_notified = c->mbcl_notified;
+ oc->mbcl_purge_cnt = c->mbcl_purge_cnt;
+ oc->mbcl_fail_cnt = c->mbcl_fail_cnt;
+ oc->mbcl_ctotal = c->mbcl_ctotal;
+ oc->mbcl_release_cnt = c->mbcl_release_cnt;
+ oc->mbcl_mc_state = c->mbcl_mc_state;
+ oc->mbcl_mc_cached = c->mbcl_mc_cached;
+ oc->mbcl_mc_waiter_cnt = c->mbcl_mc_waiter_cnt;
+ oc->mbcl_mc_wretry_cnt = c->mbcl_mc_wretry_cnt;
+ oc->mbcl_mc_nwretry_cnt = c->mbcl_mc_nwretry_cnt;
+ }
+ statp = omb_stat;
+ statsz = OMB_STAT_SIZE(NELEM(mbuf_table));
+ } else {
+ statp = mb_stat;
+ statsz = MB_STAT_SIZE(NELEM(mbuf_table));
+ }
- if (i)
- wakeup((caddr_t)&mfree);
+ lck_mtx_unlock(mbuf_mlock);
- return (count);
+ return SYSCTL_OUT(req, statp, statsz);
}
-void
-m_freem(m)
- register struct mbuf *m;
+static int
+mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS
{
- while (m)
- m = m_free(m);
+#pragma unused(oidp, arg1, arg2)
+ int i;
+
+ /* Ensure leak tracing turned on */
+ if (!mclfindleak || !mclexpleak) {
+ return ENXIO;
+ }
+
+ lck_mtx_lock(mleak_lock);
+ mleak_update_stats();
+ i = SYSCTL_OUT(req, mleak_stat, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES));
+ lck_mtx_unlock(mleak_lock);
+
+ return i;
}
-/*
- * Mbuffer utility routines.
- */
-/*
- * Compute the amount of space available
- * before the current start of data in an mbuf.
- */
-m_leadingspace(m)
-register struct mbuf *m;
+static int
+mleak_table_sysctl SYSCTL_HANDLER_ARGS
{
- if (m->m_flags & M_EXT) {
- if (MCLHASREFERENCE(m))
- return(0);
- return (m->m_data - m->m_ext.ext_buf);
+#pragma unused(oidp, arg1, arg2)
+ int i = 0;
+
+ /* Ensure leak tracing turned on */
+ if (!mclfindleak || !mclexpleak) {
+ return ENXIO;
}
- if (m->m_flags & M_PKTHDR)
- return (m->m_data - m->m_pktdat);
- return (m->m_data - m->m_dat);
+
+ lck_mtx_lock(mleak_lock);
+ i = SYSCTL_OUT(req, &mleak_table, sizeof(mleak_table));
+ lck_mtx_unlock(mleak_lock);
+
+ return i;
}
-/*
- * Compute the amount of space available
- * after the end of data in an mbuf.
- */
-m_trailingspace(m)
-register struct mbuf *m;
+static inline void
+m_incref(struct mbuf *m)
{
- if (m->m_flags & M_EXT) {
- if (MCLHASREFERENCE(m))
- return(0);
- return (m->m_ext.ext_buf + m->m_ext.ext_size -
- (m->m_data + m->m_len));
+ UInt16 old, new;
+ volatile UInt16 *addr = (volatile UInt16 *)&MEXT_REF(m);
+
+ do {
+ old = *addr;
+ new = old + 1;
+ VERIFY(new != 0);
+ } while (!OSCompareAndSwap16(old, new, addr));
+
+ /*
+ * If cluster is shared, mark it with (sticky) EXTF_READONLY;
+ * we don't clear the flag when the refcount goes back to the
+ * minimum, to simplify code calling m_mclhasreference().
+ */
+ if (new > (MEXT_MINREF(m) + 1) && !(MEXT_FLAGS(m) & EXTF_READONLY)) {
+ (void) OSBitOrAtomic16(EXTF_READONLY, &MEXT_FLAGS(m));
}
- return (&m->m_dat[MLEN] - (m->m_data + m->m_len));
}
-/*
- * Lesser-used path for M_PREPEND:
- * allocate new mbuf to prepend to chain,
- * copy junk along.
- */
-struct mbuf *
-m_prepend(m, len, how)
- register struct mbuf *m;
- int len, how;
+static inline u_int16_t
+m_decref(struct mbuf *m)
{
- struct mbuf *mn;
+ UInt16 old, new;
+ volatile UInt16 *addr = (volatile UInt16 *)&MEXT_REF(m);
- MGET(mn, how, m->m_type);
- if (mn == (struct mbuf *)NULL) {
- m_freem(m);
- return ((struct mbuf *)NULL);
- }
- if (m->m_flags & M_PKTHDR) {
- M_COPY_PKTHDR(mn, m);
- m->m_flags &= ~M_PKTHDR;
- }
- mn->m_next = m;
- m = mn;
- if (len < MHLEN)
- MH_ALIGN(m, len);
- m->m_len = len;
- return (m);
-}
+ do {
+ old = *addr;
+ new = old - 1;
+ VERIFY(old != 0);
+ } while (!OSCompareAndSwap16(old, new, addr));
-/*
- * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
- * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
- * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
- */
-int MCFail;
+ return new;
+}
-struct mbuf *
-m_copym(m, off0, len, wait)
- register struct mbuf *m;
- int off0, wait;
- register int len;
+static void
+mbuf_table_init(void)
{
- register struct mbuf *n, **np;
- register int off = off0;
- struct mbuf *top;
- int copyhdr = 0;
+ unsigned int b, c, s;
+ int m, config_mbuf_jumbo = 0;
- if (off < 0 || len < 0)
- panic("m_copym");
- if (off == 0 && m->m_flags & M_PKTHDR)
- copyhdr = 1;
+ MALLOC(omb_stat, struct omb_stat *, OMB_STAT_SIZE(NELEM(mbuf_table)),
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(omb_stat != NULL);
- while (off >= m->m_len) {
- if (m == 0)
- panic("m_copym");
- off -= m->m_len;
- m = m->m_next;
+ MALLOC(mb_stat, mb_stat_t *, MB_STAT_SIZE(NELEM(mbuf_table)),
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(mb_stat != NULL);
+
+ mb_stat->mbs_cnt = NELEM(mbuf_table);
+ for (m = 0; m < NELEM(mbuf_table); m++) {
+ mbuf_table[m].mtbl_stats = &mb_stat->mbs_class[m];
}
- np = ⊤
- top = 0;
- MBUF_LOCK();
+#if CONFIG_MBUF_JUMBO
+ config_mbuf_jumbo = 1;
+#endif /* CONFIG_MBUF_JUMBO */
- while (len > 0) {
- if (m == 0) {
- if (len != M_COPYALL)
- panic("m_copym");
- break;
- }
- if (n = mfree) {
- MCHECK(n);
- ++mclrefcnt[mtocl(n)];
- mbstat.m_mtypes[MT_FREE]--;
- mbstat.m_mtypes[m->m_type]++;
- mfree = n->m_next;
- n->m_next = n->m_nextpkt = 0;
- n->m_type = m->m_type;
- n->m_data = n->m_dat;
- n->m_flags = 0;
- } else {
- MBUF_UNLOCK();
- n = m_retry(wait, m->m_type);
- MBUF_LOCK();
- }
- *np = n;
+ if (config_mbuf_jumbo == 1 || PAGE_SIZE == M16KCLBYTES) {
+ /*
+ * Set aside 1/3 of the mbuf cluster map for jumbo
+ * clusters; we do this only on platforms where jumbo
+ * cluster pool is enabled.
+ */
+ njcl = nmbclusters / 3;
+ njclbytes = M16KCLBYTES;
+ }
- if (n == 0)
- goto nospace;
- if (copyhdr) {
- M_COPY_PKTHDR(n, m);
- if (len == M_COPYALL)
- n->m_pkthdr.len -= off0;
- else
- n->m_pkthdr.len = len;
- copyhdr = 0;
- }
- if (len == M_COPYALL) {
- if (min(len, (m->m_len - off)) == len) {
- printf("m->m_len %d - off %d = %d, %d\n",
- m->m_len, off, m->m_len - off,
- min(len, (m->m_len - off)));
- }
- }
- n->m_len = min(len, (m->m_len - off));
- if (n->m_len == M_COPYALL) {
- printf("n->m_len == M_COPYALL, fixing\n");
- n->m_len = MHLEN;
- }
- if (m->m_flags & M_EXT) {
- n->m_ext = m->m_ext;
- insque((queue_t)&n->m_ext.ext_refs, (queue_t)&m->m_ext.ext_refs);
- n->m_data = m->m_data + off;
- n->m_flags |= M_EXT;
- } else {
- bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
- (unsigned)n->m_len);
- }
- if (len != M_COPYALL)
- len -= n->m_len;
- off = 0;
- m = m->m_next;
- np = &n->m_next;
+ /*
+ * nclusters holds both the 2KB and 4KB pools, so ensure it's
+ * a multiple of 4KB clusters.
+ */
+ nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG);
+ if (njcl > 0) {
+ /*
+ * Each jumbo cluster takes 8 2KB clusters, so make
+ * sure that the pool size is evenly divisible by 8;
+ * njcl is in 2KB unit, hence treated as such.
+ */
+ njcl = P2ROUNDDOWN(nmbclusters - nclusters, NCLPJCL);
+
+ /* Update nclusters with rounded down value of njcl */
+ nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG);
}
- MBUF_UNLOCK();
- if (top == 0)
- MCFail++;
+ /*
+ * njcl is valid only on platforms with 16KB jumbo clusters or
+ * with 16KB pages, where it is configured to 1/3 of the pool
+ * size. On these platforms, the remaining is used for 2KB
+ * and 4KB clusters. On platforms without 16KB jumbo clusters,
+ * the entire pool is used for both 2KB and 4KB clusters. A 4KB
+ * cluster can either be splitted into 16 mbufs, or into 2 2KB
+ * clusters.
+ *
+ * +---+---+------------ ... -----------+------- ... -------+
+ * | c | b | s | njcl |
+ * +---+---+------------ ... -----------+------- ... -------+
+ *
+ * 1/32th of the shared region is reserved for pure 2KB and 4KB
+ * clusters (1/64th each.)
+ */
+ c = P2ROUNDDOWN((nclusters >> 6), NCLPG); /* in 2KB unit */
+ b = P2ROUNDDOWN((nclusters >> (6 + NCLPBGSHIFT)), NBCLPG); /* in 4KB unit */
+ s = nclusters - (c + (b << NCLPBGSHIFT)); /* in 2KB unit */
- return (top);
-nospace:
- MBUF_UNLOCK();
+ /*
+ * 1/64th (c) is reserved for 2KB clusters.
+ */
+ m_minlimit(MC_CL) = c;
+ m_maxlimit(MC_CL) = s + c; /* in 2KB unit */
+ m_maxsize(MC_CL) = m_size(MC_CL) = MCLBYTES;
+ (void) snprintf(m_cname(MC_CL), MAX_MBUF_CNAME, "cl");
- m_freem(top);
- MCFail++;
- return (0);
+ /*
+ * Another 1/64th (b) of the map is reserved for 4KB clusters.
+ * It cannot be turned into 2KB clusters or mbufs.
+ */
+ m_minlimit(MC_BIGCL) = b;
+ m_maxlimit(MC_BIGCL) = (s >> NCLPBGSHIFT) + b; /* in 4KB unit */
+ m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = MBIGCLBYTES;
+ (void) snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl");
+
+ /*
+ * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB)
+ */
+ m_minlimit(MC_MBUF) = 0;
+ m_maxlimit(MC_MBUF) = (s << NMBPCLSHIFT); /* in mbuf unit */
+ m_maxsize(MC_MBUF) = m_size(MC_MBUF) = MSIZE;
+ (void) snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf");
+
+ /*
+ * Set limits for the composite classes.
+ */
+ m_minlimit(MC_MBUF_CL) = 0;
+ m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL);
+ m_maxsize(MC_MBUF_CL) = MCLBYTES;
+ m_size(MC_MBUF_CL) = m_size(MC_MBUF) + m_size(MC_CL);
+ (void) snprintf(m_cname(MC_MBUF_CL), MAX_MBUF_CNAME, "mbuf_cl");
+
+ m_minlimit(MC_MBUF_BIGCL) = 0;
+ m_maxlimit(MC_MBUF_BIGCL) = m_maxlimit(MC_BIGCL);
+ m_maxsize(MC_MBUF_BIGCL) = MBIGCLBYTES;
+ m_size(MC_MBUF_BIGCL) = m_size(MC_MBUF) + m_size(MC_BIGCL);
+ (void) snprintf(m_cname(MC_MBUF_BIGCL), MAX_MBUF_CNAME, "mbuf_bigcl");
+
+ /*
+ * And for jumbo classes.
+ */
+ m_minlimit(MC_16KCL) = 0;
+ m_maxlimit(MC_16KCL) = (njcl >> NCLPJCLSHIFT); /* in 16KB unit */
+ m_maxsize(MC_16KCL) = m_size(MC_16KCL) = M16KCLBYTES;
+ (void) snprintf(m_cname(MC_16KCL), MAX_MBUF_CNAME, "16kcl");
+
+ m_minlimit(MC_MBUF_16KCL) = 0;
+ m_maxlimit(MC_MBUF_16KCL) = m_maxlimit(MC_16KCL);
+ m_maxsize(MC_MBUF_16KCL) = M16KCLBYTES;
+ m_size(MC_MBUF_16KCL) = m_size(MC_MBUF) + m_size(MC_16KCL);
+ (void) snprintf(m_cname(MC_MBUF_16KCL), MAX_MBUF_CNAME, "mbuf_16kcl");
+
+ /*
+ * Initialize the legacy mbstat structure.
+ */
+ bzero(&mbstat, sizeof(mbstat));
+ mbstat.m_msize = m_maxsize(MC_MBUF);
+ mbstat.m_mclbytes = m_maxsize(MC_CL);
+ mbstat.m_minclsize = MINCLSIZE;
+ mbstat.m_mlen = MLEN;
+ mbstat.m_mhlen = MHLEN;
+ mbstat.m_bigmclbytes = m_maxsize(MC_BIGCL);
}
+#if defined(__LP64__)
+typedef struct ncl_tbl {
+ uint64_t nt_maxmem; /* memory (sane) size */
+ uint32_t nt_mbpool; /* mbuf pool size */
+} ncl_tbl_t;
+
+/* Non-server */
+static ncl_tbl_t ncl_table[] = {
+ { (1ULL << GBSHIFT) /* 1 GB */, (64 << MBSHIFT) /* 64 MB */ },
+ { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (96 << MBSHIFT) /* 96 MB */ },
+ { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (128 << MBSHIFT) /* 128 MB */ },
+ { 0, 0 }
+};
+
+/* Server */
+static ncl_tbl_t ncl_table_srv[] = {
+ { (1ULL << GBSHIFT) /* 1 GB */, (96 << MBSHIFT) /* 96 MB */ },
+ { (1ULL << (GBSHIFT + 2)) /* 4 GB */, (128 << MBSHIFT) /* 128 MB */ },
+ { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (160 << MBSHIFT) /* 160 MB */ },
+ { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (192 << MBSHIFT) /* 192 MB */ },
+ { (1ULL << (GBSHIFT + 5)) /* 32 GB */, (256 << MBSHIFT) /* 256 MB */ },
+ { (1ULL << (GBSHIFT + 6)) /* 64 GB */, (384 << MBSHIFT) /* 384 MB */ },
+ { 0, 0 }
+};
+#endif /* __LP64__ */
+
+__private_extern__ unsigned int
+mbuf_default_ncl(int server, uint64_t mem)
+{
+#if !defined(__LP64__)
+#pragma unused(server)
+ unsigned int n;
+ /*
+ * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM).
+ */
+ if ((n = ((mem / 16) / MCLBYTES)) > 32768) {
+ n = 32768;
+ }
+#else
+ unsigned int n, i;
+ ncl_tbl_t *tbl = (server ? ncl_table_srv : ncl_table);
+ /*
+ * 64-bit kernel (mbuf pool size based on table).
+ */
+ n = tbl[0].nt_mbpool;
+ for (i = 0; tbl[i].nt_mbpool != 0; i++) {
+ if (mem < tbl[i].nt_maxmem) {
+ break;
+ }
+ n = tbl[i].nt_mbpool;
+ }
+ n >>= MCLSHIFT;
+#endif /* !__LP64__ */
+ return n;
+}
+__private_extern__ void
+mbinit(void)
+{
+ unsigned int m;
+ unsigned int initmcl = 0;
+ void *buf;
+ thread_t thread = THREAD_NULL;
-struct mbuf *
-m_copym_with_hdrs(m, off0, len, wait, m_last, m_off)
- register struct mbuf *m;
- int off0, wait;
- register int len;
- struct mbuf **m_last;
- int *m_off;
-{
- register struct mbuf *n, **np;
- register int off = off0;
- struct mbuf *top = 0;
- int copyhdr = 0;
- int type;
+ microuptime(&mb_start);
- if (off == 0 && m->m_flags & M_PKTHDR)
- copyhdr = 1;
+ /*
+ * These MBUF_ values must be equal to their private counterparts.
+ */
+ _CASSERT(MBUF_EXT == M_EXT);
+ _CASSERT(MBUF_PKTHDR == M_PKTHDR);
+ _CASSERT(MBUF_EOR == M_EOR);
+ _CASSERT(MBUF_LOOP == M_LOOP);
+ _CASSERT(MBUF_BCAST == M_BCAST);
+ _CASSERT(MBUF_MCAST == M_MCAST);
+ _CASSERT(MBUF_FRAG == M_FRAG);
+ _CASSERT(MBUF_FIRSTFRAG == M_FIRSTFRAG);
+ _CASSERT(MBUF_LASTFRAG == M_LASTFRAG);
+ _CASSERT(MBUF_PROMISC == M_PROMISC);
+ _CASSERT(MBUF_HASFCS == M_HASFCS);
+
+ _CASSERT(MBUF_TYPE_FREE == MT_FREE);
+ _CASSERT(MBUF_TYPE_DATA == MT_DATA);
+ _CASSERT(MBUF_TYPE_HEADER == MT_HEADER);
+ _CASSERT(MBUF_TYPE_SOCKET == MT_SOCKET);
+ _CASSERT(MBUF_TYPE_PCB == MT_PCB);
+ _CASSERT(MBUF_TYPE_RTABLE == MT_RTABLE);
+ _CASSERT(MBUF_TYPE_HTABLE == MT_HTABLE);
+ _CASSERT(MBUF_TYPE_ATABLE == MT_ATABLE);
+ _CASSERT(MBUF_TYPE_SONAME == MT_SONAME);
+ _CASSERT(MBUF_TYPE_SOOPTS == MT_SOOPTS);
+ _CASSERT(MBUF_TYPE_FTABLE == MT_FTABLE);
+ _CASSERT(MBUF_TYPE_RIGHTS == MT_RIGHTS);
+ _CASSERT(MBUF_TYPE_IFADDR == MT_IFADDR);
+ _CASSERT(MBUF_TYPE_CONTROL == MT_CONTROL);
+ _CASSERT(MBUF_TYPE_OOBDATA == MT_OOBDATA);
+
+ _CASSERT(MBUF_TSO_IPV4 == CSUM_TSO_IPV4);
+ _CASSERT(MBUF_TSO_IPV6 == CSUM_TSO_IPV6);
+ _CASSERT(MBUF_CSUM_REQ_SUM16 == CSUM_PARTIAL);
+ _CASSERT(MBUF_CSUM_TCP_SUM16 == MBUF_CSUM_REQ_SUM16);
+ _CASSERT(MBUF_CSUM_REQ_ZERO_INVERT == CSUM_ZERO_INVERT);
+ _CASSERT(MBUF_CSUM_REQ_IP == CSUM_IP);
+ _CASSERT(MBUF_CSUM_REQ_TCP == CSUM_TCP);
+ _CASSERT(MBUF_CSUM_REQ_UDP == CSUM_UDP);
+ _CASSERT(MBUF_CSUM_REQ_TCPIPV6 == CSUM_TCPIPV6);
+ _CASSERT(MBUF_CSUM_REQ_UDPIPV6 == CSUM_UDPIPV6);
+ _CASSERT(MBUF_CSUM_DID_IP == CSUM_IP_CHECKED);
+ _CASSERT(MBUF_CSUM_IP_GOOD == CSUM_IP_VALID);
+ _CASSERT(MBUF_CSUM_DID_DATA == CSUM_DATA_VALID);
+ _CASSERT(MBUF_CSUM_PSEUDO_HDR == CSUM_PSEUDO_HDR);
+
+ _CASSERT(MBUF_WAITOK == M_WAIT);
+ _CASSERT(MBUF_DONTWAIT == M_DONTWAIT);
+ _CASSERT(MBUF_COPYALL == M_COPYALL);
+
+ _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS) == MBUF_TC_BK);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_BK) == MBUF_TC_BK);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_BE) == MBUF_TC_BE);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_RD) == MBUF_TC_BE);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_OAM) == MBUF_TC_BE);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_AV) == MBUF_TC_VI);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_RV) == MBUF_TC_VI);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_VI) == MBUF_TC_VI);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_SIG) == MBUF_TC_VI);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_VO) == MBUF_TC_VO);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_CTL) == MBUF_TC_VO);
+
+ _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK) == SCVAL_BK);
+ _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE) == SCVAL_BE);
+ _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI) == SCVAL_VI);
+ _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO) == SCVAL_VO);
+
+ /* Module specific scratch space (32-bit alignment requirement) */
+ _CASSERT(!(offsetof(struct mbuf, m_pkthdr.pkt_mpriv) %
+ sizeof(uint32_t)));
+
+ /* Initialize random red zone cookie value */
+ _CASSERT(sizeof(mb_redzone_cookie) ==
+ sizeof(((struct pkthdr *)0)->redzone));
+ read_random(&mb_redzone_cookie, sizeof(mb_redzone_cookie));
+ read_random(&mb_obscure_extref, sizeof(mb_obscure_extref));
+ read_random(&mb_obscure_extfree, sizeof(mb_obscure_extfree));
+ mb_obscure_extref |= 0x3;
+ mb_obscure_extfree |= 0x3;
+
+ /* Make sure we don't save more than we should */
+ _CASSERT(MCA_SAVED_MBUF_SIZE <= sizeof(struct mbuf));
+
+ if (nmbclusters == 0) {
+ nmbclusters = NMBCLUSTERS;
+ }
- if (*m_last) {
- m = *m_last;
- off = *m_off;
- } else {
- while (off >= m->m_len) {
- off -= m->m_len;
- m = m->m_next;
+ /* This should be a sane (at least even) value by now */
+ VERIFY(nmbclusters != 0 && !(nmbclusters & 0x1));
+
+ /* Setup the mbuf table */
+ mbuf_table_init();
+
+ /* Global lock for common layer */
+ mbuf_mlock_grp_attr = lck_grp_attr_alloc_init();
+ mbuf_mlock_grp = lck_grp_alloc_init("mbuf", mbuf_mlock_grp_attr);
+ mbuf_mlock_attr = lck_attr_alloc_init();
+ lck_mtx_init(mbuf_mlock, mbuf_mlock_grp, mbuf_mlock_attr);
+
+ /*
+ * Allocate cluster slabs table:
+ *
+ * maxslabgrp = (N * 2048) / (1024 * 1024)
+ *
+ * Where N is nmbclusters rounded up to the nearest 512. This yields
+ * mcl_slab_g_t units, each one representing a MB of memory.
+ */
+ maxslabgrp =
+ (P2ROUNDUP(nmbclusters, (MBSIZE >> MCLSHIFT)) << MCLSHIFT) >> MBSHIFT;
+ MALLOC(slabstbl, mcl_slabg_t * *, maxslabgrp * sizeof(mcl_slabg_t *),
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(slabstbl != NULL);
+
+ /*
+ * Allocate audit structures, if needed:
+ *
+ * maxclaudit = (maxslabgrp * 1024 * 1024) / PAGE_SIZE
+ *
+ * This yields mcl_audit_t units, each one representing a page.
+ */
+ PE_parse_boot_argn("mbuf_debug", &mbuf_debug, sizeof(mbuf_debug));
+ mbuf_debug |= mcache_getflags();
+ if (mbuf_debug & MCF_DEBUG) {
+ int l;
+ mcl_audit_t *mclad;
+ maxclaudit = ((maxslabgrp << MBSHIFT) >> PAGE_SHIFT);
+ MALLOC(mclaudit, mcl_audit_t *, maxclaudit * sizeof(*mclaudit),
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(mclaudit != NULL);
+ for (l = 0, mclad = mclaudit; l < maxclaudit; l++) {
+ MALLOC(mclad[l].cl_audit, mcache_audit_t * *,
+ NMBPG * sizeof(mcache_audit_t *),
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(mclad[l].cl_audit != NULL);
}
+
+ mcl_audit_con_cache = mcache_create("mcl_audit_contents",
+ AUDIT_CONTENTS_SIZE, sizeof(u_int64_t), 0, MCR_SLEEP);
+ VERIFY(mcl_audit_con_cache != NULL);
}
- MBUF_LOCK();
+ mclverify = (mbuf_debug & MCF_VERIFY);
+ mcltrace = (mbuf_debug & MCF_TRACE);
+ mclfindleak = !(mbuf_debug & MCF_NOLEAKLOG);
+ mclexpleak = mclfindleak && (mbuf_debug & MCF_EXPLEAKLOG);
- while (len > 0) {
- if (top == 0)
- type = MT_HEADER;
- else {
- if (m == 0)
- panic("m_gethdr_and_copym");
- type = m->m_type;
- }
- if (n = mfree) {
- MCHECK(n);
- ++mclrefcnt[mtocl(n)];
- mbstat.m_mtypes[MT_FREE]--;
- mbstat.m_mtypes[type]++;
- mfree = n->m_next;
- n->m_next = n->m_nextpkt = 0;
- n->m_type = type;
-
- if (top) {
- n->m_data = n->m_dat;
- n->m_flags = 0;
- } else {
- n->m_data = n->m_pktdat;
- n->m_flags = M_PKTHDR;
- n->m_pkthdr.len = 0;
- n->m_pkthdr.rcvif = NULL;
- n->m_pkthdr.header = NULL;
- n->m_pkthdr.csum_flags = 0;
- n->m_pkthdr.csum_data = 0;
- n->m_pkthdr.aux = (struct mbuf *)NULL;
- n->m_pkthdr.reserved1 = NULL;
- n->m_pkthdr.reserved2 = NULL;
- }
- } else {
- MBUF_UNLOCK();
- if (top)
- n = m_retry(wait, type);
- else
- n = m_retryhdr(wait, type);
- MBUF_LOCK();
- }
- if (n == 0)
- goto nospace;
- if (top == 0) {
- top = n;
- np = &top->m_next;
- continue;
- } else
- *np = n;
+ /* Enable mbuf leak logging, with a lock to protect the tables */
- if (copyhdr) {
- M_COPY_PKTHDR(n, m);
- n->m_pkthdr.len = len;
- copyhdr = 0;
+ mleak_lock_grp_attr = lck_grp_attr_alloc_init();
+ mleak_lock_grp = lck_grp_alloc_init("mleak_lock", mleak_lock_grp_attr);
+ mleak_lock_attr = lck_attr_alloc_init();
+ lck_mtx_init(mleak_lock, mleak_lock_grp, mleak_lock_attr);
+
+ mleak_activate();
+
+ /*
+ * Allocate structure for per-CPU statistics that's aligned
+ * on the CPU cache boundary; this code assumes that we never
+ * uninitialize this framework, since the original address
+ * before alignment is not saved.
+ */
+ ncpu = ml_get_max_cpus();
+ MALLOC(buf, void *, MBUF_MTYPES_SIZE(ncpu) + CPU_CACHE_LINE_SIZE,
+ M_TEMP, M_WAITOK);
+ VERIFY(buf != NULL);
+
+ mbuf_mtypes = (mbuf_mtypes_t *)P2ROUNDUP((intptr_t)buf,
+ CPU_CACHE_LINE_SIZE);
+ bzero(mbuf_mtypes, MBUF_MTYPES_SIZE(ncpu));
+
+ /* Calculate the number of pages assigned to the cluster pool */
+ mcl_pages = (nmbclusters << MCLSHIFT) / PAGE_SIZE;
+ MALLOC(mcl_paddr, ppnum_t *, mcl_pages * sizeof(ppnum_t),
+ M_TEMP, M_WAITOK);
+ VERIFY(mcl_paddr != NULL);
+
+ /* Register with the I/O Bus mapper */
+ mcl_paddr_base = IOMapperIOVMAlloc(mcl_pages);
+ bzero((char *)mcl_paddr, mcl_pages * sizeof(ppnum_t));
+
+ embutl = (mbutl + (nmbclusters * MCLBYTES));
+ VERIFY(((embutl - mbutl) % MBIGCLBYTES) == 0);
+
+ /* Prime up the freelist */
+ PE_parse_boot_argn("initmcl", &initmcl, sizeof(initmcl));
+ if (initmcl != 0) {
+ initmcl >>= NCLPBGSHIFT; /* become a 4K unit */
+ if (initmcl > m_maxlimit(MC_BIGCL)) {
+ initmcl = m_maxlimit(MC_BIGCL);
}
- n->m_len = min(len, (m->m_len - off));
+ }
+ if (initmcl < m_minlimit(MC_BIGCL)) {
+ initmcl = m_minlimit(MC_BIGCL);
+ }
- if (m->m_flags & M_EXT) {
- n->m_ext = m->m_ext;
- insque((queue_t)&n->m_ext.ext_refs, (queue_t)&m->m_ext.ext_refs);
- n->m_data = m->m_data + off;
- n->m_flags |= M_EXT;
+ lck_mtx_lock(mbuf_mlock);
+
+ /*
+ * For classes with non-zero minimum limits, populate their freelists
+ * so that m_total(class) is at least m_minlimit(class).
+ */
+ VERIFY(m_total(MC_BIGCL) == 0 && m_minlimit(MC_BIGCL) != 0);
+ freelist_populate(m_class(MC_BIGCL), initmcl, M_WAIT);
+ VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL));
+ freelist_init(m_class(MC_CL));
+
+ for (m = 0; m < NELEM(mbuf_table); m++) {
+ /* Make sure we didn't miss any */
+ VERIFY(m_minlimit(m_class(m)) == 0 ||
+ m_total(m_class(m)) >= m_minlimit(m_class(m)));
+
+ /* populate the initial sizes and report from there on */
+ m_peak(m_class(m)) = m_total(m_class(m));
+ }
+ mb_peak_newreport = FALSE;
+
+ lck_mtx_unlock(mbuf_mlock);
+
+ (void) kernel_thread_start((thread_continue_t)mbuf_worker_thread_init,
+ NULL, &thread);
+ thread_deallocate(thread);
+
+ ref_cache = mcache_create("mext_ref", sizeof(struct ext_ref),
+ 0, 0, MCR_SLEEP);
+
+ /* Create the cache for each class */
+ for (m = 0; m < NELEM(mbuf_table); m++) {
+ void *allocfunc, *freefunc, *auditfunc, *logfunc;
+ u_int32_t flags;
+
+ flags = mbuf_debug;
+ if (m_class(m) == MC_MBUF_CL || m_class(m) == MC_MBUF_BIGCL ||
+ m_class(m) == MC_MBUF_16KCL) {
+ allocfunc = mbuf_cslab_alloc;
+ freefunc = mbuf_cslab_free;
+ auditfunc = mbuf_cslab_audit;
+ logfunc = mleak_logger;
} else {
- bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
- (unsigned)n->m_len);
+ allocfunc = mbuf_slab_alloc;
+ freefunc = mbuf_slab_free;
+ auditfunc = mbuf_slab_audit;
+ logfunc = mleak_logger;
}
- len -= n->m_len;
-
- if (len == 0) {
- if ((off + n->m_len) == m->m_len) {
- *m_last = m->m_next;
- *m_off = 0;
- } else {
- *m_last = m;
- *m_off = off + n->m_len;
- }
- break;
+
+ /*
+ * Disable per-CPU caches for jumbo classes if there
+ * is no jumbo cluster pool available in the system.
+ * The cache itself is still created (but will never
+ * be populated) since it simplifies the code.
+ */
+ if ((m_class(m) == MC_MBUF_16KCL || m_class(m) == MC_16KCL) &&
+ njcl == 0) {
+ flags |= MCF_NOCPUCACHE;
}
- off = 0;
- m = m->m_next;
- np = &n->m_next;
+
+ if (!mclfindleak) {
+ flags |= MCF_NOLEAKLOG;
+ }
+
+ m_cache(m) = mcache_create_ext(m_cname(m), m_maxsize(m),
+ allocfunc, freefunc, auditfunc, logfunc, mbuf_slab_notify,
+ (void *)(uintptr_t)m, flags, MCR_SLEEP);
}
- MBUF_UNLOCK();
- return (top);
-nospace:
- MBUF_UNLOCK();
+ /*
+ * Set the max limit on sb_max to be 1/16 th of the size of
+ * memory allocated for mbuf clusters.
+ */
+ high_sb_max = (nmbclusters << (MCLSHIFT - 4));
+ if (high_sb_max < sb_max) {
+ /* sb_max is too large for this configuration, scale it down */
+ if (high_sb_max > (1 << MBSHIFT)) {
+ /* We have atleast 16 M of mbuf pool */
+ sb_max = high_sb_max;
+ } else if ((nmbclusters << MCLSHIFT) > (1 << MBSHIFT)) {
+ /*
+ * If we have more than 1M of mbufpool, cap the size of
+ * max sock buf at 1M
+ */
+ sb_max = high_sb_max = (1 << MBSHIFT);
+ } else {
+ sb_max = high_sb_max;
+ }
+ }
- if (top)
- m_freem(top);
- MCFail++;
- return (0);
-}
+ /* allocate space for mbuf_dump_buf */
+ MALLOC(mbuf_dump_buf, char *, MBUF_DUMP_BUF_SIZE, M_TEMP, M_WAITOK);
+ VERIFY(mbuf_dump_buf != NULL);
+ if (mbuf_debug & MCF_DEBUG) {
+ printf("%s: MLEN %d, MHLEN %d\n", __func__,
+ (int)_MLEN, (int)_MHLEN);
+ }
-/*
- * Copy data from an mbuf chain starting "off" bytes from the beginning,
- * continuing for "len" bytes, into the indicated buffer.
- */
-void m_copydata(m, off, len, cp)
- register struct mbuf *m;
- register int off;
- register int len;
- caddr_t cp;
-{
- register unsigned count;
+ printf("%s: done [%d MB total pool size, (%d/%d) split]\n", __func__,
+ (nmbclusters << MCLSHIFT) >> MBSHIFT,
+ (nclusters << MCLSHIFT) >> MBSHIFT,
+ (njcl << MCLSHIFT) >> MBSHIFT);
- if (off < 0 || len < 0)
- panic("m_copydata");
- while (off > 0) {
- if (m == 0)
- panic("m_copydata");
- if (off < m->m_len)
- break;
- off -= m->m_len;
- m = m->m_next;
+ /* initialize lock form tx completion callback table */
+ mbuf_tx_compl_tbl_lck_grp_attr = lck_grp_attr_alloc_init();
+ if (mbuf_tx_compl_tbl_lck_grp_attr == NULL) {
+ panic("%s: lck_grp_attr_alloc_init failed", __func__);
+ /* NOTREACHED */
}
- while (len > 0) {
- if (m == 0)
- panic("m_copydata");
- count = min(m->m_len - off, len);
- bcopy(mtod(m, caddr_t) + off, cp, count);
- len -= count;
- cp += count;
- off = 0;
- m = m->m_next;
+ mbuf_tx_compl_tbl_lck_grp = lck_grp_alloc_init("mbuf_tx_compl_tbl",
+ mbuf_tx_compl_tbl_lck_grp_attr);
+ if (mbuf_tx_compl_tbl_lck_grp == NULL) {
+ panic("%s: lck_grp_alloc_init failed", __func__);
+ /* NOTREACHED */
+ }
+ mbuf_tx_compl_tbl_lck_attr = lck_attr_alloc_init();
+ if (mbuf_tx_compl_tbl_lck_attr == NULL) {
+ panic("%s: lck_attr_alloc_init failed", __func__);
+ /* NOTREACHED */
}
+ lck_rw_init(mbuf_tx_compl_tbl_lock, mbuf_tx_compl_tbl_lck_grp,
+ mbuf_tx_compl_tbl_lck_attr);
}
/*
- * Concatenate mbuf chain n to m.
- * Both chains must be of the same type (e.g. MT_DATA).
- * Any m_pkthdr is not updated.
+ * Obtain a slab of object(s) from the class's freelist.
*/
-void m_cat(m, n)
- register struct mbuf *m, *n;
+static mcache_obj_t *
+slab_alloc(mbuf_class_t class, int wait)
{
- while (m->m_next)
- m = m->m_next;
- while (n) {
- if (m->m_flags & M_EXT ||
- m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
- /* just join the two chains */
- m->m_next = n;
- return;
- }
- /* splat the data from one into the other */
- bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
- (u_int)n->m_len);
- m->m_len += n->m_len;
- n = m_free(n);
+ mcl_slab_t *sp;
+ mcache_obj_t *buf;
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ /* This should always be NULL for us */
+ VERIFY(m_cobjlist(class) == NULL);
+
+ /*
+ * Treat composite objects as having longer lifespan by using
+ * a slab from the reverse direction, in hoping that this could
+ * reduce the probability of fragmentation for slabs that hold
+ * more than one buffer chunks (e.g. mbuf slabs). For other
+ * slabs, this probably doesn't make much of a difference.
+ */
+ if ((class == MC_MBUF || class == MC_CL || class == MC_BIGCL)
+ && (wait & MCR_COMP)) {
+ sp = (mcl_slab_t *)TAILQ_LAST(&m_slablist(class), mcl_slhead);
+ } else {
+ sp = (mcl_slab_t *)TAILQ_FIRST(&m_slablist(class));
}
-}
-void
-m_adj(mp, req_len)
- struct mbuf *mp;
- int req_len;
-{
- register int len = req_len;
- register struct mbuf *m;
- register count;
+ if (sp == NULL) {
+ VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0);
+ /* The slab list for this class is empty */
+ return NULL;
+ }
- if ((m = mp) == NULL)
- return;
- if (len >= 0) {
+ VERIFY(m_infree(class) > 0);
+ VERIFY(!slab_is_detached(sp));
+ VERIFY(sp->sl_class == class &&
+ (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
+ buf = sp->sl_head;
+ VERIFY(slab_inrange(sp, buf) && sp == slab_get(buf));
+ sp->sl_head = buf->obj_next;
+ /* Increment slab reference */
+ sp->sl_refcnt++;
+
+ VERIFY(sp->sl_head != NULL || sp->sl_refcnt == sp->sl_chunks);
+
+ if (sp->sl_head != NULL && !slab_inrange(sp, sp->sl_head)) {
+ slab_nextptr_panic(sp, sp->sl_head);
+ /* In case sl_head is in the map but not in the slab */
+ VERIFY(slab_inrange(sp, sp->sl_head));
+ /* NOTREACHED */
+ }
+
+ if (mclaudit != NULL) {
+ mcache_audit_t *mca = mcl_audit_buf2mca(class, buf);
+ mca->mca_uflags = 0;
+ /* Save contents on mbuf objects only */
+ if (class == MC_MBUF) {
+ mca->mca_uflags |= MB_SCVALID;
+ }
+ }
+
+ if (class == MC_CL) {
+ mbstat.m_clfree = (--m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
/*
- * Trim from head.
+ * A 2K cluster slab can have at most NCLPG references.
*/
- while (m != NULL && len > 0) {
- if (m->m_len <= len) {
- len -= m->m_len;
- m->m_len = 0;
- m = m->m_next;
- } else {
- m->m_len -= len;
- m->m_data += len;
- len = 0;
- }
+ VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NCLPG &&
+ sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE);
+ VERIFY(sp->sl_refcnt < NCLPG || sp->sl_head == NULL);
+ } else if (class == MC_BIGCL) {
+ mbstat.m_bigclfree = (--m_infree(MC_BIGCL)) +
+ m_infree(MC_MBUF_BIGCL);
+ /*
+ * A 4K cluster slab can have NBCLPG references.
+ */
+ VERIFY(sp->sl_refcnt >= 1 && sp->sl_chunks == NBCLPG &&
+ sp->sl_len == PAGE_SIZE &&
+ (sp->sl_refcnt < NBCLPG || sp->sl_head == NULL));
+ } else if (class == MC_16KCL) {
+ mcl_slab_t *nsp;
+ int k;
+
+ --m_infree(MC_16KCL);
+ VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 &&
+ sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
+ /*
+ * Increment 2nd-Nth slab reference, where N is NSLABSP16KB.
+ * A 16KB big cluster takes NSLABSP16KB slabs, each having at
+ * most 1 reference.
+ */
+ for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
+ nsp = nsp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(nsp != NULL);
+ nsp->sl_refcnt++;
+ VERIFY(!slab_is_detached(nsp));
+ VERIFY(nsp->sl_class == MC_16KCL &&
+ nsp->sl_flags == (SLF_MAPPED | SLF_PARTIAL) &&
+ nsp->sl_refcnt == 1 && nsp->sl_chunks == 0 &&
+ nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
+ nsp->sl_head == NULL);
}
- m = mp;
- if (m->m_flags & M_PKTHDR)
- m->m_pkthdr.len -= (req_len - len);
} else {
+ VERIFY(class == MC_MBUF);
+ --m_infree(MC_MBUF);
/*
- * Trim from tail. Scan the mbuf chain,
- * calculating its length and finding the last mbuf.
- * If the adjustment only affects this mbuf, then just
- * adjust and return. Otherwise, rescan and truncate
- * after the remaining size.
+ * If auditing is turned on, this check is
+ * deferred until later in mbuf_slab_audit().
*/
- len = -len;
- count = 0;
- for (;;) {
- count += m->m_len;
- if (m->m_next == (struct mbuf *)0)
- break;
- m = m->m_next;
- }
- if (m->m_len >= len) {
- m->m_len -= len;
- m = mp;
- if (m->m_flags & M_PKTHDR)
- m->m_pkthdr.len -= len;
- return;
+ if (mclaudit == NULL) {
+ _MCHECK((struct mbuf *)buf);
}
- count -= len;
- if (count < 0)
- count = 0;
/*
- * Correct length for chain is "count".
- * Find the mbuf with last data, adjust its length,
- * and toss data from remaining mbufs on chain.
+ * Since we have incremented the reference count above,
+ * an mbuf slab (formerly a 4KB cluster slab that was cut
+ * up into mbufs) must have a reference count between 1
+ * and NMBPG at this point.
*/
- m = mp;
- if (m->m_flags & M_PKTHDR)
- m->m_pkthdr.len = count;
- for (; m; m = m->m_next) {
- if (m->m_len >= count) {
- m->m_len = count;
- break;
- }
- count -= m->m_len;
- }
- while (m = m->m_next)
- m->m_len = 0;
+ VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NMBPG &&
+ sp->sl_chunks == NMBPG &&
+ sp->sl_len == PAGE_SIZE);
+ VERIFY(sp->sl_refcnt < NMBPG || sp->sl_head == NULL);
}
-}
+
+ /* If empty, remove this slab from the class's freelist */
+ if (sp->sl_head == NULL) {
+ VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPG);
+ VERIFY(class != MC_CL || sp->sl_refcnt == NCLPG);
+ VERIFY(class != MC_BIGCL || sp->sl_refcnt == NBCLPG);
+ slab_remove(sp, class);
+ }
+
+ return buf;
+}
+
+/*
+ * Place a slab of object(s) back into a class's slab list.
+ */
+static void
+slab_free(mbuf_class_t class, mcache_obj_t *buf)
+{
+ mcl_slab_t *sp;
+ boolean_t reinit_supercl = false;
+ mbuf_class_t super_class;
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ VERIFY(class != MC_16KCL || njcl > 0);
+ VERIFY(buf->obj_next == NULL);
+
+ /*
+ * Synchronizing with m_clalloc, as it reads m_total, while we here
+ * are modifying m_total.
+ */
+ while (mb_clalloc_busy) {
+ mb_clalloc_waiters++;
+ (void) msleep(mb_clalloc_waitchan, mbuf_mlock,
+ (PZERO - 1), "m_clalloc", NULL);
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+ }
+
+ /* We are busy now; tell everyone else to go away */
+ mb_clalloc_busy = TRUE;
+
+ sp = slab_get(buf);
+ VERIFY(sp->sl_class == class && slab_inrange(sp, buf) &&
+ (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
+
+ /* Decrement slab reference */
+ sp->sl_refcnt--;
+
+ if (class == MC_CL) {
+ VERIFY(IS_P2ALIGNED(buf, MCLBYTES));
+ /*
+ * A slab that has been splitted for 2KB clusters can have
+ * at most 1 outstanding reference at this point.
+ */
+ VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NCLPG - 1) &&
+ sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE);
+ VERIFY(sp->sl_refcnt < (NCLPG - 1) ||
+ (slab_is_detached(sp) && sp->sl_head == NULL));
+ } else if (class == MC_BIGCL) {
+ VERIFY(IS_P2ALIGNED(buf, MBIGCLBYTES));
+
+ /* A 4KB cluster slab can have NBCLPG references at most */
+ VERIFY(sp->sl_refcnt >= 0 && sp->sl_chunks == NBCLPG);
+ VERIFY(sp->sl_refcnt < (NBCLPG - 1) ||
+ (slab_is_detached(sp) && sp->sl_head == NULL));
+ } else if (class == MC_16KCL) {
+ mcl_slab_t *nsp;
+ int k;
+ /*
+ * A 16KB cluster takes NSLABSP16KB slabs, all must
+ * now have 0 reference.
+ */
+ VERIFY(IS_P2ALIGNED(buf, PAGE_SIZE));
+ VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 &&
+ sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
+ VERIFY(slab_is_detached(sp));
+ for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
+ nsp = nsp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(nsp != NULL);
+ nsp->sl_refcnt--;
+ VERIFY(slab_is_detached(nsp));
+ VERIFY(nsp->sl_class == MC_16KCL &&
+ (nsp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) &&
+ nsp->sl_refcnt == 0 && nsp->sl_chunks == 0 &&
+ nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
+ nsp->sl_head == NULL);
+ }
+ } else {
+ /*
+ * A slab that has been splitted for mbufs has at most
+ * NMBPG reference counts. Since we have decremented
+ * one reference above, it must now be between 0 and
+ * NMBPG-1.
+ */
+ VERIFY(class == MC_MBUF);
+ VERIFY(sp->sl_refcnt >= 0 &&
+ sp->sl_refcnt <= (NMBPG - 1) &&
+ sp->sl_chunks == NMBPG &&
+ sp->sl_len == PAGE_SIZE);
+ VERIFY(sp->sl_refcnt < (NMBPG - 1) ||
+ (slab_is_detached(sp) && sp->sl_head == NULL));
+ }
+
+ /*
+ * When auditing is enabled, ensure that the buffer still
+ * contains the free pattern. Otherwise it got corrupted
+ * while at the CPU cache layer.
+ */
+ if (mclaudit != NULL) {
+ mcache_audit_t *mca = mcl_audit_buf2mca(class, buf);
+ if (mclverify) {
+ mcache_audit_free_verify(mca, buf, 0,
+ m_maxsize(class));
+ }
+ mca->mca_uflags &= ~MB_SCVALID;
+ }
+
+ if (class == MC_CL) {
+ mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
+ buf->obj_next = sp->sl_head;
+ } else if (class == MC_BIGCL) {
+ mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) +
+ m_infree(MC_MBUF_BIGCL);
+ buf->obj_next = sp->sl_head;
+ } else if (class == MC_16KCL) {
+ ++m_infree(MC_16KCL);
+ } else {
+ ++m_infree(MC_MBUF);
+ buf->obj_next = sp->sl_head;
+ }
+ sp->sl_head = buf;
+
+ /*
+ * If a slab has been split to either one which holds 2KB clusters,
+ * or one which holds mbufs, turn it back to one which holds a
+ * 4 or 16 KB cluster depending on the page size.
+ */
+ if (m_maxsize(MC_BIGCL) == PAGE_SIZE) {
+ super_class = MC_BIGCL;
+ } else {
+ VERIFY(PAGE_SIZE == m_maxsize(MC_16KCL));
+ super_class = MC_16KCL;
+ }
+ if (class == MC_MBUF && sp->sl_refcnt == 0 &&
+ m_total(class) >= (m_minlimit(class) + NMBPG) &&
+ m_total(super_class) < m_maxlimit(super_class)) {
+ int i = NMBPG;
+
+ m_total(MC_MBUF) -= NMBPG;
+ mbstat.m_mbufs = m_total(MC_MBUF);
+ m_infree(MC_MBUF) -= NMBPG;
+ mtype_stat_add(MT_FREE, -((unsigned)NMBPG));
+
+ while (i--) {
+ struct mbuf *m = sp->sl_head;
+ VERIFY(m != NULL);
+ sp->sl_head = m->m_next;
+ m->m_next = NULL;
+ }
+ reinit_supercl = true;
+ } else if (class == MC_CL && sp->sl_refcnt == 0 &&
+ m_total(class) >= (m_minlimit(class) + NCLPG) &&
+ m_total(super_class) < m_maxlimit(super_class)) {
+ int i = NCLPG;
+
+ m_total(MC_CL) -= NCLPG;
+ mbstat.m_clusters = m_total(MC_CL);
+ m_infree(MC_CL) -= NCLPG;
+
+ while (i--) {
+ union mcluster *c = sp->sl_head;
+ VERIFY(c != NULL);
+ sp->sl_head = c->mcl_next;
+ c->mcl_next = NULL;
+ }
+ reinit_supercl = true;
+ } else if (class == MC_BIGCL && super_class != MC_BIGCL &&
+ sp->sl_refcnt == 0 &&
+ m_total(class) >= (m_minlimit(class) + NBCLPG) &&
+ m_total(super_class) < m_maxlimit(super_class)) {
+ int i = NBCLPG;
+
+ VERIFY(super_class == MC_16KCL);
+ m_total(MC_BIGCL) -= NBCLPG;
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
+ m_infree(MC_BIGCL) -= NBCLPG;
+
+ while (i--) {
+ union mbigcluster *bc = sp->sl_head;
+ VERIFY(bc != NULL);
+ sp->sl_head = bc->mbc_next;
+ bc->mbc_next = NULL;
+ }
+ reinit_supercl = true;
+ }
+
+ if (reinit_supercl) {
+ VERIFY(sp->sl_head == NULL);
+ VERIFY(m_total(class) >= m_minlimit(class));
+ slab_remove(sp, class);
+
+ /* Reinitialize it as a cluster for the super class */
+ m_total(super_class)++;
+ m_infree(super_class)++;
+ VERIFY(sp->sl_flags == (SLF_MAPPED | SLF_DETACHED) &&
+ sp->sl_len == PAGE_SIZE && sp->sl_refcnt == 0);
+
+ slab_init(sp, super_class, SLF_MAPPED, sp->sl_base,
+ sp->sl_base, PAGE_SIZE, 0, 1);
+ if (mclverify) {
+ mcache_set_pattern(MCACHE_FREE_PATTERN,
+ (caddr_t)sp->sl_base, sp->sl_len);
+ }
+ ((mcache_obj_t *)(sp->sl_base))->obj_next = NULL;
+
+ if (super_class == MC_BIGCL) {
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
+ mbstat.m_bigclfree = m_infree(MC_BIGCL) +
+ m_infree(MC_MBUF_BIGCL);
+ }
+
+ VERIFY(slab_is_detached(sp));
+ VERIFY(m_total(super_class) <= m_maxlimit(super_class));
+
+ /* And finally switch class */
+ class = super_class;
+ }
+
+ /* Reinsert the slab to the class's slab list */
+ if (slab_is_detached(sp)) {
+ slab_insert(sp, class);
+ }
+
+ /* We're done; let others enter */
+ mb_clalloc_busy = FALSE;
+ if (mb_clalloc_waiters > 0) {
+ mb_clalloc_waiters = 0;
+ wakeup(mb_clalloc_waitchan);
+ }
+}
+
+/*
+ * Common allocator for rudimentary objects called by the CPU cache layer
+ * during an allocation request whenever there is no available element in the
+ * bucket layer. It returns one or more elements from the appropriate global
+ * freelist. If the freelist is empty, it will attempt to populate it and
+ * retry the allocation.
+ */
+static unsigned int
+mbuf_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait)
+{
+ mbuf_class_t class = (mbuf_class_t)arg;
+ unsigned int need = num;
+ mcache_obj_t **list = *plist;
+
+ ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
+ ASSERT(need > 0);
+
+ lck_mtx_lock(mbuf_mlock);
+
+ for (;;) {
+ if ((*list = slab_alloc(class, wait)) != NULL) {
+ (*list)->obj_next = NULL;
+ list = *plist = &(*list)->obj_next;
+
+ if (--need == 0) {
+ /*
+ * If the number of elements in freelist has
+ * dropped below low watermark, asynchronously
+ * populate the freelist now rather than doing
+ * it later when we run out of elements.
+ */
+ if (!mbuf_cached_above(class, wait) &&
+ m_infree(class) < (m_total(class) >> 5)) {
+ (void) freelist_populate(class, 1,
+ M_DONTWAIT);
+ }
+ break;
+ }
+ } else {
+ VERIFY(m_infree(class) == 0 || class == MC_CL);
+
+ (void) freelist_populate(class, 1,
+ (wait & MCR_NOSLEEP) ? M_DONTWAIT : M_WAIT);
+
+ if (m_infree(class) > 0) {
+ continue;
+ }
+
+ /* Check if there's anything at the cache layer */
+ if (mbuf_cached_above(class, wait)) {
+ break;
+ }
+
+ /* watchdog checkpoint */
+ mbuf_watchdog();
+
+ /* We have nothing and cannot block; give up */
+ if (wait & MCR_NOSLEEP) {
+ if (!(wait & MCR_TRYHARD)) {
+ m_fail_cnt(class)++;
+ mbstat.m_drops++;
+ break;
+ }
+ }
+
+ /*
+ * If the freelist is still empty and the caller is
+ * willing to be blocked, sleep on the wait channel
+ * until an element is available. Otherwise, if
+ * MCR_TRYHARD is set, do our best to satisfy the
+ * request without having to go to sleep.
+ */
+ if (mbuf_worker_ready &&
+ mbuf_sleep(class, need, wait)) {
+ break;
+ }
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+ }
+ }
+
+ m_alloc_cnt(class) += num - need;
+ lck_mtx_unlock(mbuf_mlock);
+
+ return num - need;
+}
+
+/*
+ * Common de-allocator for rudimentary objects called by the CPU cache
+ * layer when one or more elements need to be returned to the appropriate
+ * global freelist.
+ */
+static void
+mbuf_slab_free(void *arg, mcache_obj_t *list, __unused int purged)
+{
+ mbuf_class_t class = (mbuf_class_t)arg;
+ mcache_obj_t *nlist;
+ unsigned int num = 0;
+ int w;
+
+ ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
+
+ lck_mtx_lock(mbuf_mlock);
+
+ for (;;) {
+ nlist = list->obj_next;
+ list->obj_next = NULL;
+ slab_free(class, list);
+ ++num;
+ if ((list = nlist) == NULL) {
+ break;
+ }
+ }
+ m_free_cnt(class) += num;
+
+ if ((w = mb_waiters) > 0) {
+ mb_waiters = 0;
+ }
+ if (w) {
+ mbwdog_logger("waking up all threads");
+ }
+ lck_mtx_unlock(mbuf_mlock);
+
+ if (w != 0) {
+ wakeup(mb_waitchan);
+ }
+}
+
+/*
+ * Common auditor for rudimentary objects called by the CPU cache layer
+ * during an allocation or free request. For the former, this is called
+ * after the objects are obtained from either the bucket or slab layer
+ * and before they are returned to the caller. For the latter, this is
+ * called immediately during free and before placing the objects into
+ * the bucket or slab layer.
+ */
+static void
+mbuf_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc)
+{
+ mbuf_class_t class = (mbuf_class_t)arg;
+ mcache_audit_t *mca;
+
+ ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
+
+ while (list != NULL) {
+ lck_mtx_lock(mbuf_mlock);
+ mca = mcl_audit_buf2mca(class, list);
+
+ /* Do the sanity checks */
+ if (class == MC_MBUF) {
+ mcl_audit_mbuf(mca, list, FALSE, alloc);
+ ASSERT(mca->mca_uflags & MB_SCVALID);
+ } else {
+ mcl_audit_cluster(mca, list, m_maxsize(class),
+ alloc, TRUE);
+ ASSERT(!(mca->mca_uflags & MB_SCVALID));
+ }
+ /* Record this transaction */
+ if (mcltrace) {
+ mcache_buffer_log(mca, list, m_cache(class), &mb_start);
+ }
+
+ if (alloc) {
+ mca->mca_uflags |= MB_INUSE;
+ } else {
+ mca->mca_uflags &= ~MB_INUSE;
+ }
+ /* Unpair the object (unconditionally) */
+ mca->mca_uptr = NULL;
+ lck_mtx_unlock(mbuf_mlock);
+
+ list = list->obj_next;
+ }
+}
+
+/*
+ * Common notify routine for all caches. It is called by mcache when
+ * one or more objects get freed. We use this indication to trigger
+ * the wakeup of any sleeping threads so that they can retry their
+ * allocation requests.
+ */
+static void
+mbuf_slab_notify(void *arg, u_int32_t reason)
+{
+ mbuf_class_t class = (mbuf_class_t)arg;
+ int w;
+
+ ASSERT(MBUF_CLASS_VALID(class));
+
+ if (reason != MCN_RETRYALLOC) {
+ return;
+ }
+
+ lck_mtx_lock(mbuf_mlock);
+ if ((w = mb_waiters) > 0) {
+ m_notified(class)++;
+ mb_waiters = 0;
+ }
+ if (w) {
+ mbwdog_logger("waking up all threads");
+ }
+ lck_mtx_unlock(mbuf_mlock);
+
+ if (w != 0) {
+ wakeup(mb_waitchan);
+ }
+}
+
+/*
+ * Obtain object(s) from the composite class's freelist.
+ */
+static unsigned int
+cslab_alloc(mbuf_class_t class, mcache_obj_t ***plist, unsigned int num)
+{
+ unsigned int need = num;
+ mcl_slab_t *sp, *clsp, *nsp;
+ struct mbuf *m;
+ mcache_obj_t **list = *plist;
+ void *cl;
+
+ VERIFY(need > 0);
+ VERIFY(class != MC_MBUF_16KCL || njcl > 0);
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ /* Get what we can from the freelist */
+ while ((*list = m_cobjlist(class)) != NULL) {
+ MRANGE(*list);
+
+ m = (struct mbuf *)*list;
+ sp = slab_get(m);
+ cl = m->m_ext.ext_buf;
+ clsp = slab_get(cl);
+ VERIFY(m->m_flags == M_EXT && cl != NULL);
+ VERIFY(m_get_rfa(m) != NULL && MBUF_IS_COMPOSITE(m));
+
+ if (class == MC_MBUF_CL) {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NCLPG);
+ } else {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NBCLPG);
+ }
+
+ if (class == MC_MBUF_16KCL) {
+ int k;
+ for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
+ nsp = nsp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(nsp != NULL);
+ VERIFY(nsp->sl_refcnt == 1);
+ }
+ }
+
+ if ((m_cobjlist(class) = (*list)->obj_next) != NULL &&
+ !MBUF_IN_MAP(m_cobjlist(class))) {
+ slab_nextptr_panic(sp, m_cobjlist(class));
+ /* NOTREACHED */
+ }
+ (*list)->obj_next = NULL;
+ list = *plist = &(*list)->obj_next;
+
+ if (--need == 0) {
+ break;
+ }
+ }
+ m_infree(class) -= (num - need);
+
+ return num - need;
+}
+
+/*
+ * Place object(s) back into a composite class's freelist.
+ */
+static unsigned int
+cslab_free(mbuf_class_t class, mcache_obj_t *list, int purged)
+{
+ mcache_obj_t *o, *tail;
+ unsigned int num = 0;
+ struct mbuf *m, *ms;
+ mcache_audit_t *mca = NULL;
+ mcache_obj_t *ref_list = NULL;
+ mcl_slab_t *clsp, *nsp;
+ void *cl;
+ mbuf_class_t cl_class;
+
+ ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
+ VERIFY(class != MC_MBUF_16KCL || njcl > 0);
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ if (class == MC_MBUF_CL) {
+ cl_class = MC_CL;
+ } else if (class == MC_MBUF_BIGCL) {
+ cl_class = MC_BIGCL;
+ } else {
+ VERIFY(class == MC_MBUF_16KCL);
+ cl_class = MC_16KCL;
+ }
+
+ o = tail = list;
+
+ while ((m = ms = (struct mbuf *)o) != NULL) {
+ mcache_obj_t *rfa, *nexto = o->obj_next;
+
+ /* Do the mbuf sanity checks */
+ if (mclaudit != NULL) {
+ mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
+ if (mclverify) {
+ mcache_audit_free_verify(mca, m, 0,
+ m_maxsize(MC_MBUF));
+ }
+ ms = MCA_SAVED_MBUF_PTR(mca);
+ }
+
+ /* Do the cluster sanity checks */
+ cl = ms->m_ext.ext_buf;
+ clsp = slab_get(cl);
+ if (mclverify) {
+ size_t size = m_maxsize(cl_class);
+ mcache_audit_free_verify(mcl_audit_buf2mca(cl_class,
+ (mcache_obj_t *)cl), cl, 0, size);
+ }
+ VERIFY(ms->m_type == MT_FREE);
+ VERIFY(ms->m_flags == M_EXT);
+ VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms));
+ if (cl_class == MC_CL) {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NCLPG);
+ } else {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NBCLPG);
+ }
+ if (cl_class == MC_16KCL) {
+ int k;
+ for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
+ nsp = nsp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(nsp != NULL);
+ VERIFY(nsp->sl_refcnt == 1);
+ }
+ }
+
+ /*
+ * If we're asked to purge, restore the actual mbuf using
+ * contents of the shadow structure (if auditing is enabled)
+ * and clear EXTF_COMPOSITE flag from the mbuf, as we are
+ * about to free it and the attached cluster into their caches.
+ */
+ if (purged) {
+ /* Restore constructed mbuf fields */
+ if (mclaudit != NULL) {
+ mcl_audit_restore_mbuf(m, mca, TRUE);
+ }
+
+ MEXT_MINREF(m) = 0;
+ MEXT_REF(m) = 0;
+ MEXT_PREF(m) = 0;
+ MEXT_FLAGS(m) = 0;
+ MEXT_PRIV(m) = 0;
+ MEXT_PMBUF(m) = NULL;
+ MEXT_TOKEN(m) = 0;
+
+ rfa = (mcache_obj_t *)(void *)m_get_rfa(m);
+ m_set_ext(m, NULL, NULL, NULL);
+ rfa->obj_next = ref_list;
+ ref_list = rfa;
+
+ m->m_type = MT_FREE;
+ m->m_flags = m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ /* Save mbuf fields and make auditing happy */
+ if (mclaudit != NULL) {
+ mcl_audit_mbuf(mca, o, FALSE, FALSE);
+ }
+
+ VERIFY(m_total(class) > 0);
+ m_total(class)--;
+
+ /* Free the mbuf */
+ o->obj_next = NULL;
+ slab_free(MC_MBUF, o);
+
+ /* And free the cluster */
+ ((mcache_obj_t *)cl)->obj_next = NULL;
+ if (class == MC_MBUF_CL) {
+ slab_free(MC_CL, cl);
+ } else if (class == MC_MBUF_BIGCL) {
+ slab_free(MC_BIGCL, cl);
+ } else {
+ slab_free(MC_16KCL, cl);
+ }
+ }
+
+ ++num;
+ tail = o;
+ o = nexto;
+ }
+
+ if (!purged) {
+ tail->obj_next = m_cobjlist(class);
+ m_cobjlist(class) = list;
+ m_infree(class) += num;
+ } else if (ref_list != NULL) {
+ mcache_free_ext(ref_cache, ref_list);
+ }
+
+ return num;
+}
+
+/*
+ * Common allocator for composite objects called by the CPU cache layer
+ * during an allocation request whenever there is no available element in
+ * the bucket layer. It returns one or more composite elements from the
+ * appropriate global freelist. If the freelist is empty, it will attempt
+ * to obtain the rudimentary objects from their caches and construct them
+ * into composite mbuf + cluster objects.
+ */
+static unsigned int
+mbuf_cslab_alloc(void *arg, mcache_obj_t ***plist, unsigned int needed,
+ int wait)
+{
+ mbuf_class_t class = (mbuf_class_t)arg;
+ mbuf_class_t cl_class = 0;
+ unsigned int num = 0, cnum = 0, want = needed;
+ mcache_obj_t *ref_list = NULL;
+ mcache_obj_t *mp_list = NULL;
+ mcache_obj_t *clp_list = NULL;
+ mcache_obj_t **list;
+ struct ext_ref *rfa;
+ struct mbuf *m;
+ void *cl;
+
+ ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
+ ASSERT(needed > 0);
+
+ VERIFY(class != MC_MBUF_16KCL || njcl > 0);
+
+ /* There should not be any slab for this class */
+ VERIFY(m_slab_cnt(class) == 0 &&
+ m_slablist(class).tqh_first == NULL &&
+ m_slablist(class).tqh_last == NULL);
+
+ lck_mtx_lock(mbuf_mlock);
+
+ /* Try using the freelist first */
+ num = cslab_alloc(class, plist, needed);
+ list = *plist;
+ if (num == needed) {
+ m_alloc_cnt(class) += num;
+ lck_mtx_unlock(mbuf_mlock);
+ return needed;
+ }
+
+ lck_mtx_unlock(mbuf_mlock);
+
+ /*
+ * We could not satisfy the request using the freelist alone;
+ * allocate from the appropriate rudimentary caches and use
+ * whatever we can get to construct the composite objects.
+ */
+ needed -= num;
+
+ /*
+ * Mark these allocation requests as coming from a composite cache.
+ * Also, if the caller is willing to be blocked, mark the request
+ * with MCR_FAILOK such that we don't end up sleeping at the mbuf
+ * slab layer waiting for the individual object when one or more
+ * of the already-constructed composite objects are available.
+ */
+ wait |= MCR_COMP;
+ if (!(wait & MCR_NOSLEEP)) {
+ wait |= MCR_FAILOK;
+ }
+
+ /* allocate mbufs */
+ needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait);
+ if (needed == 0) {
+ ASSERT(mp_list == NULL);
+ goto fail;
+ }
+
+ /* allocate clusters */
+ if (class == MC_MBUF_CL) {
+ cl_class = MC_CL;
+ } else if (class == MC_MBUF_BIGCL) {
+ cl_class = MC_BIGCL;
+ } else {
+ VERIFY(class == MC_MBUF_16KCL);
+ cl_class = MC_16KCL;
+ }
+ needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait);
+ if (needed == 0) {
+ ASSERT(clp_list == NULL);
+ goto fail;
+ }
+
+ needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait);
+ if (needed == 0) {
+ ASSERT(ref_list == NULL);
+ goto fail;
+ }
+
+ /*
+ * By this time "needed" is MIN(mbuf, cluster, ref). Any left
+ * overs will get freed accordingly before we return to caller.
+ */
+ for (cnum = 0; cnum < needed; cnum++) {
+ struct mbuf *ms;
+
+ m = ms = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+
+ cl = clp_list;
+ clp_list = clp_list->obj_next;
+ ((mcache_obj_t *)cl)->obj_next = NULL;
+
+ rfa = (struct ext_ref *)ref_list;
+ ref_list = ref_list->obj_next;
+ ((mcache_obj_t *)(void *)rfa)->obj_next = NULL;
+
+ /*
+ * If auditing is enabled, construct the shadow mbuf
+ * in the audit structure instead of in the actual one.
+ * mbuf_cslab_audit() will take care of restoring the
+ * contents after the integrity check.
+ */
+ if (mclaudit != NULL) {
+ mcache_audit_t *mca, *cl_mca;
+
+ lck_mtx_lock(mbuf_mlock);
+ mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
+ ms = MCA_SAVED_MBUF_PTR(mca);
+ cl_mca = mcl_audit_buf2mca(cl_class,
+ (mcache_obj_t *)cl);
+
+ /*
+ * Pair them up. Note that this is done at the time
+ * the mbuf+cluster objects are constructed. This
+ * information should be treated as "best effort"
+ * debugging hint since more than one mbufs can refer
+ * to a cluster. In that case, the cluster might not
+ * be freed along with the mbuf it was paired with.
+ */
+ mca->mca_uptr = cl_mca;
+ cl_mca->mca_uptr = mca;
+
+ ASSERT(mca->mca_uflags & MB_SCVALID);
+ ASSERT(!(cl_mca->mca_uflags & MB_SCVALID));
+ lck_mtx_unlock(mbuf_mlock);
+
+ /* Technically, they are in the freelist */
+ if (mclverify) {
+ size_t size;
+
+ mcache_set_pattern(MCACHE_FREE_PATTERN, m,
+ m_maxsize(MC_MBUF));
+
+ if (class == MC_MBUF_CL) {
+ size = m_maxsize(MC_CL);
+ } else if (class == MC_MBUF_BIGCL) {
+ size = m_maxsize(MC_BIGCL);
+ } else {
+ size = m_maxsize(MC_16KCL);
+ }
+
+ mcache_set_pattern(MCACHE_FREE_PATTERN, cl,
+ size);
+ }
+ }
+
+ MBUF_INIT(ms, 0, MT_FREE);
+ if (class == MC_MBUF_16KCL) {
+ MBUF_16KCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
+ } else if (class == MC_MBUF_BIGCL) {
+ MBUF_BIGCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
+ } else {
+ MBUF_CL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
+ }
+ VERIFY(ms->m_flags == M_EXT);
+ VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms));
+
+ *list = (mcache_obj_t *)m;
+ (*list)->obj_next = NULL;
+ list = *plist = &(*list)->obj_next;
+ }
+
+fail:
+ /*
+ * Free up what's left of the above.
+ */
+ if (mp_list != NULL) {
+ mcache_free_ext(m_cache(MC_MBUF), mp_list);
+ }
+ if (clp_list != NULL) {
+ mcache_free_ext(m_cache(cl_class), clp_list);
+ }
+ if (ref_list != NULL) {
+ mcache_free_ext(ref_cache, ref_list);
+ }
+
+ lck_mtx_lock(mbuf_mlock);
+ if (num > 0 || cnum > 0) {
+ m_total(class) += cnum;
+ VERIFY(m_total(class) <= m_maxlimit(class));
+ m_alloc_cnt(class) += num + cnum;
+ }
+ if ((num + cnum) < want) {
+ m_fail_cnt(class) += (want - (num + cnum));
+ }
+ lck_mtx_unlock(mbuf_mlock);
+
+ return num + cnum;
+}
+
+/*
+ * Common de-allocator for composite objects called by the CPU cache
+ * layer when one or more elements need to be returned to the appropriate
+ * global freelist.
+ */
+static void
+mbuf_cslab_free(void *arg, mcache_obj_t *list, int purged)
+{
+ mbuf_class_t class = (mbuf_class_t)arg;
+ unsigned int num;
+ int w;
+
+ ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
+
+ lck_mtx_lock(mbuf_mlock);
+
+ num = cslab_free(class, list, purged);
+ m_free_cnt(class) += num;
+
+ if ((w = mb_waiters) > 0) {
+ mb_waiters = 0;
+ }
+ if (w) {
+ mbwdog_logger("waking up all threads");
+ }
+
+ lck_mtx_unlock(mbuf_mlock);
+
+ if (w != 0) {
+ wakeup(mb_waitchan);
+ }
+}
+
+/*
+ * Common auditor for composite objects called by the CPU cache layer
+ * during an allocation or free request. For the former, this is called
+ * after the objects are obtained from either the bucket or slab layer
+ * and before they are returned to the caller. For the latter, this is
+ * called immediately during free and before placing the objects into
+ * the bucket or slab layer.
+ */
+static void
+mbuf_cslab_audit(void *arg, mcache_obj_t *list, boolean_t alloc)
+{
+ mbuf_class_t class = (mbuf_class_t)arg, cl_class;
+ mcache_audit_t *mca;
+ struct mbuf *m, *ms;
+ mcl_slab_t *clsp, *nsp;
+ size_t cl_size;
+ void *cl;
+
+ ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
+ if (class == MC_MBUF_CL) {
+ cl_class = MC_CL;
+ } else if (class == MC_MBUF_BIGCL) {
+ cl_class = MC_BIGCL;
+ } else {
+ cl_class = MC_16KCL;
+ }
+ cl_size = m_maxsize(cl_class);
+
+ while ((m = ms = (struct mbuf *)list) != NULL) {
+ lck_mtx_lock(mbuf_mlock);
+ /* Do the mbuf sanity checks and record its transaction */
+ mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
+ mcl_audit_mbuf(mca, m, TRUE, alloc);
+ if (mcltrace) {
+ mcache_buffer_log(mca, m, m_cache(class), &mb_start);
+ }
+
+ if (alloc) {
+ mca->mca_uflags |= MB_COMP_INUSE;
+ } else {
+ mca->mca_uflags &= ~MB_COMP_INUSE;
+ }
+
+ /*
+ * Use the shadow mbuf in the audit structure if we are
+ * freeing, since the contents of the actual mbuf has been
+ * pattern-filled by the above call to mcl_audit_mbuf().
+ */
+ if (!alloc && mclverify) {
+ ms = MCA_SAVED_MBUF_PTR(mca);
+ }
+
+ /* Do the cluster sanity checks and record its transaction */
+ cl = ms->m_ext.ext_buf;
+ clsp = slab_get(cl);
+ VERIFY(ms->m_flags == M_EXT && cl != NULL);
+ VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms));
+ if (class == MC_MBUF_CL) {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NCLPG);
+ } else {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NBCLPG);
+ }
+
+ if (class == MC_MBUF_16KCL) {
+ int k;
+ for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
+ nsp = nsp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(nsp != NULL);
+ VERIFY(nsp->sl_refcnt == 1);
+ }
+ }
+
+
+ mca = mcl_audit_buf2mca(cl_class, cl);
+ mcl_audit_cluster(mca, cl, cl_size, alloc, FALSE);
+ if (mcltrace) {
+ mcache_buffer_log(mca, cl, m_cache(class), &mb_start);
+ }
+
+ if (alloc) {
+ mca->mca_uflags |= MB_COMP_INUSE;
+ } else {
+ mca->mca_uflags &= ~MB_COMP_INUSE;
+ }
+ lck_mtx_unlock(mbuf_mlock);
+
+ list = list->obj_next;
+ }
+}
+
+static void
+m_vm_error_stats(uint32_t *cnt, uint64_t *ts, uint64_t *size,
+ uint64_t alloc_size, kern_return_t error)
+{
+ *cnt = *cnt + 1;
+ *ts = net_uptime();
+ if (size) {
+ *size = alloc_size;
+ }
+ _CASSERT(sizeof(mb_kmem_stats) / sizeof(mb_kmem_stats[0]) ==
+ sizeof(mb_kmem_stats_labels) / sizeof(mb_kmem_stats_labels[0]));
+ switch (error) {
+ case KERN_SUCCESS:
+ break;
+ case KERN_INVALID_ARGUMENT:
+ mb_kmem_stats[0]++;
+ break;
+ case KERN_INVALID_ADDRESS:
+ mb_kmem_stats[1]++;
+ break;
+ case KERN_RESOURCE_SHORTAGE:
+ mb_kmem_stats[2]++;
+ break;
+ case KERN_NO_SPACE:
+ mb_kmem_stats[3]++;
+ break;
+ case KERN_FAILURE:
+ mb_kmem_stats[4]++;
+ break;
+ default:
+ mb_kmem_stats[5]++;
+ break;
+ }
+}
+
+/*
+ * Allocate some number of mbuf clusters and place on cluster freelist.
+ */
+static int
+m_clalloc(const u_int32_t num, const int wait, const u_int32_t bufsize)
+{
+ int i, count = 0;
+ vm_size_t size = 0;
+ int numpages = 0, large_buffer;
+ vm_offset_t page = 0;
+ mcache_audit_t *mca_list = NULL;
+ mcache_obj_t *con_list = NULL;
+ mcl_slab_t *sp;
+ mbuf_class_t class;
+ kern_return_t error;
+
+ /* Set if a buffer allocation needs allocation of multiple pages */
+ large_buffer = ((bufsize == m_maxsize(MC_16KCL)) &&
+ PAGE_SIZE < M16KCLBYTES);
+ VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
+ bufsize == m_maxsize(MC_16KCL));
+
+ VERIFY((bufsize == PAGE_SIZE) ||
+ (bufsize > PAGE_SIZE && bufsize == m_maxsize(MC_16KCL)));
+
+ if (bufsize == m_size(MC_BIGCL)) {
+ class = MC_BIGCL;
+ } else {
+ class = MC_16KCL;
+ }
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ /*
+ * Multiple threads may attempt to populate the cluster map one
+ * after another. Since we drop the lock below prior to acquiring
+ * the physical page(s), our view of the cluster map may no longer
+ * be accurate, and we could end up over-committing the pages beyond
+ * the maximum allowed for each class. To prevent it, this entire
+ * operation (including the page mapping) is serialized.
+ */
+ while (mb_clalloc_busy) {
+ mb_clalloc_waiters++;
+ (void) msleep(mb_clalloc_waitchan, mbuf_mlock,
+ (PZERO - 1), "m_clalloc", NULL);
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+ }
+
+ /* We are busy now; tell everyone else to go away */
+ mb_clalloc_busy = TRUE;
+
+ /*
+ * Honor the caller's wish to block or not block. We have a way
+ * to grow the pool asynchronously using the mbuf worker thread.
+ */
+ i = m_howmany(num, bufsize);
+ if (i <= 0 || (wait & M_DONTWAIT)) {
+ goto out;
+ }
+
+ lck_mtx_unlock(mbuf_mlock);
+
+ size = round_page(i * bufsize);
+ page = kmem_mb_alloc(mb_map, size, large_buffer, &error);
+
+ /*
+ * If we did ask for "n" 16KB physically contiguous chunks
+ * and didn't get them, then please try again without this
+ * restriction.
+ */
+ net_update_uptime();
+ if (large_buffer && page == 0) {
+ m_vm_error_stats(&mb_kmem_contig_failed,
+ &mb_kmem_contig_failed_ts,
+ &mb_kmem_contig_failed_size,
+ size, error);
+ page = kmem_mb_alloc(mb_map, size, 0, &error);
+ }
+
+ if (page == 0) {
+ m_vm_error_stats(&mb_kmem_failed,
+ &mb_kmem_failed_ts,
+ &mb_kmem_failed_size,
+ size, error);
+#if PAGE_SIZE == 4096
+ if (bufsize == m_maxsize(MC_BIGCL)) {
+#else
+ if (bufsize >= m_maxsize(MC_BIGCL)) {
+#endif
+ /* Try for 1 page if failed */
+ size = PAGE_SIZE;
+ page = kmem_mb_alloc(mb_map, size, 0, &error);
+ if (page == 0) {
+ m_vm_error_stats(&mb_kmem_one_failed,
+ &mb_kmem_one_failed_ts,
+ NULL, size, error);
+ }
+ }
+
+ if (page == 0) {
+ lck_mtx_lock(mbuf_mlock);
+ goto out;
+ }
+ }
+
+ VERIFY(IS_P2ALIGNED(page, PAGE_SIZE));
+ numpages = size / PAGE_SIZE;
+
+ /* If auditing is enabled, allocate the audit structures now */
+ if (mclaudit != NULL) {
+ int needed;
+
+ /*
+ * Yes, I realize this is a waste of memory for clusters
+ * that never get transformed into mbufs, as we may end
+ * up with NMBPG-1 unused audit structures per cluster.
+ * But doing so tremendously simplifies the allocation
+ * strategy, since at this point we are not holding the
+ * mbuf lock and the caller is okay to be blocked.
+ */
+ if (bufsize == PAGE_SIZE) {
+ needed = numpages * NMBPG;
+
+ i = mcache_alloc_ext(mcl_audit_con_cache,
+ &con_list, needed, MCR_SLEEP);
+
+ VERIFY(con_list != NULL && i == needed);
+ } else {
+ /*
+ * if multiple 4K pages are being used for a
+ * 16K cluster
+ */
+ needed = numpages / NSLABSP16KB;
+ }
+
+ i = mcache_alloc_ext(mcache_audit_cache,
+ (mcache_obj_t **)&mca_list, needed, MCR_SLEEP);
+
+ VERIFY(mca_list != NULL && i == needed);
+ }
+
+ lck_mtx_lock(mbuf_mlock);
+
+ for (i = 0; i < numpages; i++, page += PAGE_SIZE) {
+ ppnum_t offset =
+ ((unsigned char *)page - mbutl) >> PAGE_SHIFT;
+ ppnum_t new_page = pmap_find_phys(kernel_pmap, page);
+
+ /*
+ * If there is a mapper the appropriate I/O page is
+ * returned; zero out the page to discard its past
+ * contents to prevent exposing leftover kernel memory.
+ */
+ VERIFY(offset < mcl_pages);
+ if (mcl_paddr_base != 0) {
+ bzero((void *)(uintptr_t) page, PAGE_SIZE);
+ new_page = IOMapperInsertPage(mcl_paddr_base,
+ offset, new_page);
+ }
+ mcl_paddr[offset] = new_page;
+
+ /* Pattern-fill this fresh page */
+ if (mclverify) {
+ mcache_set_pattern(MCACHE_FREE_PATTERN,
+ (caddr_t)page, PAGE_SIZE);
+ }
+ if (bufsize == PAGE_SIZE) {
+ mcache_obj_t *buf;
+ /* One for the entire page */
+ sp = slab_get((void *)page);
+ if (mclaudit != NULL) {
+ mcl_audit_init((void *)page,
+ &mca_list, &con_list,
+ AUDIT_CONTENTS_SIZE, NMBPG);
+ }
+ VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
+ slab_init(sp, class, SLF_MAPPED, (void *)page,
+ (void *)page, PAGE_SIZE, 0, 1);
+ buf = (mcache_obj_t *)page;
+ buf->obj_next = NULL;
+
+ /* Insert this slab */
+ slab_insert(sp, class);
+
+ /* Update stats now since slab_get drops the lock */
+ ++m_infree(class);
+ ++m_total(class);
+ VERIFY(m_total(class) <= m_maxlimit(class));
+ if (class == MC_BIGCL) {
+ mbstat.m_bigclfree = m_infree(MC_BIGCL) +
+ m_infree(MC_MBUF_BIGCL);
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
+ }
+ ++count;
+ } else if ((bufsize > PAGE_SIZE) &&
+ (i % NSLABSP16KB) == 0) {
+ union m16kcluster *m16kcl = (union m16kcluster *)page;
+ mcl_slab_t *nsp;
+ int k;
+
+ /* One for the entire 16KB */
+ sp = slab_get(m16kcl);
+ if (mclaudit != NULL) {
+ mcl_audit_init(m16kcl, &mca_list, NULL, 0, 1);
+ }
+
+ VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
+ slab_init(sp, MC_16KCL, SLF_MAPPED,
+ m16kcl, m16kcl, bufsize, 0, 1);
+ m16kcl->m16kcl_next = NULL;
+
+ /*
+ * 2nd-Nth page's slab is part of the first one,
+ * where N is NSLABSP16KB.
+ */
+ for (k = 1; k < NSLABSP16KB; k++) {
+ nsp = slab_get(((union mbigcluster *)page) + k);
+ VERIFY(nsp->sl_refcnt == 0 &&
+ nsp->sl_flags == 0);
+ slab_init(nsp, MC_16KCL,
+ SLF_MAPPED | SLF_PARTIAL,
+ m16kcl, NULL, 0, 0, 0);
+ }
+ /* Insert this slab */
+ slab_insert(sp, MC_16KCL);
+
+ /* Update stats now since slab_get drops the lock */
+ ++m_infree(MC_16KCL);
+ ++m_total(MC_16KCL);
+ VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
+ ++count;
+ }
+ }
+ VERIFY(mca_list == NULL && con_list == NULL);
+
+ if (!mb_peak_newreport && mbuf_report_usage(class)) {
+ mb_peak_newreport = TRUE;
+ }
+
+ /* We're done; let others enter */
+ mb_clalloc_busy = FALSE;
+ if (mb_clalloc_waiters > 0) {
+ mb_clalloc_waiters = 0;
+ wakeup(mb_clalloc_waitchan);
+ }
+
+ return count;
+out:
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ mtracelarge_register(size);
+
+ /* We're done; let others enter */
+ mb_clalloc_busy = FALSE;
+ if (mb_clalloc_waiters > 0) {
+ mb_clalloc_waiters = 0;
+ wakeup(mb_clalloc_waitchan);
+ }
+
+ /*
+ * When non-blocking we kick a thread if we have to grow the
+ * pool or if the number of free clusters is less than requested.
+ */
+ if (i > 0 && mbuf_worker_ready && mbuf_worker_needs_wakeup) {
+ mbwdog_logger("waking up the worker thread to to grow %s by %d",
+ m_cname(class), i);
+ wakeup((caddr_t)&mbuf_worker_needs_wakeup);
+ mbuf_worker_needs_wakeup = FALSE;
+ }
+ if (class == MC_BIGCL) {
+ if (i > 0) {
+ /*
+ * Remember total number of 4KB clusters needed
+ * at this time.
+ */
+ i += m_total(MC_BIGCL);
+ if (i > m_region_expand(MC_BIGCL)) {
+ m_region_expand(MC_BIGCL) = i;
+ }
+ }
+ if (m_infree(MC_BIGCL) >= num) {
+ return 1;
+ }
+ } else {
+ if (i > 0) {
+ /*
+ * Remember total number of 16KB clusters needed
+ * at this time.
+ */
+ i += m_total(MC_16KCL);
+ if (i > m_region_expand(MC_16KCL)) {
+ m_region_expand(MC_16KCL) = i;
+ }
+ }
+ if (m_infree(MC_16KCL) >= num) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+ * Populate the global freelist of the corresponding buffer class.
+ */
+static int
+freelist_populate(mbuf_class_t class, unsigned int num, int wait)
+{
+ mcache_obj_t *o = NULL;
+ int i, numpages = 0, count;
+ mbuf_class_t super_class;
+
+ VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL ||
+ class == MC_16KCL);
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ VERIFY(PAGE_SIZE == m_maxsize(MC_BIGCL) ||
+ PAGE_SIZE == m_maxsize(MC_16KCL));
+
+ if (m_maxsize(class) >= PAGE_SIZE) {
+ return m_clalloc(num, wait, m_maxsize(class)) != 0;
+ }
+
+ /*
+ * The rest of the function will allocate pages and will slice
+ * them up into the right size
+ */
+
+ numpages = (num * m_size(class) + PAGE_SIZE - 1) / PAGE_SIZE;
+
+ /* Currently assume that pages are 4K or 16K */
+ if (PAGE_SIZE == m_maxsize(MC_BIGCL)) {
+ super_class = MC_BIGCL;
+ } else {
+ super_class = MC_16KCL;
+ }
+
+ i = m_clalloc(numpages, wait, m_maxsize(super_class));
+
+ /* how many objects will we cut the page into? */
+ int numobj = PAGE_SIZE / m_maxsize(class);
+
+ for (count = 0; count < numpages; count++) {
+ /* respect totals, minlimit, maxlimit */
+ if (m_total(super_class) <= m_minlimit(super_class) ||
+ m_total(class) >= m_maxlimit(class)) {
+ break;
+ }
+
+ if ((o = slab_alloc(super_class, wait)) == NULL) {
+ break;
+ }
+
+ struct mbuf *m = (struct mbuf *)o;
+ union mcluster *c = (union mcluster *)o;
+ union mbigcluster *mbc = (union mbigcluster *)o;
+ mcl_slab_t *sp = slab_get(o);
+ mcache_audit_t *mca = NULL;
+
+ /*
+ * since one full page will be converted to MC_MBUF or
+ * MC_CL, verify that the reference count will match that
+ * assumption
+ */
+ VERIFY(sp->sl_refcnt == 1 && slab_is_detached(sp));
+ VERIFY((sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
+ /*
+ * Make sure that the cluster is unmolested
+ * while in freelist
+ */
+ if (mclverify) {
+ mca = mcl_audit_buf2mca(super_class,
+ (mcache_obj_t *)o);
+ mcache_audit_free_verify(mca,
+ (mcache_obj_t *)o, 0, m_maxsize(super_class));
+ }
+
+ /* Reinitialize it as an mbuf or 2K or 4K slab */
+ slab_init(sp, class, sp->sl_flags,
+ sp->sl_base, NULL, PAGE_SIZE, 0, numobj);
+
+ VERIFY(sp->sl_head == NULL);
+
+ VERIFY(m_total(super_class) >= 1);
+ m_total(super_class)--;
+
+ if (super_class == MC_BIGCL) {
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
+ }
+
+ m_total(class) += numobj;
+ VERIFY(m_total(class) <= m_maxlimit(class));
+ m_infree(class) += numobj;
+
+ if (!mb_peak_newreport && mbuf_report_usage(class)) {
+ mb_peak_newreport = TRUE;
+ }
+
+ i = numobj;
+ if (class == MC_MBUF) {
+ mbstat.m_mbufs = m_total(MC_MBUF);
+ mtype_stat_add(MT_FREE, NMBPG);
+ while (i--) {
+ /*
+ * If auditing is enabled, construct the
+ * shadow mbuf in the audit structure
+ * instead of the actual one.
+ * mbuf_slab_audit() will take care of
+ * restoring the contents after the
+ * integrity check.
+ */
+ if (mclaudit != NULL) {
+ struct mbuf *ms;
+ mca = mcl_audit_buf2mca(MC_MBUF,
+ (mcache_obj_t *)m);
+ ms = MCA_SAVED_MBUF_PTR(mca);
+ ms->m_type = MT_FREE;
+ } else {
+ m->m_type = MT_FREE;
+ }
+ m->m_next = sp->sl_head;
+ sp->sl_head = (void *)m++;
+ }
+ } else if (class == MC_CL) { /* MC_CL */
+ mbstat.m_clfree =
+ m_infree(MC_CL) + m_infree(MC_MBUF_CL);
+ mbstat.m_clusters = m_total(MC_CL);
+ while (i--) {
+ c->mcl_next = sp->sl_head;
+ sp->sl_head = (void *)c++;
+ }
+ } else {
+ VERIFY(class == MC_BIGCL);
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
+ mbstat.m_bigclfree = m_infree(MC_BIGCL) +
+ m_infree(MC_MBUF_BIGCL);
+ while (i--) {
+ mbc->mbc_next = sp->sl_head;
+ sp->sl_head = (void *)mbc++;
+ }
+ }
+
+ /* Insert into the mbuf or 2k or 4k slab list */
+ slab_insert(sp, class);
+
+ if ((i = mb_waiters) > 0) {
+ mb_waiters = 0;
+ }
+ if (i != 0) {
+ mbwdog_logger("waking up all threads");
+ wakeup(mb_waitchan);
+ }
+ }
+ return count != 0;
+}
+
+/*
+ * For each class, initialize the freelist to hold m_minlimit() objects.
+ */
+static void
+freelist_init(mbuf_class_t class)
+{
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ VERIFY(class == MC_CL || class == MC_BIGCL);
+ VERIFY(m_total(class) == 0);
+ VERIFY(m_minlimit(class) > 0);
+
+ while (m_total(class) < m_minlimit(class)) {
+ (void) freelist_populate(class, m_minlimit(class), M_WAIT);
+ }
+
+ VERIFY(m_total(class) >= m_minlimit(class));
+}
+
+/*
+ * (Inaccurately) check if it might be worth a trip back to the
+ * mcache layer due the availability of objects there. We'll
+ * end up back here if there's nothing up there.
+ */
+static boolean_t
+mbuf_cached_above(mbuf_class_t class, int wait)
+{
+ switch (class) {
+ case MC_MBUF:
+ if (wait & MCR_COMP) {
+ return !mcache_bkt_isempty(m_cache(MC_MBUF_CL)) ||
+ !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL));
+ }
+ break;
+
+ case MC_CL:
+ if (wait & MCR_COMP) {
+ return !mcache_bkt_isempty(m_cache(MC_MBUF_CL));
+ }
+ break;
+
+ case MC_BIGCL:
+ if (wait & MCR_COMP) {
+ return !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL));
+ }
+ break;
+
+ case MC_16KCL:
+ if (wait & MCR_COMP) {
+ return !mcache_bkt_isempty(m_cache(MC_MBUF_16KCL));
+ }
+ break;
+
+ case MC_MBUF_CL:
+ case MC_MBUF_BIGCL:
+ case MC_MBUF_16KCL:
+ break;
+
+ default:
+ VERIFY(0);
+ /* NOTREACHED */
+ }
+
+ return !mcache_bkt_isempty(m_cache(class));
+}
+
+/*
+ * If possible, convert constructed objects to raw ones.
+ */
+static boolean_t
+mbuf_steal(mbuf_class_t class, unsigned int num)
+{
+ mcache_obj_t *top = NULL;
+ mcache_obj_t **list = ⊤
+ unsigned int tot = 0;
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ switch (class) {
+ case MC_MBUF:
+ case MC_CL:
+ case MC_BIGCL:
+ case MC_16KCL:
+ return FALSE;
+
+ case MC_MBUF_CL:
+ case MC_MBUF_BIGCL:
+ case MC_MBUF_16KCL:
+ /* Get the required number of constructed objects if possible */
+ if (m_infree(class) > m_minlimit(class)) {
+ tot = cslab_alloc(class, &list,
+ MIN(num, m_infree(class)));
+ }
+
+ /* And destroy them to get back the raw objects */
+ if (top != NULL) {
+ (void) cslab_free(class, top, 1);
+ }
+ break;
+
+ default:
+ VERIFY(0);
+ /* NOTREACHED */
+ }
+
+ return tot == num;
+}
+
+static void
+m_reclaim(mbuf_class_t class, unsigned int num, boolean_t comp)
+{
+ int m, bmap = 0;
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL));
+ VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL));
+ VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
+
+ /*
+ * This logic can be made smarter; for now, simply mark
+ * all other related classes as potential victims.
+ */
+ switch (class) {
+ case MC_MBUF:
+ m_wantpurge(MC_CL)++;
+ m_wantpurge(MC_BIGCL)++;
+ m_wantpurge(MC_MBUF_CL)++;
+ m_wantpurge(MC_MBUF_BIGCL)++;
+ break;
+
+ case MC_CL:
+ m_wantpurge(MC_MBUF)++;
+ m_wantpurge(MC_BIGCL)++;
+ m_wantpurge(MC_MBUF_BIGCL)++;
+ if (!comp) {
+ m_wantpurge(MC_MBUF_CL)++;
+ }
+ break;
+
+ case MC_BIGCL:
+ m_wantpurge(MC_MBUF)++;
+ m_wantpurge(MC_CL)++;
+ m_wantpurge(MC_MBUF_CL)++;
+ if (!comp) {
+ m_wantpurge(MC_MBUF_BIGCL)++;
+ }
+ break;
+
+ case MC_16KCL:
+ if (!comp) {
+ m_wantpurge(MC_MBUF_16KCL)++;
+ }
+ break;
+
+ default:
+ VERIFY(0);
+ /* NOTREACHED */
+ }
+
+ /*
+ * Run through each marked class and check if we really need to
+ * purge (and therefore temporarily disable) the per-CPU caches
+ * layer used by the class. If so, remember the classes since
+ * we are going to drop the lock below prior to purging.
+ */
+ for (m = 0; m < NELEM(mbuf_table); m++) {
+ if (m_wantpurge(m) > 0) {
+ m_wantpurge(m) = 0;
+ /*
+ * Try hard to steal the required number of objects
+ * from the freelist of other mbuf classes. Only
+ * purge and disable the per-CPU caches layer when
+ * we don't have enough; it's the last resort.
+ */
+ if (!mbuf_steal(m, num)) {
+ bmap |= (1 << m);
+ }
+ }
+ }
+
+ lck_mtx_unlock(mbuf_mlock);
+
+ if (bmap != 0) {
+ /* signal the domains to drain */
+ net_drain_domains();
+
+ /* Sigh; we have no other choices but to ask mcache to purge */
+ for (m = 0; m < NELEM(mbuf_table); m++) {
+ if ((bmap & (1 << m)) &&
+ mcache_purge_cache(m_cache(m), TRUE)) {
+ lck_mtx_lock(mbuf_mlock);
+ m_purge_cnt(m)++;
+ mbstat.m_drain++;
+ lck_mtx_unlock(mbuf_mlock);
+ }
+ }
+ } else {
+ /*
+ * Request mcache to reap extra elements from all of its caches;
+ * note that all reaps are serialized and happen only at a fixed
+ * interval.
+ */
+ mcache_reap();
+ }
+ lck_mtx_lock(mbuf_mlock);
+}
+
+static inline struct mbuf *
+m_get_common(int wait, short type, int hdr)
+{
+ struct mbuf *m;
+ int mcflags = MSLEEPF(wait);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP) {
+ mcflags |= MCR_TRYHARD;
+ }
+
+ m = mcache_alloc(m_cache(MC_MBUF), mcflags);
+ if (m != NULL) {
+ MBUF_INIT(m, hdr, type);
+ mtype_stat_inc(type);
+ mtype_stat_dec(MT_FREE);
+#if CONFIG_MACF_NET
+ if (hdr && mac_init_mbuf(m, wait) != 0) {
+ m_free(m);
+ return NULL;
+ }
+#endif /* MAC_NET */
+ }
+ return m;
+}
+
+/*
+ * Space allocation routines; these are also available as macros
+ * for critical paths.
+ */
+#define _M_GET(wait, type) m_get_common(wait, type, 0)
+#define _M_GETHDR(wait, type) m_get_common(wait, type, 1)
+#define _M_RETRY(wait, type) _M_GET(wait, type)
+#define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type)
+#define _MGET(m, how, type) ((m) = _M_GET(how, type))
+#define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type))
+
+struct mbuf *
+m_get(int wait, int type)
+{
+ return _M_GET(wait, type);
+}
+
+struct mbuf *
+m_gethdr(int wait, int type)
+{
+ return _M_GETHDR(wait, type);
+}
+
+struct mbuf *
+m_retry(int wait, int type)
+{
+ return _M_RETRY(wait, type);
+}
+
+struct mbuf *
+m_retryhdr(int wait, int type)
+{
+ return _M_RETRYHDR(wait, type);
+}
+
+struct mbuf *
+m_getclr(int wait, int type)
+{
+ struct mbuf *m;
+
+ _MGET(m, wait, type);
+ if (m != NULL) {
+ bzero(MTOD(m, caddr_t), MLEN);
+ }
+ return m;
+}
+
+static int
+m_free_paired(struct mbuf *m)
+{
+ VERIFY((m->m_flags & M_EXT) && (MEXT_FLAGS(m) & EXTF_PAIRED));
+
+ membar_sync();
+ if (MEXT_PMBUF(m) == m) {
+ volatile UInt16 *addr = (volatile UInt16 *)&MEXT_PREF(m);
+ int16_t oprefcnt, prefcnt;
+
+ /*
+ * Paired ref count might be negative in case we lose
+ * against another thread clearing MEXT_PMBUF, in the
+ * event it occurs after the above memory barrier sync.
+ * In that case just ignore as things have been unpaired.
+ */
+ do {
+ oprefcnt = *addr;
+ prefcnt = oprefcnt - 1;
+ } while (!OSCompareAndSwap16(oprefcnt, prefcnt, addr));
+
+ if (prefcnt > 1) {
+ return 1;
+ } else if (prefcnt == 1) {
+ (*(m_get_ext_free(m)))(m->m_ext.ext_buf,
+ m->m_ext.ext_size, m_get_ext_arg(m));
+ return 1;
+ } else if (prefcnt == 0) {
+ VERIFY(MBUF_IS_PAIRED(m));
+
+ /*
+ * Restore minref to its natural value, so that
+ * the caller will be able to free the cluster
+ * as appropriate.
+ */
+ MEXT_MINREF(m) = 0;
+
+ /*
+ * Clear MEXT_PMBUF, but leave EXTF_PAIRED intact
+ * as it is immutable. atomic_set_ptr also causes
+ * memory barrier sync.
+ */
+ atomic_set_ptr(&MEXT_PMBUF(m), NULL);
+
+ switch (m->m_ext.ext_size) {
+ case MCLBYTES:
+ m_set_ext(m, m_get_rfa(m), NULL, NULL);
+ break;
+
+ case MBIGCLBYTES:
+ m_set_ext(m, m_get_rfa(m), m_bigfree, NULL);
+ break;
+
+ case M16KCLBYTES:
+ m_set_ext(m, m_get_rfa(m), m_16kfree, NULL);
+ break;
+
+ default:
+ VERIFY(0);
+ /* NOTREACHED */
+ }
+ }
+ }
+
+ /*
+ * Tell caller the unpair has occurred, and that the reference
+ * count on the external cluster held for the paired mbuf should
+ * now be dropped.
+ */
+ return 0;
+}
+
+struct mbuf *
+m_free(struct mbuf *m)
+{
+ struct mbuf *n = m->m_next;
+
+ if (m->m_type == MT_FREE) {
+ panic("m_free: freeing an already freed mbuf");
+ }
+
+ if (m->m_flags & M_PKTHDR) {
+ /* Check for scratch area overflow */
+ m_redzone_verify(m);
+ /* Free the aux data and tags if there is any */
+ m_tag_delete_chain(m, NULL);
+
+ m_do_tx_compl_callback(m, NULL);
+ }
+
+ if (m->m_flags & M_EXT) {
+ u_int16_t refcnt;
+ u_int32_t composite;
+ m_ext_free_func_t m_free_func;
+
+ if (MBUF_IS_PAIRED(m) && m_free_paired(m)) {
+ return n;
+ }
+
+ refcnt = m_decref(m);
+ composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
+ m_free_func = m_get_ext_free(m);
+
+ if (refcnt == MEXT_MINREF(m) && !composite) {
+ if (m_free_func == NULL) {
+ mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
+ } else if (m_free_func == m_bigfree) {
+ mcache_free(m_cache(MC_BIGCL),
+ m->m_ext.ext_buf);
+ } else if (m_free_func == m_16kfree) {
+ mcache_free(m_cache(MC_16KCL),
+ m->m_ext.ext_buf);
+ } else {
+ (*m_free_func)(m->m_ext.ext_buf,
+ m->m_ext.ext_size, m_get_ext_arg(m));
+ }
+ mcache_free(ref_cache, m_get_rfa(m));
+ m_set_ext(m, NULL, NULL, NULL);
+ } else if (refcnt == MEXT_MINREF(m) && composite) {
+ VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED));
+ VERIFY(m->m_type != MT_FREE);
+
+ mtype_stat_dec(m->m_type);
+ mtype_stat_inc(MT_FREE);
+
+ m->m_type = MT_FREE;
+ m->m_flags = M_EXT;
+ m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ MEXT_FLAGS(m) &= ~EXTF_READONLY;
+
+ /* "Free" into the intermediate cache */
+ if (m_free_func == NULL) {
+ mcache_free(m_cache(MC_MBUF_CL), m);
+ } else if (m_free_func == m_bigfree) {
+ mcache_free(m_cache(MC_MBUF_BIGCL), m);
+ } else {
+ VERIFY(m_free_func == m_16kfree);
+ mcache_free(m_cache(MC_MBUF_16KCL), m);
+ }
+ return n;
+ }
+ }
+
+ if (m->m_type != MT_FREE) {
+ mtype_stat_dec(m->m_type);
+ mtype_stat_inc(MT_FREE);
+ }
+
+ m->m_type = MT_FREE;
+ m->m_flags = m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ mcache_free(m_cache(MC_MBUF), m);
+
+ return n;
+}
+
+__private_extern__ struct mbuf *
+m_clattach(struct mbuf *m, int type, caddr_t extbuf,
+ void (*extfree)(caddr_t, u_int, caddr_t), u_int extsize, caddr_t extarg,
+ int wait, int pair)
+{
+ struct ext_ref *rfa = NULL;
+
+ /*
+ * If pairing is requested and an existing mbuf is provided, reject
+ * it if it's already been paired to another cluster. Otherwise,
+ * allocate a new one or free any existing below.
+ */
+ if ((m != NULL && MBUF_IS_PAIRED(m)) ||
+ (m == NULL && (m = _M_GETHDR(wait, type)) == NULL)) {
+ return NULL;
+ }
+
+ if (m->m_flags & M_EXT) {
+ u_int16_t refcnt;
+ u_int32_t composite;
+ m_ext_free_func_t m_free_func;
+
+ refcnt = m_decref(m);
+ composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
+ VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED) && MEXT_PMBUF(m) == NULL);
+ m_free_func = m_get_ext_free(m);
+ if (refcnt == MEXT_MINREF(m) && !composite) {
+ if (m_free_func == NULL) {
+ mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
+ } else if (m_free_func == m_bigfree) {
+ mcache_free(m_cache(MC_BIGCL),
+ m->m_ext.ext_buf);
+ } else if (m_free_func == m_16kfree) {
+ mcache_free(m_cache(MC_16KCL),
+ m->m_ext.ext_buf);
+ } else {
+ (*m_free_func)(m->m_ext.ext_buf,
+ m->m_ext.ext_size, m_get_ext_arg(m));
+ }
+ /* Re-use the reference structure */
+ rfa = m_get_rfa(m);
+ } else if (refcnt == MEXT_MINREF(m) && composite) {
+ VERIFY(m->m_type != MT_FREE);
+
+ mtype_stat_dec(m->m_type);
+ mtype_stat_inc(MT_FREE);
+
+ m->m_type = MT_FREE;
+ m->m_flags = M_EXT;
+ m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ MEXT_FLAGS(m) &= ~EXTF_READONLY;
+
+ /* "Free" into the intermediate cache */
+ if (m_free_func == NULL) {
+ mcache_free(m_cache(MC_MBUF_CL), m);
+ } else if (m_free_func == m_bigfree) {
+ mcache_free(m_cache(MC_MBUF_BIGCL), m);
+ } else {
+ VERIFY(m_free_func == m_16kfree);
+ mcache_free(m_cache(MC_MBUF_16KCL), m);
+ }
+ /*
+ * Allocate a new mbuf, since we didn't divorce
+ * the composite mbuf + cluster pair above.
+ */
+ if ((m = _M_GETHDR(wait, type)) == NULL) {
+ return NULL;
+ }
+ }
+ }
+
+ if (rfa == NULL &&
+ (rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
+ m_free(m);
+ return NULL;
+ }
+
+ if (!pair) {
+ MEXT_INIT(m, extbuf, extsize, extfree, extarg, rfa,
+ 0, 1, 0, 0, 0, NULL);
+ } else {
+ MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa,
+ 1, 1, 1, EXTF_PAIRED, 0, m);
+ }
+
+ return m;
+}
+
+/*
+ * Perform `fast' allocation mbuf clusters from a cache of recently-freed
+ * clusters. (If the cache is empty, new clusters are allocated en-masse.)
+ */
+struct mbuf *
+m_getcl(int wait, int type, int flags)
+{
+ struct mbuf *m;
+ int mcflags = MSLEEPF(wait);
+ int hdr = (flags & M_PKTHDR);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP) {
+ mcflags |= MCR_TRYHARD;
+ }
+
+ m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags);
+ if (m != NULL) {
+ u_int16_t flag;
+ struct ext_ref *rfa;
+ void *cl;
+
+ VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
+ cl = m->m_ext.ext_buf;
+ rfa = m_get_rfa(m);
+
+ ASSERT(cl != NULL && rfa != NULL);
+ VERIFY(MBUF_IS_COMPOSITE(m) && m_get_ext_free(m) == NULL);
+
+ flag = MEXT_FLAGS(m);
+
+ MBUF_INIT(m, hdr, type);
+ MBUF_CL_INIT(m, cl, rfa, 1, flag);
+
+ mtype_stat_inc(type);
+ mtype_stat_dec(MT_FREE);
+#if CONFIG_MACF_NET
+ if (hdr && mac_init_mbuf(m, wait) != 0) {
+ m_freem(m);
+ return NULL;
+ }
+#endif /* MAC_NET */
+ }
+ return m;
+}
+
+/* m_mclget() add an mbuf cluster to a normal mbuf */
+struct mbuf *
+m_mclget(struct mbuf *m, int wait)
+{
+ struct ext_ref *rfa;
+
+ if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
+ return m;
+ }
+
+ m->m_ext.ext_buf = m_mclalloc(wait);
+ if (m->m_ext.ext_buf != NULL) {
+ MBUF_CL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
+ } else {
+ mcache_free(ref_cache, rfa);
+ }
+ return m;
+}
+
+/* Allocate an mbuf cluster */
+caddr_t
+m_mclalloc(int wait)
+{
+ int mcflags = MSLEEPF(wait);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP) {
+ mcflags |= MCR_TRYHARD;
+ }
+
+ return mcache_alloc(m_cache(MC_CL), mcflags);
+}
+
+/* Free an mbuf cluster */
+void
+m_mclfree(caddr_t p)
+{
+ mcache_free(m_cache(MC_CL), p);
+}
+
+/*
+ * mcl_hasreference() checks if a cluster of an mbuf is referenced by
+ * another mbuf; see comments in m_incref() regarding EXTF_READONLY.
+ */
+int
+m_mclhasreference(struct mbuf *m)
+{
+ if (!(m->m_flags & M_EXT)) {
+ return 0;
+ }
+
+ ASSERT(m_get_rfa(m) != NULL);
+
+ return (MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0;
+}
+
+__private_extern__ caddr_t
+m_bigalloc(int wait)
+{
+ int mcflags = MSLEEPF(wait);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP) {
+ mcflags |= MCR_TRYHARD;
+ }
+
+ return mcache_alloc(m_cache(MC_BIGCL), mcflags);
+}
+
+__private_extern__ void
+m_bigfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
+{
+ mcache_free(m_cache(MC_BIGCL), p);
+}
+
+/* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */
+__private_extern__ struct mbuf *
+m_mbigget(struct mbuf *m, int wait)
+{
+ struct ext_ref *rfa;
+
+ if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
+ return m;
+ }
+
+ m->m_ext.ext_buf = m_bigalloc(wait);
+ if (m->m_ext.ext_buf != NULL) {
+ MBUF_BIGCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
+ } else {
+ mcache_free(ref_cache, rfa);
+ }
+ return m;
+}
+
+__private_extern__ caddr_t
+m_16kalloc(int wait)
+{
+ int mcflags = MSLEEPF(wait);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP) {
+ mcflags |= MCR_TRYHARD;
+ }
+
+ return mcache_alloc(m_cache(MC_16KCL), mcflags);
+}
+
+__private_extern__ void
+m_16kfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
+{
+ mcache_free(m_cache(MC_16KCL), p);
+}
+
+/* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */
+__private_extern__ struct mbuf *
+m_m16kget(struct mbuf *m, int wait)
+{
+ struct ext_ref *rfa;
+
+ if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
+ return m;
+ }
+
+ m->m_ext.ext_buf = m_16kalloc(wait);
+ if (m->m_ext.ext_buf != NULL) {
+ MBUF_16KCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
+ } else {
+ mcache_free(ref_cache, rfa);
+ }
+ return m;
+}
+
+/*
+ * "Move" mbuf pkthdr from "from" to "to".
+ * "from" must have M_PKTHDR set, and "to" must be empty.
+ */
+void
+m_copy_pkthdr(struct mbuf *to, struct mbuf *from)
+{
+ VERIFY(from->m_flags & M_PKTHDR);
+
+ /* Check for scratch area overflow */
+ m_redzone_verify(from);
+
+ if (to->m_flags & M_PKTHDR) {
+ /* Check for scratch area overflow */
+ m_redzone_verify(to);
+ /* We will be taking over the tags of 'to' */
+ m_tag_delete_chain(to, NULL);
+ }
+ to->m_pkthdr = from->m_pkthdr; /* especially tags */
+ m_classifier_init(from, 0); /* purge classifier info */
+ m_tag_init(from, 1); /* purge all tags from src */
+ m_scratch_init(from); /* clear src scratch area */
+ to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
+ if ((to->m_flags & M_EXT) == 0) {
+ to->m_data = to->m_pktdat;
+ }
+ m_redzone_init(to); /* setup red zone on dst */
+}
+
+/*
+ * Duplicate "from"'s mbuf pkthdr in "to".
+ * "from" must have M_PKTHDR set, and "to" must be empty.
+ * In particular, this does a deep copy of the packet tags.
+ */
+static int
+m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
+{
+ VERIFY(from->m_flags & M_PKTHDR);
+
+ /* Check for scratch area overflow */
+ m_redzone_verify(from);
+
+ if (to->m_flags & M_PKTHDR) {
+ /* Check for scratch area overflow */
+ m_redzone_verify(to);
+ /* We will be taking over the tags of 'to' */
+ m_tag_delete_chain(to, NULL);
+ }
+ to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
+ if ((to->m_flags & M_EXT) == 0) {
+ to->m_data = to->m_pktdat;
+ }
+ to->m_pkthdr = from->m_pkthdr;
+ m_redzone_init(to); /* setup red zone on dst */
+ m_tag_init(to, 0); /* preserve dst static tags */
+ return m_tag_copy_chain(to, from, how);
+}
+
+void
+m_copy_pftag(struct mbuf *to, struct mbuf *from)
+{
+ memcpy(m_pftag(to), m_pftag(from), sizeof(struct pf_mtag));
+#if PF_ECN
+ m_pftag(to)->pftag_hdr = NULL;
+ m_pftag(to)->pftag_flags &= ~(PF_TAG_HDR_INET | PF_TAG_HDR_INET6);
+#endif /* PF_ECN */
+}
+
+void
+m_classifier_init(struct mbuf *m, uint32_t pktf_mask)
+{
+ VERIFY(m->m_flags & M_PKTHDR);
+
+ m->m_pkthdr.pkt_proto = 0;
+ m->m_pkthdr.pkt_flowsrc = 0;
+ m->m_pkthdr.pkt_flowid = 0;
+ m->m_pkthdr.pkt_flags &= pktf_mask; /* caller-defined mask */
+ /* preserve service class and interface info for loopback packets */
+ if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
+ (void) m_set_service_class(m, MBUF_SC_BE);
+ }
+ if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) {
+ m->m_pkthdr.pkt_ifainfo = 0;
+ }
+ /*
+ * Preserve timestamp if requested
+ */
+ if (!(m->m_pkthdr.pkt_flags & PKTF_TS_VALID)) {
+ m->m_pkthdr.pkt_timestamp = 0;
+ }
+}
+
+void
+m_copy_classifier(struct mbuf *to, struct mbuf *from)
+{
+ VERIFY(to->m_flags & M_PKTHDR);
+ VERIFY(from->m_flags & M_PKTHDR);
+
+ to->m_pkthdr.pkt_proto = from->m_pkthdr.pkt_proto;
+ to->m_pkthdr.pkt_flowsrc = from->m_pkthdr.pkt_flowsrc;
+ to->m_pkthdr.pkt_flowid = from->m_pkthdr.pkt_flowid;
+ to->m_pkthdr.pkt_flags = from->m_pkthdr.pkt_flags;
+ (void) m_set_service_class(to, from->m_pkthdr.pkt_svc);
+ to->m_pkthdr.pkt_ifainfo = from->m_pkthdr.pkt_ifainfo;
+}
+
+/*
+ * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
+ * if wantall is not set, return whatever number were available. Set up the
+ * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these
+ * are chained on the m_nextpkt field. Any packets requested beyond this
+ * are chained onto the last packet header's m_next field. The size of
+ * the cluster is controlled by the parameter bufsize.
+ */
+__private_extern__ struct mbuf *
+m_getpackets_internal(unsigned int *num_needed, int num_with_pkthdrs,
+ int wait, int wantall, size_t bufsize)
+{
+ struct mbuf *m;
+ struct mbuf **np, *top;
+ unsigned int pnum, needed = *num_needed;
+ mcache_obj_t *mp_list = NULL;
+ int mcflags = MSLEEPF(wait);
+ u_int16_t flag;
+ struct ext_ref *rfa;
+ mcache_t *cp;
+ void *cl;
+
+ ASSERT(bufsize == m_maxsize(MC_CL) ||
+ bufsize == m_maxsize(MC_BIGCL) ||
+ bufsize == m_maxsize(MC_16KCL));
+
+ /*
+ * Caller must first check for njcl because this
+ * routine is internal and not exposed/used via KPI.
+ */
+ VERIFY(bufsize != m_maxsize(MC_16KCL) || njcl > 0);
+
+ top = NULL;
+ np = ⊤
+ pnum = 0;
+
+ /*
+ * The caller doesn't want all the requested buffers; only some.
+ * Try hard to get what we can, but don't block. This effectively
+ * overrides MCR_SLEEP, since this thread will not go to sleep
+ * if we can't get all the buffers.
+ */
+ if (!wantall || (mcflags & MCR_NOSLEEP)) {
+ mcflags |= MCR_TRYHARD;
+ }
+
+ /* Allocate the composite mbuf + cluster elements from the cache */
+ if (bufsize == m_maxsize(MC_CL)) {
+ cp = m_cache(MC_MBUF_CL);
+ } else if (bufsize == m_maxsize(MC_BIGCL)) {
+ cp = m_cache(MC_MBUF_BIGCL);
+ } else {
+ cp = m_cache(MC_MBUF_16KCL);
+ }
+ needed = mcache_alloc_ext(cp, &mp_list, needed, mcflags);
+
+ for (pnum = 0; pnum < needed; pnum++) {
+ m = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+
+ VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
+ cl = m->m_ext.ext_buf;
+ rfa = m_get_rfa(m);
+
+ ASSERT(cl != NULL && rfa != NULL);
+ VERIFY(MBUF_IS_COMPOSITE(m));
+
+ flag = MEXT_FLAGS(m);
+
+ MBUF_INIT(m, num_with_pkthdrs, MT_DATA);
+ if (bufsize == m_maxsize(MC_16KCL)) {
+ MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
+ } else if (bufsize == m_maxsize(MC_BIGCL)) {
+ MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
+ } else {
+ MBUF_CL_INIT(m, cl, rfa, 1, flag);
+ }
+
+ if (num_with_pkthdrs > 0) {
+ --num_with_pkthdrs;
+#if CONFIG_MACF_NET
+ if (mac_mbuf_label_init(m, wait) != 0) {
+ m_freem(m);
+ break;
+ }
+#endif /* MAC_NET */
+ }
+
+ *np = m;
+ if (num_with_pkthdrs > 0) {
+ np = &m->m_nextpkt;
+ } else {
+ np = &m->m_next;
+ }
+ }
+ ASSERT(pnum != *num_needed || mp_list == NULL);
+ if (mp_list != NULL) {
+ mcache_free_ext(cp, mp_list);
+ }
+
+ if (pnum > 0) {
+ mtype_stat_add(MT_DATA, pnum);
+ mtype_stat_sub(MT_FREE, pnum);
+ }
+
+ if (wantall && (pnum != *num_needed)) {
+ if (top != NULL) {
+ m_freem_list(top);
+ }
+ return NULL;
+ }
+
+ if (pnum > *num_needed) {
+ printf("%s: File a radar related to <rdar://10146739>. \
+ needed = %u, pnum = %u, num_needed = %u \n",
+ __func__, needed, pnum, *num_needed);
+ }
+
+ *num_needed = pnum;
+ return top;
+}
+
+/*
+ * Return list of mbuf linked by m_nextpkt. Try for numlist, and if
+ * wantall is not set, return whatever number were available. The size of
+ * each mbuf in the list is controlled by the parameter packetlen. Each
+ * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf
+ * in the chain is called a segment. If maxsegments is not null and the
+ * value pointed to is not null, this specify the maximum number of segments
+ * for a chain of mbufs. If maxsegments is zero or the value pointed to
+ * is zero the caller does not have any restriction on the number of segments.
+ * The actual number of segments of a mbuf chain is return in the value
+ * pointed to by maxsegments.
+ */
+__private_extern__ struct mbuf *
+m_allocpacket_internal(unsigned int *numlist, size_t packetlen,
+ unsigned int *maxsegments, int wait, int wantall, size_t wantsize)
+{
+ struct mbuf **np, *top, *first = NULL;
+ size_t bufsize, r_bufsize;
+ unsigned int num = 0;
+ unsigned int nsegs = 0;
+ unsigned int needed, resid;
+ int mcflags = MSLEEPF(wait);
+ mcache_obj_t *mp_list = NULL, *rmp_list = NULL;
+ mcache_t *cp = NULL, *rcp = NULL;
+
+ if (*numlist == 0) {
+ return NULL;
+ }
+
+ top = NULL;
+ np = ⊤
+
+ if (wantsize == 0) {
+ if (packetlen <= MINCLSIZE) {
+ bufsize = packetlen;
+ } else if (packetlen > m_maxsize(MC_CL)) {
+ /* Use 4KB if jumbo cluster pool isn't available */
+ if (packetlen <= m_maxsize(MC_BIGCL) || njcl == 0) {
+ bufsize = m_maxsize(MC_BIGCL);
+ } else {
+ bufsize = m_maxsize(MC_16KCL);
+ }
+ } else {
+ bufsize = m_maxsize(MC_CL);
+ }
+ } else if (wantsize == m_maxsize(MC_CL) ||
+ wantsize == m_maxsize(MC_BIGCL) ||
+ (wantsize == m_maxsize(MC_16KCL) && njcl > 0)) {
+ bufsize = wantsize;
+ } else {
+ return NULL;
+ }
+
+ if (bufsize <= MHLEN) {
+ nsegs = 1;
+ } else if (bufsize <= MINCLSIZE) {
+ if (maxsegments != NULL && *maxsegments == 1) {
+ bufsize = m_maxsize(MC_CL);
+ nsegs = 1;
+ } else {
+ nsegs = 2;
+ }
+ } else if (bufsize == m_maxsize(MC_16KCL)) {
+ VERIFY(njcl > 0);
+ nsegs = ((packetlen - 1) >> M16KCLSHIFT) + 1;
+ } else if (bufsize == m_maxsize(MC_BIGCL)) {
+ nsegs = ((packetlen - 1) >> MBIGCLSHIFT) + 1;
+ } else {
+ nsegs = ((packetlen - 1) >> MCLSHIFT) + 1;
+ }
+ if (maxsegments != NULL) {
+ if (*maxsegments && nsegs > *maxsegments) {
+ *maxsegments = nsegs;
+ return NULL;
+ }
+ *maxsegments = nsegs;
+ }
+
+ /*
+ * The caller doesn't want all the requested buffers; only some.
+ * Try hard to get what we can, but don't block. This effectively
+ * overrides MCR_SLEEP, since this thread will not go to sleep
+ * if we can't get all the buffers.
+ */
+ if (!wantall || (mcflags & MCR_NOSLEEP)) {
+ mcflags |= MCR_TRYHARD;
+ }
+
+ /*
+ * Simple case where all elements in the lists/chains are mbufs.
+ * Unless bufsize is greater than MHLEN, each segment chain is made
+ * up of exactly 1 mbuf. Otherwise, each segment chain is made up
+ * of 2 mbufs; the second one is used for the residual data, i.e.
+ * the remaining data that cannot fit into the first mbuf.
+ */
+ if (bufsize <= MINCLSIZE) {
+ /* Allocate the elements in one shot from the mbuf cache */
+ ASSERT(bufsize <= MHLEN || nsegs == 2);
+ cp = m_cache(MC_MBUF);
+ needed = mcache_alloc_ext(cp, &mp_list,
+ (*numlist) * nsegs, mcflags);
+
+ /*
+ * The number of elements must be even if we are to use an
+ * mbuf (instead of a cluster) to store the residual data.
+ * If we couldn't allocate the requested number of mbufs,
+ * trim the number down (if it's odd) in order to avoid
+ * creating a partial segment chain.
+ */
+ if (bufsize > MHLEN && (needed & 0x1)) {
+ needed--;
+ }
+
+ while (num < needed) {
+ struct mbuf *m;
+
+ m = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+ ASSERT(m != NULL);
+
+ MBUF_INIT(m, 1, MT_DATA);
+#if CONFIG_MACF_NET
+ if (mac_init_mbuf(m, wait) != 0) {
+ m_free(m);
+ break;
+ }
+#endif /* MAC_NET */
+ num++;
+ if (bufsize > MHLEN) {
+ /* A second mbuf for this segment chain */
+ m->m_next = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+ ASSERT(m->m_next != NULL);
+
+ MBUF_INIT(m->m_next, 0, MT_DATA);
+ num++;
+ }
+ *np = m;
+ np = &m->m_nextpkt;
+ }
+ ASSERT(num != *numlist || mp_list == NULL);
+
+ if (num > 0) {
+ mtype_stat_add(MT_DATA, num);
+ mtype_stat_sub(MT_FREE, num);
+ }
+ num /= nsegs;
+
+ /* We've got them all; return to caller */
+ if (num == *numlist) {
+ return top;
+ }
+
+ goto fail;
+ }
+
+ /*
+ * Complex cases where elements are made up of one or more composite
+ * mbufs + cluster, depending on packetlen. Each N-segment chain can
+ * be illustrated as follows:
+ *
+ * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N]
+ *
+ * Every composite mbuf + cluster element comes from the intermediate
+ * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency,
+ * the last composite element will come from the MC_MBUF_CL cache,
+ * unless the residual data is larger than 2KB where we use the
+ * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual
+ * data is defined as extra data beyond the first element that cannot
+ * fit into the previous element, i.e. there is no residual data if
+ * the chain only has 1 segment.
+ */
+ r_bufsize = bufsize;
+ resid = packetlen > bufsize ? packetlen % bufsize : 0;
+ if (resid > 0) {
+ /* There is residual data; figure out the cluster size */
+ if (wantsize == 0 && packetlen > MINCLSIZE) {
+ /*
+ * Caller didn't request that all of the segments
+ * in the chain use the same cluster size; use the
+ * smaller of the cluster sizes.
+ */
+ if (njcl > 0 && resid > m_maxsize(MC_BIGCL)) {
+ r_bufsize = m_maxsize(MC_16KCL);
+ } else if (resid > m_maxsize(MC_CL)) {
+ r_bufsize = m_maxsize(MC_BIGCL);
+ } else {
+ r_bufsize = m_maxsize(MC_CL);
+ }
+ } else {
+ /* Use the same cluster size as the other segments */
+ resid = 0;
+ }
+ }
+
+ needed = *numlist;
+ if (resid > 0) {
+ /*
+ * Attempt to allocate composite mbuf + cluster elements for
+ * the residual data in each chain; record the number of such
+ * elements that can be allocated so that we know how many
+ * segment chains we can afford to create.
+ */
+ if (r_bufsize <= m_maxsize(MC_CL)) {
+ rcp = m_cache(MC_MBUF_CL);
+ } else if (r_bufsize <= m_maxsize(MC_BIGCL)) {
+ rcp = m_cache(MC_MBUF_BIGCL);
+ } else {
+ rcp = m_cache(MC_MBUF_16KCL);
+ }
+ needed = mcache_alloc_ext(rcp, &rmp_list, *numlist, mcflags);
+
+ if (needed == 0) {
+ goto fail;
+ }
+
+ /* This is temporarily reduced for calculation */
+ ASSERT(nsegs > 1);
+ nsegs--;
+ }
+
+ /*
+ * Attempt to allocate the rest of the composite mbuf + cluster
+ * elements for the number of segment chains that we need.
+ */
+ if (bufsize <= m_maxsize(MC_CL)) {
+ cp = m_cache(MC_MBUF_CL);
+ } else if (bufsize <= m_maxsize(MC_BIGCL)) {
+ cp = m_cache(MC_MBUF_BIGCL);
+ } else {
+ cp = m_cache(MC_MBUF_16KCL);
+ }
+ needed = mcache_alloc_ext(cp, &mp_list, needed * nsegs, mcflags);
+
+ /* Round it down to avoid creating a partial segment chain */
+ needed = (needed / nsegs) * nsegs;
+ if (needed == 0) {
+ goto fail;
+ }
+
+ if (resid > 0) {
+ /*
+ * We're about to construct the chain(s); take into account
+ * the number of segments we have created above to hold the
+ * residual data for each chain, as well as restore the
+ * original count of segments per chain.
+ */
+ ASSERT(nsegs > 0);
+ needed += needed / nsegs;
+ nsegs++;
+ }
+
+ for (;;) {
+ struct mbuf *m;
+ u_int16_t flag;
+ struct ext_ref *rfa;
+ void *cl;
+ int pkthdr;
+ m_ext_free_func_t m_free_func;
+
+ ++num;
+ if (nsegs == 1 || (num % nsegs) != 0 || resid == 0) {
+ m = (struct mbuf *)mp_list;
+ mp_list = mp_list->obj_next;
+ } else {
+ m = (struct mbuf *)rmp_list;
+ rmp_list = rmp_list->obj_next;
+ }
+ m_free_func = m_get_ext_free(m);
+ ASSERT(m != NULL);
+ VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
+ VERIFY(m_free_func == NULL || m_free_func == m_bigfree ||
+ m_free_func == m_16kfree);
+
+ cl = m->m_ext.ext_buf;
+ rfa = m_get_rfa(m);
+
+ ASSERT(cl != NULL && rfa != NULL);
+ VERIFY(MBUF_IS_COMPOSITE(m));
+
+ flag = MEXT_FLAGS(m);
+
+ pkthdr = (nsegs == 1 || (num % nsegs) == 1);
+ if (pkthdr) {
+ first = m;
+ }
+ MBUF_INIT(m, pkthdr, MT_DATA);
+ if (m_free_func == m_16kfree) {
+ MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
+ } else if (m_free_func == m_bigfree) {
+ MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
+ } else {
+ MBUF_CL_INIT(m, cl, rfa, 1, flag);
+ }
+#if CONFIG_MACF_NET
+ if (pkthdr && mac_init_mbuf(m, wait) != 0) {
+ --num;
+ m_freem(m);
+ break;
+ }
+#endif /* MAC_NET */
+
+ *np = m;
+ if ((num % nsegs) == 0) {
+ np = &first->m_nextpkt;
+ } else {
+ np = &m->m_next;
+ }
+
+ if (num == needed) {
+ break;
+ }
+ }
+
+ if (num > 0) {
+ mtype_stat_add(MT_DATA, num);
+ mtype_stat_sub(MT_FREE, num);
+ }
+
+ num /= nsegs;
+
+ /* We've got them all; return to caller */
+ if (num == *numlist) {
+ ASSERT(mp_list == NULL && rmp_list == NULL);
+ return top;
+ }
+
+fail:
+ /* Free up what's left of the above */
+ if (mp_list != NULL) {
+ mcache_free_ext(cp, mp_list);
+ }
+ if (rmp_list != NULL) {
+ mcache_free_ext(rcp, rmp_list);
+ }
+ if (wantall && top != NULL) {
+ m_freem_list(top);
+ return NULL;
+ }
+ *numlist = num;
+ return top;
+}
+
+/*
+ * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
+ * packets on receive ring.
+ */
+__private_extern__ struct mbuf *
+m_getpacket_how(int wait)
+{
+ unsigned int num_needed = 1;
+
+ return m_getpackets_internal(&num_needed, 1, wait, 1,
+ m_maxsize(MC_CL));
+}
+
+/*
+ * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
+ * packets on receive ring.
+ */
+struct mbuf *
+m_getpacket(void)
+{
+ unsigned int num_needed = 1;
+
+ return m_getpackets_internal(&num_needed, 1, M_WAIT, 1,
+ m_maxsize(MC_CL));
+}
+
+/*
+ * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
+ * if this can't be met, return whatever number were available. Set up the
+ * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These
+ * are chained on the m_nextpkt field. Any packets requested beyond this are
+ * chained onto the last packet header's m_next field.
+ */
+struct mbuf *
+m_getpackets(int num_needed, int num_with_pkthdrs, int how)
+{
+ unsigned int n = num_needed;
+
+ return m_getpackets_internal(&n, num_with_pkthdrs, how, 0,
+ m_maxsize(MC_CL));
+}
+
+/*
+ * Return a list of mbuf hdrs set up as packet hdrs chained together
+ * on the m_nextpkt field
+ */
+struct mbuf *
+m_getpackethdrs(int num_needed, int how)
+{
+ struct mbuf *m;
+ struct mbuf **np, *top;
+
+ top = NULL;
+ np = ⊤
+
+ while (num_needed--) {
+ m = _M_RETRYHDR(how, MT_DATA);
+ if (m == NULL) {
+ break;
+ }
+
+ *np = m;
+ np = &m->m_nextpkt;
+ }
+
+ return top;
+}
+
+/*
+ * Free an mbuf list (m_nextpkt) while following m_next. Returns the count
+ * for mbufs packets freed. Used by the drivers.
+ */
+int
+m_freem_list(struct mbuf *m)
+{
+ struct mbuf *nextpkt;
+ mcache_obj_t *mp_list = NULL;
+ mcache_obj_t *mcl_list = NULL;
+ mcache_obj_t *mbc_list = NULL;
+ mcache_obj_t *m16k_list = NULL;
+ mcache_obj_t *m_mcl_list = NULL;
+ mcache_obj_t *m_mbc_list = NULL;
+ mcache_obj_t *m_m16k_list = NULL;
+ mcache_obj_t *ref_list = NULL;
+ int pktcount = 0;
+ int mt_free = 0, mt_data = 0, mt_header = 0, mt_soname = 0, mt_tag = 0;
+
+ while (m != NULL) {
+ pktcount++;
+
+ nextpkt = m->m_nextpkt;
+ m->m_nextpkt = NULL;
+
+ while (m != NULL) {
+ struct mbuf *next = m->m_next;
+ mcache_obj_t *o, *rfa;
+ u_int32_t composite;
+ u_int16_t refcnt;
+ m_ext_free_func_t m_free_func;
+
+ if (m->m_type == MT_FREE) {
+ panic("m_free: freeing an already freed mbuf");
+ }
+
+ if (m->m_flags & M_PKTHDR) {
+ /* Check for scratch area overflow */
+ m_redzone_verify(m);
+ /* Free the aux data and tags if there is any */
+ m_tag_delete_chain(m, NULL);
+ }
+
+ if (!(m->m_flags & M_EXT)) {
+ mt_free++;
+ goto simple_free;
+ }
+
+ if (MBUF_IS_PAIRED(m) && m_free_paired(m)) {
+ m = next;
+ continue;
+ }
+
+ mt_free++;
+
+ o = (mcache_obj_t *)(void *)m->m_ext.ext_buf;
+ refcnt = m_decref(m);
+ composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
+ m_free_func = m_get_ext_free(m);
+ if (refcnt == MEXT_MINREF(m) && !composite) {
+ if (m_free_func == NULL) {
+ o->obj_next = mcl_list;
+ mcl_list = o;
+ } else if (m_free_func == m_bigfree) {
+ o->obj_next = mbc_list;
+ mbc_list = o;
+ } else if (m_free_func == m_16kfree) {
+ o->obj_next = m16k_list;
+ m16k_list = o;
+ } else {
+ (*(m_free_func))((caddr_t)o,
+ m->m_ext.ext_size,
+ m_get_ext_arg(m));
+ }
+ rfa = (mcache_obj_t *)(void *)m_get_rfa(m);
+ rfa->obj_next = ref_list;
+ ref_list = rfa;
+ m_set_ext(m, NULL, NULL, NULL);
+ } else if (refcnt == MEXT_MINREF(m) && composite) {
+ VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED));
+ VERIFY(m->m_type != MT_FREE);
+ /*
+ * Amortize the costs of atomic operations
+ * by doing them at the end, if possible.
+ */
+ if (m->m_type == MT_DATA) {
+ mt_data++;
+ } else if (m->m_type == MT_HEADER) {
+ mt_header++;
+ } else if (m->m_type == MT_SONAME) {
+ mt_soname++;
+ } else if (m->m_type == MT_TAG) {
+ mt_tag++;
+ } else {
+ mtype_stat_dec(m->m_type);
+ }
+
+ m->m_type = MT_FREE;
+ m->m_flags = M_EXT;
+ m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ MEXT_FLAGS(m) &= ~EXTF_READONLY;
+
+ /* "Free" into the intermediate cache */
+ o = (mcache_obj_t *)m;
+ if (m_free_func == NULL) {
+ o->obj_next = m_mcl_list;
+ m_mcl_list = o;
+ } else if (m_free_func == m_bigfree) {
+ o->obj_next = m_mbc_list;
+ m_mbc_list = o;
+ } else {
+ VERIFY(m_free_func == m_16kfree);
+ o->obj_next = m_m16k_list;
+ m_m16k_list = o;
+ }
+ m = next;
+ continue;
+ }
+simple_free:
+ /*
+ * Amortize the costs of atomic operations
+ * by doing them at the end, if possible.
+ */
+ if (m->m_type == MT_DATA) {
+ mt_data++;
+ } else if (m->m_type == MT_HEADER) {
+ mt_header++;
+ } else if (m->m_type == MT_SONAME) {
+ mt_soname++;
+ } else if (m->m_type == MT_TAG) {
+ mt_tag++;
+ } else if (m->m_type != MT_FREE) {
+ mtype_stat_dec(m->m_type);
+ }
+
+ m->m_type = MT_FREE;
+ m->m_flags = m->m_len = 0;
+ m->m_next = m->m_nextpkt = NULL;
+
+ ((mcache_obj_t *)m)->obj_next = mp_list;
+ mp_list = (mcache_obj_t *)m;
+
+ m = next;
+ }
+
+ m = nextpkt;
+ }
+
+ if (mt_free > 0) {
+ mtype_stat_add(MT_FREE, mt_free);
+ }
+ if (mt_data > 0) {
+ mtype_stat_sub(MT_DATA, mt_data);
+ }
+ if (mt_header > 0) {
+ mtype_stat_sub(MT_HEADER, mt_header);
+ }
+ if (mt_soname > 0) {
+ mtype_stat_sub(MT_SONAME, mt_soname);
+ }
+ if (mt_tag > 0) {
+ mtype_stat_sub(MT_TAG, mt_tag);
+ }
+
+ if (mp_list != NULL) {
+ mcache_free_ext(m_cache(MC_MBUF), mp_list);
+ }
+ if (mcl_list != NULL) {
+ mcache_free_ext(m_cache(MC_CL), mcl_list);
+ }
+ if (mbc_list != NULL) {
+ mcache_free_ext(m_cache(MC_BIGCL), mbc_list);
+ }
+ if (m16k_list != NULL) {
+ mcache_free_ext(m_cache(MC_16KCL), m16k_list);
+ }
+ if (m_mcl_list != NULL) {
+ mcache_free_ext(m_cache(MC_MBUF_CL), m_mcl_list);
+ }
+ if (m_mbc_list != NULL) {
+ mcache_free_ext(m_cache(MC_MBUF_BIGCL), m_mbc_list);
+ }
+ if (m_m16k_list != NULL) {
+ mcache_free_ext(m_cache(MC_MBUF_16KCL), m_m16k_list);
+ }
+ if (ref_list != NULL) {
+ mcache_free_ext(ref_cache, ref_list);
+ }
+
+ return pktcount;
+}
+
+void
+m_freem(struct mbuf *m)
+{
+ while (m != NULL) {
+ m = m_free(m);
+ }
+}
+
+/*
+ * Mbuffer utility routines.
+ */
+/*
+ * Set the m_data pointer of a newly allocated mbuf to place an object of the
+ * specified size at the end of the mbuf, longword aligned.
+ *
+ * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as
+ * separate macros, each asserting that it was called at the proper moment.
+ * This required callers to themselves test the storage type and call the
+ * right one. Rather than require callers to be aware of those layout
+ * decisions, we centralize here.
+ */
+void
+m_align(struct mbuf *m, int len)
+{
+ int adjust = 0;
+
+ /* At this point data must point to start */
+ VERIFY(m->m_data == M_START(m));
+ VERIFY(len >= 0);
+ VERIFY(len <= M_SIZE(m));
+ adjust = M_SIZE(m) - len;
+ m->m_data += adjust & ~(sizeof(long) - 1);
+}
+
+/*
+ * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain,
+ * copy junk along. Does not adjust packet header length.
+ */
+struct mbuf *
+m_prepend(struct mbuf *m, int len, int how)
+{
+ struct mbuf *mn;
+
+ _MGET(mn, how, m->m_type);
+ if (mn == NULL) {
+ m_freem(m);
+ return NULL;
+ }
+ if (m->m_flags & M_PKTHDR) {
+ M_COPY_PKTHDR(mn, m);
+ m->m_flags &= ~M_PKTHDR;
+ }
+ mn->m_next = m;
+ m = mn;
+ if (m->m_flags & M_PKTHDR) {
+ VERIFY(len <= MHLEN);
+ MH_ALIGN(m, len);
+ } else {
+ VERIFY(len <= MLEN);
+ M_ALIGN(m, len);
+ }
+ m->m_len = len;
+ return m;
+}
+
+/*
+ * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to
+ * chain, copy junk along, and adjust length.
+ */
+struct mbuf *
+m_prepend_2(struct mbuf *m, int len, int how, int align)
+{
+ if (M_LEADINGSPACE(m) >= len &&
+ (!align || IS_P2ALIGNED((m->m_data - len), sizeof(u_int32_t)))) {
+ m->m_data -= len;
+ m->m_len += len;
+ } else {
+ m = m_prepend(m, len, how);
+ }
+ if ((m) && (m->m_flags & M_PKTHDR)) {
+ m->m_pkthdr.len += len;
+ }
+ return m;
+}
+
+/*
+ * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
+ * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
+ * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
+ */
+int MCFail;
+
+struct mbuf *
+m_copym_mode(struct mbuf *m, int off0, int len, int wait, uint32_t mode)
+{
+ struct mbuf *n, *mhdr = NULL, **np;
+ int off = off0;
+ struct mbuf *top;
+ int copyhdr = 0;
+
+ if (off < 0 || len < 0) {
+ panic("m_copym: invalid offset %d or len %d", off, len);
+ }
+
+ VERIFY((mode != M_COPYM_MUST_COPY_HDR &&
+ mode != M_COPYM_MUST_MOVE_HDR) || (m->m_flags & M_PKTHDR));
+
+ if ((off == 0 && (m->m_flags & M_PKTHDR)) ||
+ mode == M_COPYM_MUST_COPY_HDR || mode == M_COPYM_MUST_MOVE_HDR) {
+ mhdr = m;
+ copyhdr = 1;
+ }
+
+ while (off >= m->m_len) {
+ if (m->m_next == NULL) {
+ panic("m_copym: invalid mbuf chain");
+ }
+ off -= m->m_len;
+ m = m->m_next;
+ }
+ np = ⊤
+ top = NULL;
+
+ while (len > 0) {
+ if (m == NULL) {
+ if (len != M_COPYALL) {
+ panic("m_copym: len != M_COPYALL");
+ }
+ break;
+ }
+
+ if (copyhdr) {
+ n = _M_RETRYHDR(wait, m->m_type);
+ } else {
+ n = _M_RETRY(wait, m->m_type);
+ }
+ *np = n;
+
+ if (n == NULL) {
+ goto nospace;
+ }
+
+ if (copyhdr != 0) {
+ if ((mode == M_COPYM_MOVE_HDR) ||
+ (mode == M_COPYM_MUST_MOVE_HDR)) {
+ M_COPY_PKTHDR(n, mhdr);
+ } else if ((mode == M_COPYM_COPY_HDR) ||
+ (mode == M_COPYM_MUST_COPY_HDR)) {
+ if (m_dup_pkthdr(n, mhdr, wait) == 0) {
+ goto nospace;
+ }
+ }
+ if (len == M_COPYALL) {
+ n->m_pkthdr.len -= off0;
+ } else {
+ n->m_pkthdr.len = len;
+ }
+ copyhdr = 0;
+ /*
+ * There is data to copy from the packet header mbuf
+ * if it is empty or it is before the starting offset
+ */
+ if (mhdr != m) {
+ np = &n->m_next;
+ continue;
+ }
+ }
+ n->m_len = MIN(len, (m->m_len - off));
+ if (m->m_flags & M_EXT) {
+ n->m_ext = m->m_ext;
+ m_incref(m);
+ n->m_data = m->m_data + off;
+ n->m_flags |= M_EXT;
+ } else {
+ /*
+ * Limit to the capacity of the destination
+ */
+ if (n->m_flags & M_PKTHDR) {
+ n->m_len = MIN(n->m_len, MHLEN);
+ } else {
+ n->m_len = MIN(n->m_len, MLEN);
+ }
+
+ if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE) {
+ panic("%s n %p copy overflow",
+ __func__, n);
+ }
+
+ bcopy(MTOD(m, caddr_t) + off, MTOD(n, caddr_t),
+ (unsigned)n->m_len);
+ }
+ if (len != M_COPYALL) {
+ len -= n->m_len;
+ }
+ off = 0;
+ m = m->m_next;
+ np = &n->m_next;
+ }
+
+ if (top == NULL) {
+ MCFail++;
+ }
+
+ return top;
+nospace:
+
+ m_freem(top);
+ MCFail++;
+ return NULL;
+}
+
+
+struct mbuf *
+m_copym(struct mbuf *m, int off0, int len, int wait)
+{
+ return m_copym_mode(m, off0, len, wait, M_COPYM_MOVE_HDR);
+}
+
+/*
+ * Equivalent to m_copym except that all necessary mbuf hdrs are allocated
+ * within this routine also, the last mbuf and offset accessed are passed
+ * out and can be passed back in to avoid having to rescan the entire mbuf
+ * list (normally hung off of the socket)
+ */
+struct mbuf *
+m_copym_with_hdrs(struct mbuf *m0, int off0, int len0, int wait,
+ struct mbuf **m_lastm, int *m_off, uint32_t mode)
+{
+ struct mbuf *m = m0, *n, **np = NULL;
+ int off = off0, len = len0;
+ struct mbuf *top = NULL;
+ int mcflags = MSLEEPF(wait);
+ int copyhdr = 0;
+ int type = 0;
+ mcache_obj_t *list = NULL;
+ int needed = 0;
+
+ if (off == 0 && (m->m_flags & M_PKTHDR)) {
+ copyhdr = 1;
+ }
+
+ if (m_lastm != NULL && *m_lastm != NULL) {
+ m = *m_lastm;
+ off = *m_off;
+ } else {
+ while (off >= m->m_len) {
+ off -= m->m_len;
+ m = m->m_next;
+ }
+ }
+
+ n = m;
+ while (len > 0) {
+ needed++;
+ ASSERT(n != NULL);
+ len -= MIN(len, (n->m_len - ((needed == 1) ? off : 0)));
+ n = n->m_next;
+ }
+ needed++;
+ len = len0;
+
+ /*
+ * If the caller doesn't want to be put to sleep, mark it with
+ * MCR_TRYHARD so that we may reclaim buffers from other places
+ * before giving up.
+ */
+ if (mcflags & MCR_NOSLEEP) {
+ mcflags |= MCR_TRYHARD;
+ }
+
+ if (mcache_alloc_ext(m_cache(MC_MBUF), &list, needed,
+ mcflags) != needed) {
+ goto nospace;
+ }
+
+ needed = 0;
+ while (len > 0) {
+ n = (struct mbuf *)list;
+ list = list->obj_next;
+ ASSERT(n != NULL && m != NULL);
+
+ type = (top == NULL) ? MT_HEADER : m->m_type;
+ MBUF_INIT(n, (top == NULL), type);
+#if CONFIG_MACF_NET
+ if (top == NULL && mac_mbuf_label_init(n, wait) != 0) {
+ mtype_stat_inc(MT_HEADER);
+ mtype_stat_dec(MT_FREE);
+ m_free(n);
+ goto nospace;
+ }
+#endif /* MAC_NET */
+
+ if (top == NULL) {
+ top = n;
+ np = &top->m_next;
+ continue;
+ } else {
+ needed++;
+ *np = n;
+ }
+
+ if (copyhdr) {
+ if ((mode == M_COPYM_MOVE_HDR) ||
+ (mode == M_COPYM_MUST_MOVE_HDR)) {
+ M_COPY_PKTHDR(n, m);
+ } else if ((mode == M_COPYM_COPY_HDR) ||
+ (mode == M_COPYM_MUST_COPY_HDR)) {
+ if (m_dup_pkthdr(n, m, wait) == 0) {
+ goto nospace;
+ }
+ }
+ n->m_pkthdr.len = len;
+ copyhdr = 0;
+ }
+ n->m_len = MIN(len, (m->m_len - off));
+
+ if (m->m_flags & M_EXT) {
+ n->m_ext = m->m_ext;
+ m_incref(m);
+ n->m_data = m->m_data + off;
+ n->m_flags |= M_EXT;
+ } else {
+ if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE) {
+ panic("%s n %p copy overflow",
+ __func__, n);
+ }
+
+ bcopy(MTOD(m, caddr_t) + off, MTOD(n, caddr_t),
+ (unsigned)n->m_len);
+ }
+ len -= n->m_len;
+
+ if (len == 0) {
+ if (m_lastm != NULL && m_off != NULL) {
+ if ((off + n->m_len) == m->m_len) {
+ *m_lastm = m->m_next;
+ *m_off = 0;
+ } else {
+ *m_lastm = m;
+ *m_off = off + n->m_len;
+ }
+ }
+ break;
+ }
+ off = 0;
+ m = m->m_next;
+ np = &n->m_next;
+ }
+
+ mtype_stat_inc(MT_HEADER);
+ mtype_stat_add(type, needed);
+ mtype_stat_sub(MT_FREE, needed + 1);
+
+ ASSERT(list == NULL);
+ return top;
+
+nospace:
+ if (list != NULL) {
+ mcache_free_ext(m_cache(MC_MBUF), list);
+ }
+ if (top != NULL) {
+ m_freem(top);
+ }
+ MCFail++;
+ return NULL;
+}
+
+/*
+ * Copy data from an mbuf chain starting "off" bytes from the beginning,
+ * continuing for "len" bytes, into the indicated buffer.
+ */
+void
+m_copydata(struct mbuf *m, int off, int len, void *vp)
+{
+ int off0 = off, len0 = len;
+ struct mbuf *m0 = m;
+ unsigned count;
+ char *cp = vp;
+
+ if (__improbable(off < 0 || len < 0)) {
+ panic("%s: invalid offset %d or len %d", __func__, off, len);
+ /* NOTREACHED */
+ }
+
+ while (off > 0) {
+ if (__improbable(m == NULL)) {
+ panic("%s: invalid mbuf chain %p [off %d, len %d]",
+ __func__, m0, off0, len0);
+ /* NOTREACHED */
+ }
+ if (off < m->m_len) {
+ break;
+ }
+ off -= m->m_len;
+ m = m->m_next;
+ }
+ while (len > 0) {
+ if (__improbable(m == NULL)) {
+ panic("%s: invalid mbuf chain %p [off %d, len %d]",
+ __func__, m0, off0, len0);
+ /* NOTREACHED */
+ }
+ count = MIN(m->m_len - off, len);
+ bcopy(MTOD(m, caddr_t) + off, cp, count);
+ len -= count;
+ cp += count;
+ off = 0;
+ m = m->m_next;
+ }
+}
+
+/*
+ * Concatenate mbuf chain n to m. Both chains must be of the same type
+ * (e.g. MT_DATA). Any m_pkthdr is not updated.
+ */
+void
+m_cat(struct mbuf *m, struct mbuf *n)
+{
+ while (m->m_next) {
+ m = m->m_next;
+ }
+ while (n) {
+ if ((m->m_flags & M_EXT) ||
+ m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
+ /* just join the two chains */
+ m->m_next = n;
+ return;
+ }
+ /* splat the data from one into the other */
+ bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
+ (u_int)n->m_len);
+ m->m_len += n->m_len;
+ n = m_free(n);
+ }
+}
+
+void
+m_adj(struct mbuf *mp, int req_len)
+{
+ int len = req_len;
+ struct mbuf *m;
+ int count;
+
+ if ((m = mp) == NULL) {
+ return;
+ }
+ if (len >= 0) {
+ /*
+ * Trim from head.
+ */
+ while (m != NULL && len > 0) {
+ if (m->m_len <= len) {
+ len -= m->m_len;
+ m->m_len = 0;
+ m = m->m_next;
+ } else {
+ m->m_len -= len;
+ m->m_data += len;
+ len = 0;
+ }
+ }
+ m = mp;
+ if (m->m_flags & M_PKTHDR) {
+ m->m_pkthdr.len -= (req_len - len);
+ }
+ } else {
+ /*
+ * Trim from tail. Scan the mbuf chain,
+ * calculating its length and finding the last mbuf.
+ * If the adjustment only affects this mbuf, then just
+ * adjust and return. Otherwise, rescan and truncate
+ * after the remaining size.
+ */
+ len = -len;
+ count = 0;
+ for (;;) {
+ count += m->m_len;
+ if (m->m_next == (struct mbuf *)0) {
+ break;
+ }
+ m = m->m_next;
+ }
+ if (m->m_len >= len) {
+ m->m_len -= len;
+ m = mp;
+ if (m->m_flags & M_PKTHDR) {
+ m->m_pkthdr.len -= len;
+ }
+ return;
+ }
+ count -= len;
+ if (count < 0) {
+ count = 0;
+ }
+ /*
+ * Correct length for chain is "count".
+ * Find the mbuf with last data, adjust its length,
+ * and toss data from remaining mbufs on chain.
+ */
+ m = mp;
+ if (m->m_flags & M_PKTHDR) {
+ m->m_pkthdr.len = count;
+ }
+ for (; m; m = m->m_next) {
+ if (m->m_len >= count) {
+ m->m_len = count;
+ break;
+ }
+ count -= m->m_len;
+ }
+ while ((m = m->m_next)) {
+ m->m_len = 0;
+ }
+ }
+}
+
+/*
+ * Rearange an mbuf chain so that len bytes are contiguous
+ * and in the data area of an mbuf (so that mtod and dtom
+ * will work for a structure of size len). Returns the resulting
+ * mbuf chain on success, frees it and returns null on failure.
+ * If there is room, it will add up to max_protohdr-len extra bytes to the
+ * contiguous region in an attempt to avoid being called next time.
+ */
+int MPFail;
+
+struct mbuf *
+m_pullup(struct mbuf *n, int len)
+{
+ struct mbuf *m;
+ int count;
+ int space;
+
+ /* check invalid arguments */
+ if (n == NULL) {
+ panic("%s: n == NULL", __func__);
+ }
+ if (len < 0) {
+ os_log_info(OS_LOG_DEFAULT, "%s: failed negative len %d",
+ __func__, len);
+ goto bad;
+ }
+ if (len > MLEN) {
+ os_log_info(OS_LOG_DEFAULT, "%s: failed len %d too big",
+ __func__, len);
+ goto bad;
+ }
+ if ((n->m_flags & M_EXT) == 0 &&
+ n->m_data >= &n->m_dat[MLEN]) {
+ os_log_info(OS_LOG_DEFAULT, "%s: m_data out of bounds",
+ __func__);
+ goto bad;
+ }
+
+ /*
+ * If first mbuf has no cluster, and has room for len bytes
+ * without shifting current data, pullup into it,
+ * otherwise allocate a new mbuf to prepend to the chain.
+ */
+ if ((n->m_flags & M_EXT) == 0 &&
+ len < &n->m_dat[MLEN] - n->m_data && n->m_next != NULL) {
+ if (n->m_len >= len) {
+ return n;
+ }
+ m = n;
+ n = n->m_next;
+ len -= m->m_len;
+ } else {
+ if (len > MHLEN) {
+ goto bad;
+ }
+ _MGET(m, M_DONTWAIT, n->m_type);
+ if (m == 0) {
+ goto bad;
+ }
+ m->m_len = 0;
+ if (n->m_flags & M_PKTHDR) {
+ M_COPY_PKTHDR(m, n);
+ n->m_flags &= ~M_PKTHDR;
+ }
+ }
+ space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
+ do {
+ count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len);
+ bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
+ (unsigned)count);
+ len -= count;
+ m->m_len += count;
+ n->m_len -= count;
+ space -= count;
+ if (n->m_len != 0) {
+ n->m_data += count;
+ } else {
+ n = m_free(n);
+ }
+ } while (len > 0 && n != NULL);
+ if (len > 0) {
+ (void) m_free(m);
+ goto bad;
+ }
+ m->m_next = n;
+ return m;
+bad:
+ m_freem(n);
+ MPFail++;
+ return 0;
+}
+
+/*
+ * Like m_pullup(), except a new mbuf is always allocated, and we allow
+ * the amount of empty space before the data in the new mbuf to be specified
+ * (in the event that the caller expects to prepend later).
+ */
+__private_extern__ int MSFail = 0;
+
+__private_extern__ struct mbuf *
+m_copyup(struct mbuf *n, int len, int dstoff)
+{
+ struct mbuf *m;
+ int count, space;
+
+ VERIFY(len >= 0 && dstoff >= 0);
+
+ if (len > (MHLEN - dstoff)) {
+ goto bad;
+ }
+ MGET(m, M_DONTWAIT, n->m_type);
+ if (m == NULL) {
+ goto bad;
+ }
+ m->m_len = 0;
+ if (n->m_flags & M_PKTHDR) {
+ m_copy_pkthdr(m, n);
+ n->m_flags &= ~M_PKTHDR;
+ }
+ m->m_data += dstoff;
+ space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
+ do {
+ count = min(min(max(len, max_protohdr), space), n->m_len);
+ memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
+ (unsigned)count);
+ len -= count;
+ m->m_len += count;
+ n->m_len -= count;
+ space -= count;
+ if (n->m_len) {
+ n->m_data += count;
+ } else {
+ n = m_free(n);
+ }
+ } while (len > 0 && n);
+ if (len > 0) {
+ (void) m_free(m);
+ goto bad;
+ }
+ m->m_next = n;
+ return m;
+bad:
+ m_freem(n);
+ MSFail++;
+ return NULL;
+}
+
+/*
+ * Partition an mbuf chain in two pieces, returning the tail --
+ * all but the first len0 bytes. In case of failure, it returns NULL and
+ * attempts to restore the chain to its original state.
+ */
+struct mbuf *
+m_split(struct mbuf *m0, int len0, int wait)
+{
+ return m_split0(m0, len0, wait, 1);
+}
+
+static struct mbuf *
+m_split0(struct mbuf *m0, int len0, int wait, int copyhdr)
+{
+ struct mbuf *m, *n;
+ unsigned len = len0, remain;
+
+ /*
+ * First iterate to the mbuf which contains the first byte of
+ * data at offset len0
+ */
+ for (m = m0; m && len > m->m_len; m = m->m_next) {
+ len -= m->m_len;
+ }
+ if (m == NULL) {
+ return NULL;
+ }
+ /*
+ * len effectively is now the offset in the current
+ * mbuf where we have to perform split.
+ *
+ * remain becomes the tail length.
+ * Note that len can also be == m->m_len
+ */
+ remain = m->m_len - len;
+
+ /*
+ * If current mbuf len contains the entire remaining offset len,
+ * just make the second mbuf chain pointing to next mbuf onwards
+ * and return after making necessary adjustments
+ */
+ if (copyhdr && (m0->m_flags & M_PKTHDR) && remain == 0) {
+ _MGETHDR(n, wait, m0->m_type);
+ if (n == NULL) {
+ return NULL;
+ }
+ n->m_next = m->m_next;
+ m->m_next = NULL;
+ n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
+ n->m_pkthdr.len = m0->m_pkthdr.len - len0;
+ m0->m_pkthdr.len = len0;
+ return n;
+ }
+ if (copyhdr && (m0->m_flags & M_PKTHDR)) {
+ _MGETHDR(n, wait, m0->m_type);
+ if (n == NULL) {
+ return NULL;
+ }
+ n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
+ n->m_pkthdr.len = m0->m_pkthdr.len - len0;
+ m0->m_pkthdr.len = len0;
+
+ /*
+ * If current points to external storage
+ * then it can be shared by making last mbuf
+ * of head chain and first mbuf of current chain
+ * pointing to different data offsets
+ */
+ if (m->m_flags & M_EXT) {
+ goto extpacket;
+ }
+ if (remain > MHLEN) {
+ /* m can't be the lead packet */
+ MH_ALIGN(n, 0);
+ n->m_next = m_split(m, len, wait);
+ if (n->m_next == NULL) {
+ (void) m_free(n);
+ return NULL;
+ } else {
+ return n;
+ }
+ } else {
+ MH_ALIGN(n, remain);
+ }
+ } else if (remain == 0) {
+ n = m->m_next;
+ m->m_next = NULL;
+ return n;
+ } else {
+ _MGET(n, wait, m->m_type);
+ if (n == NULL) {
+ return NULL;
+ }
+
+ if ((m->m_flags & M_EXT) == 0) {
+ VERIFY(remain <= MLEN);
+ M_ALIGN(n, remain);
+ }
+ }
+extpacket:
+ if (m->m_flags & M_EXT) {
+ n->m_flags |= M_EXT;
+ n->m_ext = m->m_ext;
+ m_incref(m);
+ n->m_data = m->m_data + len;
+ } else {
+ bcopy(MTOD(m, caddr_t) + len, MTOD(n, caddr_t), remain);
+ }
+ n->m_len = remain;
+ m->m_len = len;
+ n->m_next = m->m_next;
+ m->m_next = NULL;
+ return n;
+}
+
+/*
+ * Routine to copy from device local memory into mbufs.
+ */
+struct mbuf *
+m_devget(char *buf, int totlen, int off0, struct ifnet *ifp,
+ void (*copy)(const void *, void *, size_t))
+{
+ struct mbuf *m;
+ struct mbuf *top = NULL, **mp = ⊤
+ int off = off0, len;
+ char *cp;
+ char *epkt;
+
+ cp = buf;
+ epkt = cp + totlen;
+ if (off) {
+ /*
+ * If 'off' is non-zero, packet is trailer-encapsulated,
+ * so we have to skip the type and length fields.
+ */
+ cp += off + 2 * sizeof(u_int16_t);
+ totlen -= 2 * sizeof(u_int16_t);
+ }
+ _MGETHDR(m, M_DONTWAIT, MT_DATA);
+ if (m == NULL) {
+ return NULL;
+ }
+ m->m_pkthdr.rcvif = ifp;
+ m->m_pkthdr.len = totlen;
+ m->m_len = MHLEN;
+
+ while (totlen > 0) {
+ if (top != NULL) {
+ _MGET(m, M_DONTWAIT, MT_DATA);
+ if (m == NULL) {
+ m_freem(top);
+ return NULL;
+ }
+ m->m_len = MLEN;
+ }
+ len = MIN(totlen, epkt - cp);
+ if (len >= MINCLSIZE) {
+ MCLGET(m, M_DONTWAIT);
+ if (m->m_flags & M_EXT) {
+ m->m_len = len = MIN(len, m_maxsize(MC_CL));
+ } else {
+ /* give up when it's out of cluster mbufs */
+ if (top != NULL) {
+ m_freem(top);
+ }
+ m_freem(m);
+ return NULL;
+ }
+ } else {
+ /*
+ * Place initial small packet/header at end of mbuf.
+ */
+ if (len < m->m_len) {
+ if (top == NULL &&
+ len + max_linkhdr <= m->m_len) {
+ m->m_data += max_linkhdr;
+ }
+ m->m_len = len;
+ } else {
+ len = m->m_len;
+ }
+ }
+ if (copy) {
+ copy(cp, MTOD(m, caddr_t), (unsigned)len);
+ } else {
+ bcopy(cp, MTOD(m, caddr_t), (unsigned)len);
+ }
+ cp += len;
+ *mp = m;
+ mp = &m->m_next;
+ totlen -= len;
+ if (cp == epkt) {
+ cp = buf;
+ }
+ }
+ return top;
+}
+
+#ifndef MBUF_GROWTH_NORMAL_THRESH
+#define MBUF_GROWTH_NORMAL_THRESH 25
+#endif
+
+/*
+ * Cluster freelist allocation check.
+ */
+static int
+m_howmany(int num, size_t bufsize)
+{
+ int i = 0, j = 0;
+ u_int32_t m_mbclusters, m_clusters, m_bigclusters, m_16kclusters;
+ u_int32_t m_mbfree, m_clfree, m_bigclfree, m_16kclfree;
+ u_int32_t sumclusters, freeclusters;
+ u_int32_t percent_pool, percent_kmem;
+ u_int32_t mb_growth, mb_growth_thresh;
+
+ VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
+ bufsize == m_maxsize(MC_16KCL));
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ /* Numbers in 2K cluster units */
+ m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT;
+ m_clusters = m_total(MC_CL);
+ m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT;
+ m_16kclusters = m_total(MC_16KCL);
+ sumclusters = m_mbclusters + m_clusters + m_bigclusters;
+
+ m_mbfree = m_infree(MC_MBUF) >> NMBPCLSHIFT;
+ m_clfree = m_infree(MC_CL);
+ m_bigclfree = m_infree(MC_BIGCL) << NCLPBGSHIFT;
+ m_16kclfree = m_infree(MC_16KCL);
+ freeclusters = m_mbfree + m_clfree + m_bigclfree;
+
+ /* Bail if we've maxed out the mbuf memory map */
+ if ((bufsize == m_maxsize(MC_BIGCL) && sumclusters >= nclusters) ||
+ (njcl > 0 && bufsize == m_maxsize(MC_16KCL) &&
+ (m_16kclusters << NCLPJCLSHIFT) >= njcl)) {
+ mbwdog_logger("maxed out nclusters (%u >= %u) or njcl (%u >= %u)",
+ sumclusters, nclusters,
+ (m_16kclusters << NCLPJCLSHIFT), njcl);
+ return 0;
+ }
+
+ if (bufsize == m_maxsize(MC_BIGCL)) {
+ /* Under minimum */
+ if (m_bigclusters < m_minlimit(MC_BIGCL)) {
+ return m_minlimit(MC_BIGCL) - m_bigclusters;
+ }
+
+ percent_pool =
+ ((sumclusters - freeclusters) * 100) / sumclusters;
+ percent_kmem = (sumclusters * 100) / nclusters;
+
+ /*
+ * If a light/normal user, grow conservatively (75%)
+ * If a heavy user, grow aggressively (50%)
+ */
+ if (percent_kmem < MBUF_GROWTH_NORMAL_THRESH) {
+ mb_growth = MB_GROWTH_NORMAL;
+ } else {
+ mb_growth = MB_GROWTH_AGGRESSIVE;
+ }
+
+ if (percent_kmem < 5) {
+ /* For initial allocations */
+ i = num;
+ } else {
+ /* Return if >= MBIGCL_LOWAT clusters available */
+ if (m_infree(MC_BIGCL) >= MBIGCL_LOWAT &&
+ m_total(MC_BIGCL) >=
+ MBIGCL_LOWAT + m_minlimit(MC_BIGCL)) {
+ return 0;
+ }
+
+ /* Ensure at least num clusters are accessible */
+ if (num >= m_infree(MC_BIGCL)) {
+ i = num - m_infree(MC_BIGCL);
+ }
+ if (num > m_total(MC_BIGCL) - m_minlimit(MC_BIGCL)) {
+ j = num - (m_total(MC_BIGCL) -
+ m_minlimit(MC_BIGCL));
+ }
+
+ i = MAX(i, j);
+
+ /*
+ * Grow pool if percent_pool > 75 (normal growth)
+ * or percent_pool > 50 (aggressive growth).
+ */
+ mb_growth_thresh = 100 - (100 / (1 << mb_growth));
+ if (percent_pool > mb_growth_thresh) {
+ j = ((sumclusters + num) >> mb_growth) -
+ freeclusters;
+ }
+ i = MAX(i, j);
+ }
+
+ /* Check to ensure we didn't go over limits */
+ if (i + m_bigclusters >= m_maxlimit(MC_BIGCL)) {
+ i = m_maxlimit(MC_BIGCL) - m_bigclusters;
+ }
+ if ((i << 1) + sumclusters >= nclusters) {
+ i = (nclusters - sumclusters) >> 1;
+ }
+ VERIFY((m_total(MC_BIGCL) + i) <= m_maxlimit(MC_BIGCL));
+ VERIFY(sumclusters + (i << 1) <= nclusters);
+ } else { /* 16K CL */
+ VERIFY(njcl > 0);
+ /* Ensure at least num clusters are available */
+ if (num >= m_16kclfree) {
+ i = num - m_16kclfree;
+ }
+
+ /* Always grow 16KCL pool aggressively */
+ if (((m_16kclusters + num) >> 1) > m_16kclfree) {
+ j = ((m_16kclusters + num) >> 1) - m_16kclfree;
+ }
+ i = MAX(i, j);
+
+ /* Check to ensure we don't go over limit */
+ if ((i + m_total(MC_16KCL)) >= m_maxlimit(MC_16KCL)) {
+ i = m_maxlimit(MC_16KCL) - m_total(MC_16KCL);
+ }
+ }
+ return i;
+}
+/*
+ * Return the number of bytes in the mbuf chain, m.
+ */
+unsigned int
+m_length(struct mbuf *m)
+{
+ struct mbuf *m0;
+ unsigned int pktlen;
+
+ if (m->m_flags & M_PKTHDR) {
+ return m->m_pkthdr.len;
+ }
+
+ pktlen = 0;
+ for (m0 = m; m0 != NULL; m0 = m0->m_next) {
+ pktlen += m0->m_len;
+ }
+ return pktlen;
+}
+
+/*
+ * Copy data from a buffer back into the indicated mbuf chain,
+ * starting "off" bytes from the beginning, extending the mbuf
+ * chain if necessary.
+ */
+void
+m_copyback(struct mbuf *m0, int off, int len, const void *cp)
+{
+#if DEBUG
+ struct mbuf *origm = m0;
+ int error;
+#endif /* DEBUG */
+
+ if (m0 == NULL) {
+ return;
+ }
+
+#if DEBUG
+ error =
+#endif /* DEBUG */
+ m_copyback0(&m0, off, len, cp,
+ M_COPYBACK0_COPYBACK | M_COPYBACK0_EXTEND, M_DONTWAIT);
+
+#if DEBUG
+ if (error != 0 || (m0 != NULL && origm != m0)) {
+ panic("m_copyback");
+ }
+#endif /* DEBUG */
+}
+
+struct mbuf *
+m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how)
+{
+ int error;
+
+ /* don't support chain expansion */
+ VERIFY(off + len <= m_length(m0));
+
+ error = m_copyback0(&m0, off, len, cp,
+ M_COPYBACK0_COPYBACK | M_COPYBACK0_COW, how);
+ if (error) {
+ /*
+ * no way to recover from partial success.
+ * just free the chain.
+ */
+ m_freem(m0);
+ return NULL;
+ }
+ return m0;
+}
+
+/*
+ * m_makewritable: ensure the specified range writable.
+ */
+int
+m_makewritable(struct mbuf **mp, int off, int len, int how)
+{
+ int error;
+#if DEBUG
+ struct mbuf *n;
+ int origlen, reslen;
+
+ origlen = m_length(*mp);
+#endif /* DEBUG */
+
+#if 0 /* M_COPYALL is large enough */
+ if (len == M_COPYALL) {
+ len = m_length(*mp) - off; /* XXX */
+ }
+#endif
+
+ error = m_copyback0(mp, off, len, NULL,
+ M_COPYBACK0_PRESERVE | M_COPYBACK0_COW, how);
+
+#if DEBUG
+ reslen = 0;
+ for (n = *mp; n; n = n->m_next) {
+ reslen += n->m_len;
+ }
+ if (origlen != reslen) {
+ panic("m_makewritable: length changed");
+ }
+ if (((*mp)->m_flags & M_PKTHDR) && reslen != (*mp)->m_pkthdr.len) {
+ panic("m_makewritable: inconsist");
+ }
+#endif /* DEBUG */
+
+ return error;
+}
+
+static int
+m_copyback0(struct mbuf **mp0, int off, int len, const void *vp, int flags,
+ int how)
+{
+ int mlen;
+ struct mbuf *m, *n;
+ struct mbuf **mp;
+ int totlen = 0;
+ const char *cp = vp;
+
+ VERIFY(mp0 != NULL);
+ VERIFY(*mp0 != NULL);
+ VERIFY((flags & M_COPYBACK0_PRESERVE) == 0 || cp == NULL);
+ VERIFY((flags & M_COPYBACK0_COPYBACK) == 0 || cp != NULL);
+
+ /*
+ * we don't bother to update "totlen" in the case of M_COPYBACK0_COW,
+ * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive.
+ */
+
+ VERIFY((~flags & (M_COPYBACK0_EXTEND | M_COPYBACK0_COW)) != 0);
+
+ mp = mp0;
+ m = *mp;
+ while (off > (mlen = m->m_len)) {
+ off -= mlen;
+ totlen += mlen;
+ if (m->m_next == NULL) {
+ int tspace;
+extend:
+ if (!(flags & M_COPYBACK0_EXTEND)) {
+ goto out;
+ }
+
+ /*
+ * try to make some space at the end of "m".
+ */
+
+ mlen = m->m_len;
+ if (off + len >= MINCLSIZE &&
+ !(m->m_flags & M_EXT) && m->m_len == 0) {
+ MCLGET(m, how);
+ }
+ tspace = M_TRAILINGSPACE(m);
+ if (tspace > 0) {
+ tspace = MIN(tspace, off + len);
+ VERIFY(tspace > 0);
+ bzero(mtod(m, char *) + m->m_len,
+ MIN(off, tspace));
+ m->m_len += tspace;
+ off += mlen;
+ totlen -= mlen;
+ continue;
+ }
+
+ /*
+ * need to allocate an mbuf.
+ */
+
+ if (off + len >= MINCLSIZE) {
+ n = m_getcl(how, m->m_type, 0);
+ } else {
+ n = _M_GET(how, m->m_type);
+ }
+ if (n == NULL) {
+ goto out;
+ }
+ n->m_len = 0;
+ n->m_len = MIN(M_TRAILINGSPACE(n), off + len);
+ bzero(mtod(n, char *), MIN(n->m_len, off));
+ m->m_next = n;
+ }
+ mp = &m->m_next;
+ m = m->m_next;
+ }
+ while (len > 0) {
+ mlen = m->m_len - off;
+ if (mlen != 0 && m_mclhasreference(m)) {
+ char *datap;
+ int eatlen;
+
+ /*
+ * this mbuf is read-only.
+ * allocate a new writable mbuf and try again.
+ */
+
+#if DIAGNOSTIC
+ if (!(flags & M_COPYBACK0_COW)) {
+ panic("m_copyback0: read-only");
+ }
+#endif /* DIAGNOSTIC */
+
+ /*
+ * if we're going to write into the middle of
+ * a mbuf, split it first.
+ */
+ if (off > 0 && len < mlen) {
+ n = m_split0(m, off, how, 0);
+ if (n == NULL) {
+ goto enobufs;
+ }
+ m->m_next = n;
+ mp = &m->m_next;
+ m = n;
+ off = 0;
+ continue;
+ }
+
+ /*
+ * XXX TODO coalesce into the trailingspace of
+ * the previous mbuf when possible.
+ */
+
+ /*
+ * allocate a new mbuf. copy packet header if needed.
+ */
+ n = _M_GET(how, m->m_type);
+ if (n == NULL) {
+ goto enobufs;
+ }
+ if (off == 0 && (m->m_flags & M_PKTHDR)) {
+ M_COPY_PKTHDR(n, m);
+ n->m_len = MHLEN;
+ } else {
+ if (len >= MINCLSIZE) {
+ MCLGET(n, M_DONTWAIT);
+ }
+ n->m_len =
+ (n->m_flags & M_EXT) ? MCLBYTES : MLEN;
+ }
+ if (n->m_len > len) {
+ n->m_len = len;
+ }
+
+ /*
+ * free the region which has been overwritten.
+ * copying data from old mbufs if requested.
+ */
+ if (flags & M_COPYBACK0_PRESERVE) {
+ datap = mtod(n, char *);
+ } else {
+ datap = NULL;
+ }
+ eatlen = n->m_len;
+ VERIFY(off == 0 || eatlen >= mlen);
+ if (off > 0) {
+ VERIFY(len >= mlen);
+ m->m_len = off;
+ m->m_next = n;
+ if (datap) {
+ m_copydata(m, off, mlen, datap);
+ datap += mlen;
+ }
+ eatlen -= mlen;
+ mp = &m->m_next;
+ m = m->m_next;
+ }
+ while (m != NULL && m_mclhasreference(m) &&
+ n->m_type == m->m_type && eatlen > 0) {
+ mlen = MIN(eatlen, m->m_len);
+ if (datap) {
+ m_copydata(m, 0, mlen, datap);
+ datap += mlen;
+ }
+ m->m_data += mlen;
+ m->m_len -= mlen;
+ eatlen -= mlen;
+ if (m->m_len == 0) {
+ *mp = m = m_free(m);
+ }
+ }
+ if (eatlen > 0) {
+ n->m_len -= eatlen;
+ }
+ n->m_next = m;
+ *mp = m = n;
+ continue;
+ }
+ mlen = MIN(mlen, len);
+ if (flags & M_COPYBACK0_COPYBACK) {
+ bcopy(cp, mtod(m, caddr_t) + off, (unsigned)mlen);
+ cp += mlen;
+ }
+ len -= mlen;
+ mlen += off;
+ off = 0;
+ totlen += mlen;
+ if (len == 0) {
+ break;
+ }
+ if (m->m_next == NULL) {
+ goto extend;
+ }
+ mp = &m->m_next;
+ m = m->m_next;
+ }
+out:
+ if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) {
+ VERIFY(flags & M_COPYBACK0_EXTEND);
+ m->m_pkthdr.len = totlen;
+ }
+
+ return 0;
+
+enobufs:
+ return ENOBUFS;
+}
+
+uint64_t
+mcl_to_paddr(char *addr)
+{
+ vm_offset_t base_phys;
+
+ if (!MBUF_IN_MAP(addr)) {
+ return 0;
+ }
+ base_phys = mcl_paddr[atop_64(addr - (char *)mbutl)];
+
+ if (base_phys == 0) {
+ return 0;
+ }
+ return (uint64_t)(ptoa_64(base_phys) | ((uint64_t)addr & PAGE_MASK));
+}
+
+/*
+ * Dup the mbuf chain passed in. The whole thing. No cute additional cruft.
+ * And really copy the thing. That way, we don't "precompute" checksums
+ * for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for
+ * small packets, don't dup into a cluster. That way received packets
+ * don't take up too much room in the sockbuf (cf. sbspace()).
+ */
+int MDFail;
+
+struct mbuf *
+m_dup(struct mbuf *m, int how)
+{
+ struct mbuf *n, **np;
+ struct mbuf *top;
+ int copyhdr = 0;
+
+ np = ⊤
+ top = NULL;
+ if (m->m_flags & M_PKTHDR) {
+ copyhdr = 1;
+ }
+
+ /*
+ * Quick check: if we have one mbuf and its data fits in an
+ * mbuf with packet header, just copy and go.
+ */
+ if (m->m_next == NULL) {
+ /* Then just move the data into an mbuf and be done... */
+ if (copyhdr) {
+ if (m->m_pkthdr.len <= MHLEN && m->m_len <= MHLEN) {
+ if ((n = _M_GETHDR(how, m->m_type)) == NULL) {
+ return NULL;
+ }
+ n->m_len = m->m_len;
+ m_dup_pkthdr(n, m, how);
+ bcopy(m->m_data, n->m_data, m->m_len);
+ return n;
+ }
+ } else if (m->m_len <= MLEN) {
+ if ((n = _M_GET(how, m->m_type)) == NULL) {
+ return NULL;
+ }
+ bcopy(m->m_data, n->m_data, m->m_len);
+ n->m_len = m->m_len;
+ return n;
+ }
+ }
+ while (m != NULL) {
+#if BLUE_DEBUG
+ printf("<%x: %x, %x, %x\n", m, m->m_flags, m->m_len,
+ m->m_data);
+#endif
+ if (copyhdr) {
+ n = _M_GETHDR(how, m->m_type);
+ } else {
+ n = _M_GET(how, m->m_type);
+ }
+ if (n == NULL) {
+ goto nospace;
+ }
+ if (m->m_flags & M_EXT) {
+ if (m->m_len <= m_maxsize(MC_CL)) {
+ MCLGET(n, how);
+ } else if (m->m_len <= m_maxsize(MC_BIGCL)) {
+ n = m_mbigget(n, how);
+ } else if (m->m_len <= m_maxsize(MC_16KCL) && njcl > 0) {
+ n = m_m16kget(n, how);
+ }
+ if (!(n->m_flags & M_EXT)) {
+ (void) m_free(n);
+ goto nospace;
+ }
+ } else {
+ VERIFY((copyhdr == 1 && m->m_len <= MHLEN) ||
+ (copyhdr == 0 && m->m_len <= MLEN));
+ }
+ *np = n;
+ if (copyhdr) {
+ /* Don't use M_COPY_PKTHDR: preserve m_data */
+ m_dup_pkthdr(n, m, how);
+ copyhdr = 0;
+ if (!(n->m_flags & M_EXT)) {
+ n->m_data = n->m_pktdat;
+ }
+ }
+ n->m_len = m->m_len;
+ /*
+ * Get the dup on the same bdry as the original
+ * Assume that the two mbufs have the same offset to data area
+ * (up to word boundaries)
+ */
+ bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), (unsigned)n->m_len);
+ m = m->m_next;
+ np = &n->m_next;
+#if BLUE_DEBUG
+ printf(">%x: %x, %x, %x\n", n, n->m_flags, n->m_len,
+ n->m_data);
+#endif
+ }
+
+ if (top == NULL) {
+ MDFail++;
+ }
+ return top;
+
+nospace:
+ m_freem(top);
+ MDFail++;
+ return NULL;
+}
+
+#define MBUF_MULTIPAGES(m) \
+ (((m)->m_flags & M_EXT) && \
+ ((IS_P2ALIGNED((m)->m_data, PAGE_SIZE) \
+ && (m)->m_len > PAGE_SIZE) || \
+ (!IS_P2ALIGNED((m)->m_data, PAGE_SIZE) && \
+ P2ROUNDUP((m)->m_data, PAGE_SIZE) < ((uintptr_t)(m)->m_data + (m)->m_len))))
+
+static struct mbuf *
+m_expand(struct mbuf *m, struct mbuf **last)
+{
+ struct mbuf *top = NULL;
+ struct mbuf **nm = ⊤
+ uintptr_t data0, data;
+ unsigned int len0, len;
+
+ VERIFY(MBUF_MULTIPAGES(m));
+ VERIFY(m->m_next == NULL);
+ data0 = (uintptr_t)m->m_data;
+ len0 = m->m_len;
+ *last = top;
+
+ for (;;) {
+ struct mbuf *n;
+
+ data = data0;
+ if (IS_P2ALIGNED(data, PAGE_SIZE) && len0 > PAGE_SIZE) {
+ len = PAGE_SIZE;
+ } else if (!IS_P2ALIGNED(data, PAGE_SIZE) &&
+ P2ROUNDUP(data, PAGE_SIZE) < (data + len0)) {
+ len = P2ROUNDUP(data, PAGE_SIZE) - data;
+ } else {
+ len = len0;
+ }
+
+ VERIFY(len > 0);
+ VERIFY(m->m_flags & M_EXT);
+ m->m_data = (void *)data;
+ m->m_len = len;
+
+ *nm = *last = m;
+ nm = &m->m_next;
+ m->m_next = NULL;
+
+ data0 += len;
+ len0 -= len;
+ if (len0 == 0) {
+ break;
+ }
+
+ n = _M_RETRY(M_DONTWAIT, MT_DATA);
+ if (n == NULL) {
+ m_freem(top);
+ top = *last = NULL;
+ break;
+ }
+
+ n->m_ext = m->m_ext;
+ m_incref(m);
+ n->m_flags |= M_EXT;
+ m = n;
+ }
+ return top;
+}
+
+struct mbuf *
+m_normalize(struct mbuf *m)
+{
+ struct mbuf *top = NULL;
+ struct mbuf **nm = ⊤
+ boolean_t expanded = FALSE;
+
+ while (m != NULL) {
+ struct mbuf *n;
+
+ n = m->m_next;
+ m->m_next = NULL;
+
+ /* Does the data cross one or more page boundaries? */
+ if (MBUF_MULTIPAGES(m)) {
+ struct mbuf *last;
+ if ((m = m_expand(m, &last)) == NULL) {
+ m_freem(n);
+ m_freem(top);
+ top = NULL;
+ break;
+ }
+ *nm = m;
+ nm = &last->m_next;
+ expanded = TRUE;
+ } else {
+ *nm = m;
+ nm = &m->m_next;
+ }
+ m = n;
+ }
+ if (expanded) {
+ atomic_add_32(&mb_normalized, 1);
+ }
+ return top;
+}
+
+/*
+ * Append the specified data to the indicated mbuf chain,
+ * Extend the mbuf chain if the new data does not fit in
+ * existing space.
+ *
+ * Return 1 if able to complete the job; otherwise 0.
+ */
+int
+m_append(struct mbuf *m0, int len, caddr_t cp)
+{
+ struct mbuf *m, *n;
+ int remainder, space;
+
+ for (m = m0; m->m_next != NULL; m = m->m_next) {
+ ;
+ }
+ remainder = len;
+ space = M_TRAILINGSPACE(m);
+ if (space > 0) {
+ /*
+ * Copy into available space.
+ */
+ if (space > remainder) {
+ space = remainder;
+ }
+ bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
+ m->m_len += space;
+ cp += space;
+ remainder -= space;
+ }
+ while (remainder > 0) {
+ /*
+ * Allocate a new mbuf; could check space
+ * and allocate a cluster instead.
+ */
+ n = m_get(M_WAITOK, m->m_type);
+ if (n == NULL) {
+ break;
+ }
+ n->m_len = min(MLEN, remainder);
+ bcopy(cp, mtod(n, caddr_t), n->m_len);
+ cp += n->m_len;
+ remainder -= n->m_len;
+ m->m_next = n;
+ m = n;
+ }
+ if (m0->m_flags & M_PKTHDR) {
+ m0->m_pkthdr.len += len - remainder;
+ }
+ return remainder == 0;
+}
+
+struct mbuf *
+m_last(struct mbuf *m)
+{
+ while (m->m_next != NULL) {
+ m = m->m_next;
+ }
+ return m;
+}
+
+unsigned int
+m_fixhdr(struct mbuf *m0)
+{
+ u_int len;
+
+ VERIFY(m0->m_flags & M_PKTHDR);
+
+ len = m_length2(m0, NULL);
+ m0->m_pkthdr.len = len;
+ return len;
+}
+
+unsigned int
+m_length2(struct mbuf *m0, struct mbuf **last)
+{
+ struct mbuf *m;
+ u_int len;
+
+ len = 0;
+ for (m = m0; m != NULL; m = m->m_next) {
+ len += m->m_len;
+ if (m->m_next == NULL) {
+ break;
+ }
+ }
+ if (last != NULL) {
+ *last = m;
+ }
+ return len;
+}
+
+/*
+ * Defragment a mbuf chain, returning the shortest possible chain of mbufs
+ * and clusters. If allocation fails and this cannot be completed, NULL will
+ * be returned, but the passed in chain will be unchanged. Upon success,
+ * the original chain will be freed, and the new chain will be returned.
+ *
+ * If a non-packet header is passed in, the original mbuf (chain?) will
+ * be returned unharmed.
+ *
+ * If offset is specfied, the first mbuf in the chain will have a leading
+ * space of the amount stated by the "off" parameter.
+ *
+ * This routine requires that the m_pkthdr.header field of the original
+ * mbuf chain is cleared by the caller.
+ */
+struct mbuf *
+m_defrag_offset(struct mbuf *m0, u_int32_t off, int how)
+{
+ struct mbuf *m_new = NULL, *m_final = NULL;
+ int progress = 0, length, pktlen;
+
+ if (!(m0->m_flags & M_PKTHDR)) {
+ return m0;
+ }
+
+ VERIFY(off < MHLEN);
+ m_fixhdr(m0); /* Needed sanity check */
+
+ pktlen = m0->m_pkthdr.len + off;
+ if (pktlen > MHLEN) {
+ m_final = m_getcl(how, MT_DATA, M_PKTHDR);
+ } else {
+ m_final = m_gethdr(how, MT_DATA);
+ }
+
+ if (m_final == NULL) {
+ goto nospace;
+ }
+
+ if (off > 0) {
+ pktlen -= off;
+ m_final->m_data += off;
+ }
+
+ /*
+ * Caller must have handled the contents pointed to by this
+ * pointer before coming here, as otherwise it will point to
+ * the original mbuf which will get freed upon success.
+ */
+ VERIFY(m0->m_pkthdr.pkt_hdr == NULL);
+
+ if (m_dup_pkthdr(m_final, m0, how) == 0) {
+ goto nospace;
+ }
+
+ m_new = m_final;
+
+ while (progress < pktlen) {
+ length = pktlen - progress;
+ if (length > MCLBYTES) {
+ length = MCLBYTES;
+ }
+ length -= ((m_new == m_final) ? off : 0);
+ if (length < 0) {
+ goto nospace;
+ }
+
+ if (m_new == NULL) {
+ if (length > MLEN) {
+ m_new = m_getcl(how, MT_DATA, 0);
+ } else {
+ m_new = m_get(how, MT_DATA);
+ }
+ if (m_new == NULL) {
+ goto nospace;
+ }
+ }
+
+ m_copydata(m0, progress, length, mtod(m_new, caddr_t));
+ progress += length;
+ m_new->m_len = length;
+ if (m_new != m_final) {
+ m_cat(m_final, m_new);
+ }
+ m_new = NULL;
+ }
+ m_freem(m0);
+ m0 = m_final;
+ return m0;
+nospace:
+ if (m_final) {
+ m_freem(m_final);
+ }
+ return NULL;
+}
+
+struct mbuf *
+m_defrag(struct mbuf *m0, int how)
+{
+ return m_defrag_offset(m0, 0, how);
+}
+
+void
+m_mchtype(struct mbuf *m, int t)
+{
+ mtype_stat_inc(t);
+ mtype_stat_dec(m->m_type);
+ (m)->m_type = t;
+}
+
+void *
+m_mtod(struct mbuf *m)
+{
+ return MTOD(m, void *);
+}
+
+struct mbuf *
+m_dtom(void *x)
+{
+ return (struct mbuf *)((uintptr_t)(x) & ~(MSIZE - 1));
+}
+
+void
+m_mcheck(struct mbuf *m)
+{
+ _MCHECK(m);
+}
+
+/*
+ * Return a pointer to mbuf/offset of location in mbuf chain.
+ */
+struct mbuf *
+m_getptr(struct mbuf *m, int loc, int *off)
+{
+ while (loc >= 0) {
+ /* Normal end of search. */
+ if (m->m_len > loc) {
+ *off = loc;
+ return m;
+ } else {
+ loc -= m->m_len;
+ if (m->m_next == NULL) {
+ if (loc == 0) {
+ /* Point at the end of valid data. */
+ *off = m->m_len;
+ return m;
+ }
+ return NULL;
+ }
+ m = m->m_next;
+ }
+ }
+ return NULL;
+}
+
+/*
+ * Inform the corresponding mcache(s) that there's a waiter below.
+ */
+static void
+mbuf_waiter_inc(mbuf_class_t class, boolean_t comp)
+{
+ mcache_waiter_inc(m_cache(class));
+ if (comp) {
+ if (class == MC_CL) {
+ mcache_waiter_inc(m_cache(MC_MBUF_CL));
+ } else if (class == MC_BIGCL) {
+ mcache_waiter_inc(m_cache(MC_MBUF_BIGCL));
+ } else if (class == MC_16KCL) {
+ mcache_waiter_inc(m_cache(MC_MBUF_16KCL));
+ } else {
+ mcache_waiter_inc(m_cache(MC_MBUF_CL));
+ mcache_waiter_inc(m_cache(MC_MBUF_BIGCL));
+ }
+ }
+}
+
+/*
+ * Inform the corresponding mcache(s) that there's no more waiter below.
+ */
+static void
+mbuf_waiter_dec(mbuf_class_t class, boolean_t comp)
+{
+ mcache_waiter_dec(m_cache(class));
+ if (comp) {
+ if (class == MC_CL) {
+ mcache_waiter_dec(m_cache(MC_MBUF_CL));
+ } else if (class == MC_BIGCL) {
+ mcache_waiter_dec(m_cache(MC_MBUF_BIGCL));
+ } else if (class == MC_16KCL) {
+ mcache_waiter_dec(m_cache(MC_MBUF_16KCL));
+ } else {
+ mcache_waiter_dec(m_cache(MC_MBUF_CL));
+ mcache_waiter_dec(m_cache(MC_MBUF_BIGCL));
+ }
+ }
+}
+
+/*
+ * Called during slab (blocking and non-blocking) allocation. If there
+ * is at least one waiter, and the time since the first waiter is blocked
+ * is greater than the watchdog timeout, panic the system.
+ */
+static void
+mbuf_watchdog(void)
+{
+ struct timeval now;
+ unsigned int since;
+
+ if (mb_waiters == 0 || !mb_watchdog) {
+ return;
+ }
+
+ microuptime(&now);
+ since = now.tv_sec - mb_wdtstart.tv_sec;
+ if (since >= MB_WDT_MAXTIME) {
+ panic_plain("%s: %d waiters stuck for %u secs\n%s", __func__,
+ mb_waiters, since, mbuf_dump());
+ /* NOTREACHED */
+ }
+}
+
+/*
+ * Called during blocking allocation. Returns TRUE if one or more objects
+ * are available at the per-CPU caches layer and that allocation should be
+ * retried at that level.
+ */
+static boolean_t
+mbuf_sleep(mbuf_class_t class, unsigned int num, int wait)
+{
+ boolean_t mcache_retry = FALSE;
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ /* Check if there's anything at the cache layer */
+ if (mbuf_cached_above(class, wait)) {
+ mcache_retry = TRUE;
+ goto done;
+ }
+
+ /* Nothing? Then try hard to get it from somewhere */
+ m_reclaim(class, num, (wait & MCR_COMP));
+
+ /* We tried hard and got something? */
+ if (m_infree(class) > 0) {
+ mbstat.m_wait++;
+ goto done;
+ } else if (mbuf_cached_above(class, wait)) {
+ mbstat.m_wait++;
+ mcache_retry = TRUE;
+ goto done;
+ } else if (wait & MCR_TRYHARD) {
+ mcache_retry = TRUE;
+ goto done;
+ }
+
+ /*
+ * There's really nothing for us right now; inform the
+ * cache(s) that there is a waiter below and go to sleep.
+ */
+ mbuf_waiter_inc(class, (wait & MCR_COMP));
+
+ VERIFY(!(wait & MCR_NOSLEEP));
+
+ /*
+ * If this is the first waiter, arm the watchdog timer. Otherwise
+ * check if we need to panic the system due to watchdog timeout.
+ */
+ if (mb_waiters == 0) {
+ microuptime(&mb_wdtstart);
+ } else {
+ mbuf_watchdog();
+ }
+
+ mb_waiters++;
+ m_region_expand(class) += m_total(class) + num;
+ /* wake up the worker thread */
+ if (mbuf_worker_ready &&
+ mbuf_worker_needs_wakeup) {
+ wakeup((caddr_t)&mbuf_worker_needs_wakeup);
+ mbuf_worker_needs_wakeup = FALSE;
+ }
+ mbwdog_logger("waiting (%d mbufs in class %s)", num, m_cname(class));
+ (void) msleep(mb_waitchan, mbuf_mlock, (PZERO - 1), m_cname(class), NULL);
+ mbwdog_logger("woke up (%d mbufs in class %s) ", num, m_cname(class));
+
+ /* We are now up; stop getting notified until next round */
+ mbuf_waiter_dec(class, (wait & MCR_COMP));
+
+ /* We waited and got something */
+ if (m_infree(class) > 0) {
+ mbstat.m_wait++;
+ goto done;
+ } else if (mbuf_cached_above(class, wait)) {
+ mbstat.m_wait++;
+ mcache_retry = TRUE;
+ }
+done:
+ return mcache_retry;
+}
+
+__attribute__((noreturn))
+static void
+mbuf_worker_thread(void)
+{
+ int mbuf_expand;
+
+ while (1) {
+ lck_mtx_lock(mbuf_mlock);
+ mbwdog_logger("worker thread running");
+ mbuf_worker_run_cnt++;
+ mbuf_expand = 0;
+ /*
+ * Allocations are based on page size, so if we have depleted
+ * the reserved spaces, try to free mbufs from the major classes.
+ */
+#if PAGE_SIZE == 4096
+ uint32_t m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT;
+ uint32_t m_clusters = m_total(MC_CL);
+ uint32_t m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT;
+ uint32_t sumclusters = m_mbclusters + m_clusters + m_bigclusters;
+ if (sumclusters >= nclusters) {
+ mbwdog_logger("reclaiming bigcl");
+ mbuf_drain_locked(TRUE);
+ m_reclaim(MC_BIGCL, 4, FALSE);
+ }
+#else
+ uint32_t m_16kclusters = m_total(MC_16KCL);
+ if (njcl > 0 && (m_16kclusters << NCLPJCLSHIFT) >= njcl) {
+ mbwdog_logger("reclaiming 16kcl");
+ mbuf_drain_locked(TRUE);
+ m_reclaim(MC_16KCL, 4, FALSE);
+ }
+#endif
+ if (m_region_expand(MC_CL) > 0) {
+ int n;
+ mb_expand_cl_cnt++;
+ /* Adjust to current number of cluster in use */
+ n = m_region_expand(MC_CL) -
+ (m_total(MC_CL) - m_infree(MC_CL));
+ if ((n + m_total(MC_CL)) > m_maxlimit(MC_CL)) {
+ n = m_maxlimit(MC_CL) - m_total(MC_CL);
+ }
+ if (n > 0) {
+ mb_expand_cl_total += n;
+ }
+ m_region_expand(MC_CL) = 0;
+
+ if (n > 0) {
+ mbwdog_logger("expanding MC_CL by %d", n);
+ freelist_populate(MC_CL, n, M_WAIT);
+ }
+ }
+ if (m_region_expand(MC_BIGCL) > 0) {
+ int n;
+ mb_expand_bigcl_cnt++;
+ /* Adjust to current number of 4 KB cluster in use */
+ n = m_region_expand(MC_BIGCL) -
+ (m_total(MC_BIGCL) - m_infree(MC_BIGCL));
+ if ((n + m_total(MC_BIGCL)) > m_maxlimit(MC_BIGCL)) {
+ n = m_maxlimit(MC_BIGCL) - m_total(MC_BIGCL);
+ }
+ if (n > 0) {
+ mb_expand_bigcl_total += n;
+ }
+ m_region_expand(MC_BIGCL) = 0;
+
+ if (n > 0) {
+ mbwdog_logger("expanding MC_BIGCL by %d", n);
+ freelist_populate(MC_BIGCL, n, M_WAIT);
+ }
+ }
+ if (m_region_expand(MC_16KCL) > 0) {
+ int n;
+ mb_expand_16kcl_cnt++;
+ /* Adjust to current number of 16 KB cluster in use */
+ n = m_region_expand(MC_16KCL) -
+ (m_total(MC_16KCL) - m_infree(MC_16KCL));
+ if ((n + m_total(MC_16KCL)) > m_maxlimit(MC_16KCL)) {
+ n = m_maxlimit(MC_16KCL) - m_total(MC_16KCL);
+ }
+ if (n > 0) {
+ mb_expand_16kcl_total += n;
+ }
+ m_region_expand(MC_16KCL) = 0;
+
+ if (n > 0) {
+ mbwdog_logger("expanding MC_16KCL by %d", n);
+ (void) freelist_populate(MC_16KCL, n, M_WAIT);
+ }
+ }
+
+ /*
+ * Because we can run out of memory before filling the mbuf
+ * map, we should not allocate more clusters than they are
+ * mbufs -- otherwise we could have a large number of useless
+ * clusters allocated.
+ */
+ mbwdog_logger("totals: MC_MBUF %d MC_BIGCL %d MC_CL %d MC_16KCL %d",
+ m_total(MC_MBUF), m_total(MC_BIGCL), m_total(MC_CL),
+ m_total(MC_16KCL));
+ uint32_t total_mbufs = m_total(MC_MBUF);
+ uint32_t total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) +
+ m_total(MC_16KCL);
+ if (total_mbufs < total_clusters) {
+ mbwdog_logger("expanding MC_MBUF by %d",
+ total_clusters - total_mbufs);
+ }
+ while (total_mbufs < total_clusters) {
+ mb_expand_cnt++;
+ if (freelist_populate(MC_MBUF, 1, M_WAIT) == 0) {
+ break;
+ }
+ total_mbufs = m_total(MC_MBUF);
+ total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) +
+ m_total(MC_16KCL);
+ }
+
+ mbuf_worker_needs_wakeup = TRUE;
+ /*
+ * If there's a deadlock and we're not sending / receiving
+ * packets, net_uptime() won't be updated. Update it here
+ * so we are sure it's correct.
+ */
+ net_update_uptime();
+ mbuf_worker_last_runtime = net_uptime();
+ assert_wait((caddr_t)&mbuf_worker_needs_wakeup,
+ THREAD_UNINT);
+ mbwdog_logger("worker thread sleeping");
+ lck_mtx_unlock(mbuf_mlock);
+ (void) thread_block((thread_continue_t)mbuf_worker_thread);
+ }
+}
+
+__attribute__((noreturn))
+static void
+mbuf_worker_thread_init(void)
+{
+ mbuf_worker_ready++;
+ mbuf_worker_thread();
+}
+
+static mcl_slab_t *
+slab_get(void *buf)
+{
+ mcl_slabg_t *slg;
+ unsigned int ix, k;
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ VERIFY(MBUF_IN_MAP(buf));
+ ix = ((unsigned char *)buf - mbutl) >> MBSHIFT;
+ VERIFY(ix < maxslabgrp);
+
+ if ((slg = slabstbl[ix]) == NULL) {
+ /*
+ * In the current implementation, we never shrink the slabs
+ * table; if we attempt to reallocate a cluster group when
+ * it's already allocated, panic since this is a sign of a
+ * memory corruption (slabstbl[ix] got nullified).
+ */
+ ++slabgrp;
+ VERIFY(ix < slabgrp);
+ /*
+ * Slabs expansion can only be done single threaded; when
+ * we get here, it must be as a result of m_clalloc() which
+ * is serialized and therefore mb_clalloc_busy must be set.
+ */
+ VERIFY(mb_clalloc_busy);
+ lck_mtx_unlock(mbuf_mlock);
+
+ /* This is a new buffer; create the slabs group for it */
+ MALLOC(slg, mcl_slabg_t *, sizeof(*slg), M_TEMP,
+ M_WAITOK | M_ZERO);
+ MALLOC(slg->slg_slab, mcl_slab_t *, sizeof(mcl_slab_t) * NSLABSPMB,
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(slg != NULL && slg->slg_slab != NULL);
+
+ lck_mtx_lock(mbuf_mlock);
+ /*
+ * No other thread could have gone into m_clalloc() after
+ * we dropped the lock above, so verify that it's true.
+ */
+ VERIFY(mb_clalloc_busy);
+
+ slabstbl[ix] = slg;
+
+ /* Chain each slab in the group to its forward neighbor */
+ for (k = 1; k < NSLABSPMB; k++) {
+ slg->slg_slab[k - 1].sl_next = &slg->slg_slab[k];
+ }
+ VERIFY(slg->slg_slab[NSLABSPMB - 1].sl_next == NULL);
+
+ /* And chain the last slab in the previous group to this */
+ if (ix > 0) {
+ VERIFY(slabstbl[ix - 1]->
+ slg_slab[NSLABSPMB - 1].sl_next == NULL);
+ slabstbl[ix - 1]->slg_slab[NSLABSPMB - 1].sl_next =
+ &slg->slg_slab[0];
+ }
+ }
+
+ ix = MTOPG(buf) % NSLABSPMB;
+ VERIFY(ix < NSLABSPMB);
+
+ return &slg->slg_slab[ix];
+}
+
+static void
+slab_init(mcl_slab_t *sp, mbuf_class_t class, u_int32_t flags,
+ void *base, void *head, unsigned int len, int refcnt, int chunks)
+{
+ sp->sl_class = class;
+ sp->sl_flags = flags;
+ sp->sl_base = base;
+ sp->sl_head = head;
+ sp->sl_len = len;
+ sp->sl_refcnt = refcnt;
+ sp->sl_chunks = chunks;
+ slab_detach(sp);
+}
+
+static void
+slab_insert(mcl_slab_t *sp, mbuf_class_t class)
+{
+ VERIFY(slab_is_detached(sp));
+ m_slab_cnt(class)++;
+ TAILQ_INSERT_TAIL(&m_slablist(class), sp, sl_link);
+ sp->sl_flags &= ~SLF_DETACHED;
+
+ /*
+ * If a buffer spans multiple contiguous pages then mark them as
+ * detached too
+ */
+ if (class == MC_16KCL) {
+ int k;
+ for (k = 1; k < NSLABSP16KB; k++) {
+ sp = sp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(sp != NULL && slab_is_detached(sp));
+ sp->sl_flags &= ~SLF_DETACHED;
+ }
+ }
+}
+
+static void
+slab_remove(mcl_slab_t *sp, mbuf_class_t class)
+{
+ int k;
+ VERIFY(!slab_is_detached(sp));
+ VERIFY(m_slab_cnt(class) > 0);
+ m_slab_cnt(class)--;
+ TAILQ_REMOVE(&m_slablist(class), sp, sl_link);
+ slab_detach(sp);
+ if (class == MC_16KCL) {
+ for (k = 1; k < NSLABSP16KB; k++) {
+ sp = sp->sl_next;
+ /* Next slab must already be present */
+ VERIFY(sp != NULL);
+ VERIFY(!slab_is_detached(sp));
+ slab_detach(sp);
+ }
+ }
+}
+
+static boolean_t
+slab_inrange(mcl_slab_t *sp, void *buf)
+{
+ return (uintptr_t)buf >= (uintptr_t)sp->sl_base &&
+ (uintptr_t)buf < ((uintptr_t)sp->sl_base + sp->sl_len);
+}
+
+#undef panic
+
+static void
+slab_nextptr_panic(mcl_slab_t *sp, void *addr)
+{
+ int i;
+ unsigned int chunk_len = sp->sl_len / sp->sl_chunks;
+ uintptr_t buf = (uintptr_t)sp->sl_base;
+
+ for (i = 0; i < sp->sl_chunks; i++, buf += chunk_len) {
+ void *next = ((mcache_obj_t *)buf)->obj_next;
+ if (next != addr) {
+ continue;
+ }
+ if (!mclverify) {
+ if (next != NULL && !MBUF_IN_MAP(next)) {
+ mcache_t *cp = m_cache(sp->sl_class);
+ panic("%s: %s buffer %p in slab %p modified "
+ "after free at offset 0: %p out of range "
+ "[%p-%p)\n", __func__, cp->mc_name,
+ (void *)buf, sp, next, mbutl, embutl);
+ /* NOTREACHED */
+ }
+ } else {
+ mcache_audit_t *mca = mcl_audit_buf2mca(sp->sl_class,
+ (mcache_obj_t *)buf);
+ mcl_audit_verify_nextptr(next, mca);
+ }
+ }
+}
+
+static void
+slab_detach(mcl_slab_t *sp)
+{
+ sp->sl_link.tqe_next = (mcl_slab_t *)-1;
+ sp->sl_link.tqe_prev = (mcl_slab_t **)-1;
+ sp->sl_flags |= SLF_DETACHED;
+}
+
+static boolean_t
+slab_is_detached(mcl_slab_t *sp)
+{
+ return (intptr_t)sp->sl_link.tqe_next == -1 &&
+ (intptr_t)sp->sl_link.tqe_prev == -1 &&
+ (sp->sl_flags & SLF_DETACHED);
+}
+
+static void
+mcl_audit_init(void *buf, mcache_audit_t **mca_list,
+ mcache_obj_t **con_list, size_t con_size, unsigned int num)
+{
+ mcache_audit_t *mca, *mca_tail;
+ mcache_obj_t *con = NULL;
+ boolean_t save_contents = (con_list != NULL);
+ unsigned int i, ix;
+
+ ASSERT(num <= NMBPG);
+ ASSERT(con_list == NULL || con_size != 0);
+
+ ix = MTOPG(buf);
+ VERIFY(ix < maxclaudit);
+
+ /* Make sure we haven't been here before */
+ for (i = 0; i < num; i++) {
+ VERIFY(mclaudit[ix].cl_audit[i] == NULL);
+ }
+
+ mca = mca_tail = *mca_list;
+ if (save_contents) {
+ con = *con_list;
+ }
+
+ for (i = 0; i < num; i++) {
+ mcache_audit_t *next;
+
+ next = mca->mca_next;
+ bzero(mca, sizeof(*mca));
+ mca->mca_next = next;
+ mclaudit[ix].cl_audit[i] = mca;
+
+ /* Attach the contents buffer if requested */
+ if (save_contents) {
+ mcl_saved_contents_t *msc =
+ (mcl_saved_contents_t *)(void *)con;
+
+ VERIFY(msc != NULL);
+ VERIFY(IS_P2ALIGNED(msc, sizeof(u_int64_t)));
+ VERIFY(con_size == sizeof(*msc));
+ mca->mca_contents_size = con_size;
+ mca->mca_contents = msc;
+ con = con->obj_next;
+ bzero(mca->mca_contents, mca->mca_contents_size);
+ }
+
+ mca_tail = mca;
+ mca = mca->mca_next;
+ }
+
+ if (save_contents) {
+ *con_list = con;
+ }
+
+ *mca_list = mca_tail->mca_next;
+ mca_tail->mca_next = NULL;
+}
+
+static void
+mcl_audit_free(void *buf, unsigned int num)
+{
+ unsigned int i, ix;
+ mcache_audit_t *mca, *mca_list;
+
+ ix = MTOPG(buf);
+ VERIFY(ix < maxclaudit);
+
+ if (mclaudit[ix].cl_audit[0] != NULL) {
+ mca_list = mclaudit[ix].cl_audit[0];
+ for (i = 0; i < num; i++) {
+ mca = mclaudit[ix].cl_audit[i];
+ mclaudit[ix].cl_audit[i] = NULL;
+ if (mca->mca_contents) {
+ mcache_free(mcl_audit_con_cache,
+ mca->mca_contents);
+ }
+ }
+ mcache_free_ext(mcache_audit_cache,
+ (mcache_obj_t *)mca_list);
+ }
+}
+
+/*
+ * Given an address of a buffer (mbuf/2KB/4KB/16KB), return
+ * the corresponding audit structure for that buffer.
+ */
+static mcache_audit_t *
+mcl_audit_buf2mca(mbuf_class_t class, mcache_obj_t *mobj)
+{
+ mcache_audit_t *mca = NULL;
+ int ix = MTOPG(mobj), m_idx = 0;
+ unsigned char *page_addr;
+
+ VERIFY(ix < maxclaudit);
+ VERIFY(IS_P2ALIGNED(mobj, MIN(m_maxsize(class), PAGE_SIZE)));
+
+ page_addr = PGTOM(ix);
+
+ switch (class) {
+ case MC_MBUF:
+ /*
+ * For the mbuf case, find the index of the page
+ * used by the mbuf and use that index to locate the
+ * base address of the page. Then find out the
+ * mbuf index relative to the page base and use
+ * it to locate the audit structure.
+ */
+ m_idx = MBPAGEIDX(page_addr, mobj);
+ VERIFY(m_idx < (int)NMBPG);
+ mca = mclaudit[ix].cl_audit[m_idx];
+ break;
+
+ case MC_CL:
+ /*
+ * Same thing as above, but for 2KB clusters in a page.
+ */
+ m_idx = CLPAGEIDX(page_addr, mobj);
+ VERIFY(m_idx < (int)NCLPG);
+ mca = mclaudit[ix].cl_audit[m_idx];
+ break;
+
+ case MC_BIGCL:
+ m_idx = BCLPAGEIDX(page_addr, mobj);
+ VERIFY(m_idx < (int)NBCLPG);
+ mca = mclaudit[ix].cl_audit[m_idx];
+ break;
+ case MC_16KCL:
+ /*
+ * Same as above, but only return the first element.
+ */
+ mca = mclaudit[ix].cl_audit[0];
+ break;
+
+ default:
+ VERIFY(0);
+ /* NOTREACHED */
+ }
+
+ return mca;
+}
+
+static void
+mcl_audit_mbuf(mcache_audit_t *mca, void *addr, boolean_t composite,
+ boolean_t alloc)
+{
+ struct mbuf *m = addr;
+ mcache_obj_t *next = ((mcache_obj_t *)m)->obj_next;
+
+ VERIFY(mca->mca_contents != NULL &&
+ mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
+
+ if (mclverify) {
+ mcl_audit_verify_nextptr(next, mca);
+ }
+
+ if (!alloc) {
+ /* Save constructed mbuf fields */
+ mcl_audit_save_mbuf(m, mca);
+ if (mclverify) {
+ mcache_set_pattern(MCACHE_FREE_PATTERN, m,
+ m_maxsize(MC_MBUF));
+ }
+ ((mcache_obj_t *)m)->obj_next = next;
+ return;
+ }
+
+ /* Check if the buffer has been corrupted while in freelist */
+ if (mclverify) {
+ mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF));
+ }
+ /* Restore constructed mbuf fields */
+ mcl_audit_restore_mbuf(m, mca, composite);
+}
+
+static void
+mcl_audit_restore_mbuf(struct mbuf *m, mcache_audit_t *mca, boolean_t composite)
+{
+ struct mbuf *ms = MCA_SAVED_MBUF_PTR(mca);
+
+ if (composite) {
+ struct mbuf *next = m->m_next;
+ VERIFY(ms->m_flags == M_EXT && m_get_rfa(ms) != NULL &&
+ MBUF_IS_COMPOSITE(ms));
+ VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
+ /*
+ * We could have hand-picked the mbuf fields and restore
+ * them individually, but that will be a maintenance
+ * headache. Instead, restore everything that was saved;
+ * the mbuf layer will recheck and reinitialize anyway.
+ */
+ bcopy(ms, m, MCA_SAVED_MBUF_SIZE);
+ m->m_next = next;
+ } else {
+ /*
+ * For a regular mbuf (no cluster attached) there's nothing
+ * to restore other than the type field, which is expected
+ * to be MT_FREE.
+ */
+ m->m_type = ms->m_type;
+ }
+ _MCHECK(m);
+}
+
+static void
+mcl_audit_save_mbuf(struct mbuf *m, mcache_audit_t *mca)
+{
+ VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
+ _MCHECK(m);
+ bcopy(m, MCA_SAVED_MBUF_PTR(mca), MCA_SAVED_MBUF_SIZE);
+}
+
+static void
+mcl_audit_cluster(mcache_audit_t *mca, void *addr, size_t size, boolean_t alloc,
+ boolean_t save_next)
+{
+ mcache_obj_t *next = ((mcache_obj_t *)addr)->obj_next;
+
+ if (!alloc) {
+ if (mclverify) {
+ mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size);
+ }
+ if (save_next) {
+ mcl_audit_verify_nextptr(next, mca);
+ ((mcache_obj_t *)addr)->obj_next = next;
+ }
+ } else if (mclverify) {
+ /* Check if the buffer has been corrupted while in freelist */
+ mcl_audit_verify_nextptr(next, mca);
+ mcache_audit_free_verify_set(mca, addr, 0, size);
+ }
+}
+
+static void
+mcl_audit_scratch(mcache_audit_t *mca)
+{
+ void *stack[MCACHE_STACK_DEPTH + 1];
+ mcl_scratch_audit_t *msa;
+ struct timeval now;
+
+ VERIFY(mca->mca_contents != NULL);
+ msa = MCA_SAVED_SCRATCH_PTR(mca);
+
+ msa->msa_pthread = msa->msa_thread;
+ msa->msa_thread = current_thread();
+ bcopy(msa->msa_stack, msa->msa_pstack, sizeof(msa->msa_pstack));
+ msa->msa_pdepth = msa->msa_depth;
+ bzero(stack, sizeof(stack));
+ msa->msa_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1;
+ bcopy(&stack[1], msa->msa_stack, sizeof(msa->msa_stack));
+
+ msa->msa_ptstamp = msa->msa_tstamp;
+ microuptime(&now);
+ /* tstamp is in ms relative to base_ts */
+ msa->msa_tstamp = ((now.tv_usec - mb_start.tv_usec) / 1000);
+ if ((now.tv_sec - mb_start.tv_sec) > 0) {
+ msa->msa_tstamp += ((now.tv_sec - mb_start.tv_sec) * 1000);
+ }
+}
+
+__abortlike
+static void
+mcl_audit_mcheck_panic(struct mbuf *m)
+{
+ mcache_audit_t *mca;
+
+ MRANGE(m);
+ mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
+
+ panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s\n",
+ m, (u_int16_t)m->m_type, MT_FREE, mcache_dump_mca(mca));
+ /* NOTREACHED */
+}
+
+static void
+mcl_audit_verify_nextptr(void *next, mcache_audit_t *mca)
+{
+ if (next != NULL && !MBUF_IN_MAP(next) &&
+ (next != (void *)MCACHE_FREE_PATTERN || !mclverify)) {
+ panic("mcl_audit: buffer %p modified after free at offset 0: "
+ "%p out of range [%p-%p)\n%s\n",
+ mca->mca_addr, next, mbutl, embutl, mcache_dump_mca(mca));
+ /* NOTREACHED */
+ }
+}
+
+/* This function turns on mbuf leak detection */
+static void
+mleak_activate(void)
+{
+ mleak_table.mleak_sample_factor = MLEAK_SAMPLE_FACTOR;
+ PE_parse_boot_argn("mleak_sample_factor",
+ &mleak_table.mleak_sample_factor,
+ sizeof(mleak_table.mleak_sample_factor));
+
+ if (mleak_table.mleak_sample_factor == 0) {
+ mclfindleak = 0;
+ }
+
+ if (mclfindleak == 0) {
+ return;
+ }
+
+ vm_size_t alloc_size =
+ mleak_alloc_buckets * sizeof(struct mallocation);
+ vm_size_t trace_size = mleak_trace_buckets * sizeof(struct mtrace);
+
+ MALLOC(mleak_allocations, struct mallocation *, alloc_size,
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(mleak_allocations != NULL);
+
+ MALLOC(mleak_traces, struct mtrace *, trace_size,
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(mleak_traces != NULL);
+
+ MALLOC(mleak_stat, mleak_stat_t *, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES),
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(mleak_stat != NULL);
+ mleak_stat->ml_cnt = MLEAK_NUM_TRACES;
+#ifdef __LP64__
+ mleak_stat->ml_isaddr64 = 1;
+#endif /* __LP64__ */
+}
+
+static void
+mleak_logger(u_int32_t num, mcache_obj_t *addr, boolean_t alloc)
+{
+ int temp;
+
+ if (mclfindleak == 0) {
+ return;
+ }
+
+ if (!alloc) {
+ return mleak_free(addr);
+ }
+
+ temp = atomic_add_32_ov(&mleak_table.mleak_capture, 1);
+
+ if ((temp % mleak_table.mleak_sample_factor) == 0 && addr != NULL) {
+ uintptr_t bt[MLEAK_STACK_DEPTH];
+ int logged = backtrace(bt, MLEAK_STACK_DEPTH, NULL);
+ mleak_log(bt, addr, logged, num);
+ }
+}
/*
- * Rearange an mbuf chain so that len bytes are contiguous
- * and in the data area of an mbuf (so that mtod and dtom
- * will work for a structure of size len). Returns the resulting
- * mbuf chain on success, frees it and returns null on failure.
- * If there is room, it will add up to max_protohdr-len extra bytes to the
- * contiguous region in an attempt to avoid being called next time.
+ * This function records the allocation in the mleak_allocations table
+ * and the backtrace in the mleak_traces table; if allocation slot is in use,
+ * replace old allocation with new one if the trace slot is in use, return
+ * (or increment refcount if same trace).
*/
-int MPFail;
+static boolean_t
+mleak_log(uintptr_t *bt, mcache_obj_t *addr, uint32_t depth, int num)
+{
+ struct mallocation *allocation;
+ struct mtrace *trace;
+ uint32_t trace_index;
+
+ /* Quit if someone else modifying the tables */
+ if (!lck_mtx_try_lock_spin(mleak_lock)) {
+ mleak_table.total_conflicts++;
+ return FALSE;
+ }
-struct mbuf *
-m_pullup(n, len)
- register struct mbuf *n;
- int len;
+ allocation = &mleak_allocations[hashaddr((uintptr_t)addr,
+ mleak_alloc_buckets)];
+ trace_index = hashbacktrace(bt, depth, mleak_trace_buckets);
+ trace = &mleak_traces[trace_index];
+
+ VERIFY(allocation <= &mleak_allocations[mleak_alloc_buckets - 1]);
+ VERIFY(trace <= &mleak_traces[mleak_trace_buckets - 1]);
+
+ allocation->hitcount++;
+ trace->hitcount++;
+
+ /*
+ * If the allocation bucket we want is occupied
+ * and the occupier has the same trace, just bail.
+ */
+ if (allocation->element != NULL &&
+ trace_index == allocation->trace_index) {
+ mleak_table.alloc_collisions++;
+ lck_mtx_unlock(mleak_lock);
+ return TRUE;
+ }
+
+ /*
+ * Store the backtrace in the traces array;
+ * Size of zero = trace bucket is free.
+ */
+ if (trace->allocs > 0 &&
+ bcmp(trace->addr, bt, (depth * sizeof(uintptr_t))) != 0) {
+ /* Different, unique trace, but the same hash! Bail out. */
+ trace->collisions++;
+ mleak_table.trace_collisions++;
+ lck_mtx_unlock(mleak_lock);
+ return TRUE;
+ } else if (trace->allocs > 0) {
+ /* Same trace, already added, so increment refcount */
+ trace->allocs++;
+ } else {
+ /* Found an unused trace bucket, so record the trace here */
+ if (trace->depth != 0) {
+ /* this slot previously used but not currently in use */
+ mleak_table.trace_overwrites++;
+ }
+ mleak_table.trace_recorded++;
+ trace->allocs = 1;
+ memcpy(trace->addr, bt, (depth * sizeof(uintptr_t)));
+ trace->depth = depth;
+ trace->collisions = 0;
+ }
+
+ /* Step 2: Store the allocation record in the allocations array */
+ if (allocation->element != NULL) {
+ /*
+ * Replace an existing allocation. No need to preserve
+ * because only a subset of the allocations are being
+ * recorded anyway.
+ */
+ mleak_table.alloc_collisions++;
+ } else if (allocation->trace_index != 0) {
+ mleak_table.alloc_overwrites++;
+ }
+ allocation->element = addr;
+ allocation->trace_index = trace_index;
+ allocation->count = num;
+ mleak_table.alloc_recorded++;
+ mleak_table.outstanding_allocs++;
+
+ lck_mtx_unlock(mleak_lock);
+ return TRUE;
+}
+
+static void
+mleak_free(mcache_obj_t *addr)
{
- register struct mbuf *m;
- register int count;
- int space;
+ while (addr != NULL) {
+ struct mallocation *allocation = &mleak_allocations
+ [hashaddr((uintptr_t)addr, mleak_alloc_buckets)];
+
+ if (allocation->element == addr &&
+ allocation->trace_index < mleak_trace_buckets) {
+ lck_mtx_lock_spin(mleak_lock);
+ if (allocation->element == addr &&
+ allocation->trace_index < mleak_trace_buckets) {
+ struct mtrace *trace;
+ trace = &mleak_traces[allocation->trace_index];
+ /* allocs = 0 means trace bucket is unused */
+ if (trace->allocs > 0) {
+ trace->allocs--;
+ }
+ if (trace->allocs == 0) {
+ trace->depth = 0;
+ }
+ /* NULL element means alloc bucket is unused */
+ allocation->element = NULL;
+ mleak_table.outstanding_allocs--;
+ }
+ lck_mtx_unlock(mleak_lock);
+ }
+ addr = addr->obj_next;
+ }
+}
+
+static void
+mleak_sort_traces()
+{
+ int i, j, k;
+ struct mtrace *swap;
+
+ for (i = 0; i < MLEAK_NUM_TRACES; i++) {
+ mleak_top_trace[i] = NULL;
+ }
+
+ for (i = 0, j = 0; j < MLEAK_NUM_TRACES && i < mleak_trace_buckets; i++) {
+ if (mleak_traces[i].allocs <= 0) {
+ continue;
+ }
+
+ mleak_top_trace[j] = &mleak_traces[i];
+ for (k = j; k > 0; k--) {
+ if (mleak_top_trace[k]->allocs <=
+ mleak_top_trace[k - 1]->allocs) {
+ break;
+ }
+
+ swap = mleak_top_trace[k - 1];
+ mleak_top_trace[k - 1] = mleak_top_trace[k];
+ mleak_top_trace[k] = swap;
+ }
+ j++;
+ }
+
+ j--;
+ for (; i < mleak_trace_buckets; i++) {
+ if (mleak_traces[i].allocs <= mleak_top_trace[j]->allocs) {
+ continue;
+ }
+
+ mleak_top_trace[j] = &mleak_traces[i];
+
+ for (k = j; k > 0; k--) {
+ if (mleak_top_trace[k]->allocs <=
+ mleak_top_trace[k - 1]->allocs) {
+ break;
+ }
+
+ swap = mleak_top_trace[k - 1];
+ mleak_top_trace[k - 1] = mleak_top_trace[k];
+ mleak_top_trace[k] = swap;
+ }
+ }
+}
+
+static void
+mleak_update_stats()
+{
+ mleak_trace_stat_t *mltr;
+ int i;
+
+ VERIFY(mleak_stat != NULL);
+#ifdef __LP64__
+ VERIFY(mleak_stat->ml_isaddr64);
+#else
+ VERIFY(!mleak_stat->ml_isaddr64);
+#endif /* !__LP64__ */
+ VERIFY(mleak_stat->ml_cnt == MLEAK_NUM_TRACES);
+
+ mleak_sort_traces();
+
+ mltr = &mleak_stat->ml_trace[0];
+ bzero(mltr, sizeof(*mltr) * MLEAK_NUM_TRACES);
+ for (i = 0; i < MLEAK_NUM_TRACES; i++) {
+ int j;
+
+ if (mleak_top_trace[i] == NULL ||
+ mleak_top_trace[i]->allocs == 0) {
+ continue;
+ }
+
+ mltr->mltr_collisions = mleak_top_trace[i]->collisions;
+ mltr->mltr_hitcount = mleak_top_trace[i]->hitcount;
+ mltr->mltr_allocs = mleak_top_trace[i]->allocs;
+ mltr->mltr_depth = mleak_top_trace[i]->depth;
+
+ VERIFY(mltr->mltr_depth <= MLEAK_STACK_DEPTH);
+ for (j = 0; j < mltr->mltr_depth; j++) {
+ mltr->mltr_addr[j] = mleak_top_trace[i]->addr[j];
+ }
+
+ mltr++;
+ }
+}
+
+static struct mbtypes {
+ int mt_type;
+ const char *mt_name;
+} mbtypes[] = {
+ { MT_DATA, "data" },
+ { MT_OOBDATA, "oob data" },
+ { MT_CONTROL, "ancillary data" },
+ { MT_HEADER, "packet headers" },
+ { MT_SOCKET, "socket structures" },
+ { MT_PCB, "protocol control blocks" },
+ { MT_RTABLE, "routing table entries" },
+ { MT_HTABLE, "IMP host table entries" },
+ { MT_ATABLE, "address resolution tables" },
+ { MT_FTABLE, "fragment reassembly queue headers" },
+ { MT_SONAME, "socket names and addresses" },
+ { MT_SOOPTS, "socket options" },
+ { MT_RIGHTS, "access rights" },
+ { MT_IFADDR, "interface addresses" },
+ { MT_TAG, "packet tags" },
+ { 0, NULL }
+};
+
+#define MBUF_DUMP_BUF_CHK() { \
+ clen -= k; \
+ if (clen < 1) \
+ goto done; \
+ c += k; \
+}
+
+static char *
+mbuf_dump(void)
+{
+ unsigned long totmem = 0, totfree = 0, totmbufs, totused, totpct,
+ totreturned = 0;
+ u_int32_t m_mbufs = 0, m_clfree = 0, m_bigclfree = 0;
+ u_int32_t m_mbufclfree = 0, m_mbufbigclfree = 0;
+ u_int32_t m_16kclusters = 0, m_16kclfree = 0, m_mbuf16kclfree = 0;
+ int nmbtypes = sizeof(mbstat.m_mtypes) / sizeof(short);
+ uint8_t seen[256];
+ struct mbtypes *mp;
+ mb_class_stat_t *sp;
+ mleak_trace_stat_t *mltr;
+ char *c = mbuf_dump_buf;
+ int i, j, k, clen = MBUF_DUMP_BUF_SIZE;
+ bool printed_banner = false;
+
+ mbuf_dump_buf[0] = '\0';
+
+ /* synchronize all statistics in the mbuf table */
+ mbuf_stat_sync();
+ mbuf_mtypes_sync(TRUE);
+
+ sp = &mb_stat->mbs_class[0];
+ for (i = 0; i < mb_stat->mbs_cnt; i++, sp++) {
+ u_int32_t mem;
+
+ if (m_class(i) == MC_MBUF) {
+ m_mbufs = sp->mbcl_active;
+ } else if (m_class(i) == MC_CL) {
+ m_clfree = sp->mbcl_total - sp->mbcl_active;
+ } else if (m_class(i) == MC_BIGCL) {
+ m_bigclfree = sp->mbcl_total - sp->mbcl_active;
+ } else if (njcl > 0 && m_class(i) == MC_16KCL) {
+ m_16kclfree = sp->mbcl_total - sp->mbcl_active;
+ m_16kclusters = sp->mbcl_total;
+ } else if (m_class(i) == MC_MBUF_CL) {
+ m_mbufclfree = sp->mbcl_total - sp->mbcl_active;
+ } else if (m_class(i) == MC_MBUF_BIGCL) {
+ m_mbufbigclfree = sp->mbcl_total - sp->mbcl_active;
+ } else if (njcl > 0 && m_class(i) == MC_MBUF_16KCL) {
+ m_mbuf16kclfree = sp->mbcl_total - sp->mbcl_active;
+ }
+
+ mem = sp->mbcl_ctotal * sp->mbcl_size;
+ totmem += mem;
+ totfree += (sp->mbcl_mc_cached + sp->mbcl_infree) *
+ sp->mbcl_size;
+ totreturned += sp->mbcl_release_cnt;
+ }
+
+ /* adjust free counts to include composite caches */
+ m_clfree += m_mbufclfree;
+ m_bigclfree += m_mbufbigclfree;
+ m_16kclfree += m_mbuf16kclfree;
+
+ totmbufs = 0;
+ for (mp = mbtypes; mp->mt_name != NULL; mp++) {
+ totmbufs += mbstat.m_mtypes[mp->mt_type];
+ }
+ if (totmbufs > m_mbufs) {
+ totmbufs = m_mbufs;
+ }
+ k = scnprintf(c, clen, "%lu/%u mbufs in use:\n", totmbufs, m_mbufs);
+ MBUF_DUMP_BUF_CHK();
+
+ bzero(&seen, sizeof(seen));
+ for (mp = mbtypes; mp->mt_name != NULL; mp++) {
+ if (mbstat.m_mtypes[mp->mt_type] != 0) {
+ seen[mp->mt_type] = 1;
+ k = scnprintf(c, clen, "\t%u mbufs allocated to %s\n",
+ mbstat.m_mtypes[mp->mt_type], mp->mt_name);
+ MBUF_DUMP_BUF_CHK();
+ }
+ }
+ seen[MT_FREE] = 1;
+ for (i = 0; i < nmbtypes; i++) {
+ if (!seen[i] && mbstat.m_mtypes[i] != 0) {
+ k = scnprintf(c, clen, "\t%u mbufs allocated to "
+ "<mbuf type %d>\n", mbstat.m_mtypes[i], i);
+ MBUF_DUMP_BUF_CHK();
+ }
+ }
+ if ((m_mbufs - totmbufs) > 0) {
+ k = scnprintf(c, clen, "\t%lu mbufs allocated to caches\n",
+ m_mbufs - totmbufs);
+ MBUF_DUMP_BUF_CHK();
+ }
+ k = scnprintf(c, clen, "%u/%u mbuf 2KB clusters in use\n"
+ "%u/%u mbuf 4KB clusters in use\n",
+ (unsigned int)(mbstat.m_clusters - m_clfree),
+ (unsigned int)mbstat.m_clusters,
+ (unsigned int)(mbstat.m_bigclusters - m_bigclfree),
+ (unsigned int)mbstat.m_bigclusters);
+ MBUF_DUMP_BUF_CHK();
+
+ if (njcl > 0) {
+ k = scnprintf(c, clen, "%u/%u mbuf %uKB clusters in use\n",
+ m_16kclusters - m_16kclfree, m_16kclusters,
+ njclbytes / 1024);
+ MBUF_DUMP_BUF_CHK();
+ }
+ totused = totmem - totfree;
+ if (totmem == 0) {
+ totpct = 0;
+ } else if (totused < (ULONG_MAX / 100)) {
+ totpct = (totused * 100) / totmem;
+ } else {
+ u_long totmem1 = totmem / 100;
+ u_long totused1 = totused / 100;
+ totpct = (totused1 * 100) / totmem1;
+ }
+ k = scnprintf(c, clen, "%lu KB allocated to network (approx. %lu%% "
+ "in use)\n", totmem / 1024, totpct);
+ MBUF_DUMP_BUF_CHK();
+ k = scnprintf(c, clen, "%lu KB returned to the system\n",
+ totreturned / 1024);
+ MBUF_DUMP_BUF_CHK();
+
+ net_update_uptime();
+ k = scnprintf(c, clen,
+ "VM allocation failures: contiguous %u, normal %u, one page %u\n",
+ mb_kmem_contig_failed, mb_kmem_failed, mb_kmem_one_failed);
+ MBUF_DUMP_BUF_CHK();
+ if (mb_kmem_contig_failed_ts || mb_kmem_failed_ts ||
+ mb_kmem_one_failed_ts) {
+ k = scnprintf(c, clen,
+ "VM allocation failure timestamps: contiguous %llu "
+ "(size %llu), normal %llu (size %llu), one page %llu "
+ "(now %llu)\n",
+ mb_kmem_contig_failed_ts, mb_kmem_contig_failed_size,
+ mb_kmem_failed_ts, mb_kmem_failed_size,
+ mb_kmem_one_failed_ts, net_uptime());
+ MBUF_DUMP_BUF_CHK();
+ k = scnprintf(c, clen,
+ "VM return codes: ");
+ MBUF_DUMP_BUF_CHK();
+ for (i = 0;
+ i < sizeof(mb_kmem_stats) / sizeof(mb_kmem_stats[0]);
+ i++) {
+ k = scnprintf(c, clen, "%s: %u ", mb_kmem_stats_labels[i],
+ mb_kmem_stats[i]);
+ MBUF_DUMP_BUF_CHK();
+ }
+ k = scnprintf(c, clen, "\n");
+ MBUF_DUMP_BUF_CHK();
+ }
+ k = scnprintf(c, clen,
+ "worker thread runs: %u, expansions: %llu, cl %llu/%llu, "
+ "bigcl %llu/%llu, 16k %llu/%llu\n", mbuf_worker_run_cnt,
+ mb_expand_cnt, mb_expand_cl_cnt, mb_expand_cl_total,
+ mb_expand_bigcl_cnt, mb_expand_bigcl_total, mb_expand_16kcl_cnt,
+ mb_expand_16kcl_total);
+ MBUF_DUMP_BUF_CHK();
+ if (mbuf_worker_last_runtime != 0) {
+ k = scnprintf(c, clen, "worker thread last run time: "
+ "%llu (%llu seconds ago)\n",
+ mbuf_worker_last_runtime,
+ net_uptime() - mbuf_worker_last_runtime);
+ MBUF_DUMP_BUF_CHK();
+ }
+ if (mbuf_drain_last_runtime != 0) {
+ k = scnprintf(c, clen, "drain routine last run time: "
+ "%llu (%llu seconds ago)\n",
+ mbuf_drain_last_runtime,
+ net_uptime() - mbuf_drain_last_runtime);
+ MBUF_DUMP_BUF_CHK();
+ }
+
+#if DEBUG || DEVELOPMENT
+ k = scnprintf(c, clen, "\nworker thread log:\n%s\n", mbwdog_logging);
+ MBUF_DUMP_BUF_CHK();
+#endif
+
+ for (j = 0; j < MTRACELARGE_NUM_TRACES; j++) {
+ struct mtracelarge *trace = &mtracelarge_table[j];
+ if (trace->size == 0 || trace->depth == 0) {
+ continue;
+ }
+ if (printed_banner == false) {
+ k = scnprintf(c, clen,
+ "\nlargest allocation failure backtraces:\n");
+ MBUF_DUMP_BUF_CHK();
+ printed_banner = true;
+ }
+ k = scnprintf(c, clen, "size %llu: < ", trace->size);
+ MBUF_DUMP_BUF_CHK();
+ for (i = 0; i < trace->depth; i++) {
+ if (mleak_stat->ml_isaddr64) {
+ k = scnprintf(c, clen, "0x%0llx ",
+ (uint64_t)VM_KERNEL_UNSLIDE(
+ trace->addr[i]));
+ } else {
+ k = scnprintf(c, clen,
+ "0x%08x ",
+ (uint32_t)VM_KERNEL_UNSLIDE(
+ trace->addr[i]));
+ }
+ MBUF_DUMP_BUF_CHK();
+ }
+ k = scnprintf(c, clen, ">\n");
+ MBUF_DUMP_BUF_CHK();
+ }
+
+ /* mbuf leak detection statistics */
+ mleak_update_stats();
+
+ k = scnprintf(c, clen, "\nmbuf leak detection table:\n");
+ MBUF_DUMP_BUF_CHK();
+ k = scnprintf(c, clen, "\ttotal captured: %u (one per %u)\n",
+ mleak_table.mleak_capture / mleak_table.mleak_sample_factor,
+ mleak_table.mleak_sample_factor);
+ MBUF_DUMP_BUF_CHK();
+ k = scnprintf(c, clen, "\ttotal allocs outstanding: %llu\n",
+ mleak_table.outstanding_allocs);
+ MBUF_DUMP_BUF_CHK();
+ k = scnprintf(c, clen, "\tnew hash recorded: %llu allocs, %llu traces\n",
+ mleak_table.alloc_recorded, mleak_table.trace_recorded);
+ MBUF_DUMP_BUF_CHK();
+ k = scnprintf(c, clen, "\thash collisions: %llu allocs, %llu traces\n",
+ mleak_table.alloc_collisions, mleak_table.trace_collisions);
+ MBUF_DUMP_BUF_CHK();
+ k = scnprintf(c, clen, "\toverwrites: %llu allocs, %llu traces\n",
+ mleak_table.alloc_overwrites, mleak_table.trace_overwrites);
+ MBUF_DUMP_BUF_CHK();
+ k = scnprintf(c, clen, "\tlock conflicts: %llu\n\n",
+ mleak_table.total_conflicts);
+ MBUF_DUMP_BUF_CHK();
+
+ k = scnprintf(c, clen, "top %d outstanding traces:\n",
+ mleak_stat->ml_cnt);
+ MBUF_DUMP_BUF_CHK();
+ for (i = 0; i < mleak_stat->ml_cnt; i++) {
+ mltr = &mleak_stat->ml_trace[i];
+ k = scnprintf(c, clen, "[%d] %llu outstanding alloc(s), "
+ "%llu hit(s), %llu collision(s)\n", (i + 1),
+ mltr->mltr_allocs, mltr->mltr_hitcount,
+ mltr->mltr_collisions);
+ MBUF_DUMP_BUF_CHK();
+ }
+
+ if (mleak_stat->ml_isaddr64) {
+ k = scnprintf(c, clen, MB_LEAK_HDR_64);
+ } else {
+ k = scnprintf(c, clen, MB_LEAK_HDR_32);
+ }
+ MBUF_DUMP_BUF_CHK();
+
+ for (i = 0; i < MLEAK_STACK_DEPTH; i++) {
+ k = scnprintf(c, clen, "%2d: ", (i + 1));
+ MBUF_DUMP_BUF_CHK();
+ for (j = 0; j < mleak_stat->ml_cnt; j++) {
+ mltr = &mleak_stat->ml_trace[j];
+ if (i < mltr->mltr_depth) {
+ if (mleak_stat->ml_isaddr64) {
+ k = scnprintf(c, clen, "0x%0llx ",
+ (uint64_t)VM_KERNEL_UNSLIDE(
+ mltr->mltr_addr[i]));
+ } else {
+ k = scnprintf(c, clen,
+ "0x%08x ",
+ (uint32_t)VM_KERNEL_UNSLIDE(
+ mltr->mltr_addr[i]));
+ }
+ } else {
+ if (mleak_stat->ml_isaddr64) {
+ k = scnprintf(c, clen,
+ MB_LEAK_SPACING_64);
+ } else {
+ k = scnprintf(c, clen,
+ MB_LEAK_SPACING_32);
+ }
+ }
+ MBUF_DUMP_BUF_CHK();
+ }
+ k = scnprintf(c, clen, "\n");
+ MBUF_DUMP_BUF_CHK();
+ }
+done:
+ return mbuf_dump_buf;
+}
+
+#undef MBUF_DUMP_BUF_CHK
+
+/*
+ * Convert between a regular and a packet header mbuf. Caller is responsible
+ * for setting or clearing M_PKTHDR; this routine does the rest of the work.
+ */
+int
+m_reinit(struct mbuf *m, int hdr)
+{
+ int ret = 0;
+
+ if (hdr) {
+ VERIFY(!(m->m_flags & M_PKTHDR));
+ if (!(m->m_flags & M_EXT) &&
+ (m->m_data != m->m_dat || m->m_len > 0)) {
+ /*
+ * If there's no external cluster attached and the
+ * mbuf appears to contain user data, we cannot
+ * safely convert this to a packet header mbuf,
+ * as the packet header structure might overlap
+ * with the data.
+ */
+ printf("%s: cannot set M_PKTHDR on altered mbuf %llx, "
+ "m_data %llx (expected %llx), "
+ "m_len %d (expected 0)\n",
+ __func__,
+ (uint64_t)VM_KERNEL_ADDRPERM(m),
+ (uint64_t)VM_KERNEL_ADDRPERM(m->m_data),
+ (uint64_t)VM_KERNEL_ADDRPERM(m->m_dat), m->m_len);
+ ret = EBUSY;
+ } else {
+ VERIFY((m->m_flags & M_EXT) || m->m_data == m->m_dat);
+ m->m_flags |= M_PKTHDR;
+ MBUF_INIT_PKTHDR(m);
+ }
+ } else {
+ /* Check for scratch area overflow */
+ m_redzone_verify(m);
+ /* Free the aux data and tags if there is any */
+ m_tag_delete_chain(m, NULL);
+ m->m_flags &= ~M_PKTHDR;
+ }
+
+ return ret;
+}
+
+int
+m_ext_set_prop(struct mbuf *m, uint32_t o, uint32_t n)
+{
+ ASSERT(m->m_flags & M_EXT);
+ return atomic_test_set_32(&MEXT_PRIV(m), o, n);
+}
+
+uint32_t
+m_ext_get_prop(struct mbuf *m)
+{
+ ASSERT(m->m_flags & M_EXT);
+ return MEXT_PRIV(m);
+}
+
+int
+m_ext_paired_is_active(struct mbuf *m)
+{
+ return MBUF_IS_PAIRED(m) ? (MEXT_PREF(m) > MEXT_MINREF(m)) : 1;
+}
+
+void
+m_ext_paired_activate(struct mbuf *m)
+{
+ struct ext_ref *rfa;
+ int hdr, type;
+ caddr_t extbuf;
+ m_ext_free_func_t extfree;
+ u_int extsize;
+
+ VERIFY(MBUF_IS_PAIRED(m));
+ VERIFY(MEXT_REF(m) == MEXT_MINREF(m));
+ VERIFY(MEXT_PREF(m) == MEXT_MINREF(m));
+
+ hdr = (m->m_flags & M_PKTHDR);
+ type = m->m_type;
+ extbuf = m->m_ext.ext_buf;
+ extfree = m_get_ext_free(m);
+ extsize = m->m_ext.ext_size;
+ rfa = m_get_rfa(m);
+
+ VERIFY(extbuf != NULL && rfa != NULL);
+
+ /*
+ * Safe to reinitialize packet header tags, since it's
+ * already taken care of at m_free() time. Similar to
+ * what's done in m_clattach() for the cluster. Bump
+ * up MEXT_PREF to indicate activation.
+ */
+ MBUF_INIT(m, hdr, type);
+ MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa,
+ 1, 1, 2, EXTF_PAIRED, MEXT_PRIV(m), m);
+}
+
+void
+m_scratch_init(struct mbuf *m)
+{
+ struct pkthdr *pkt = &m->m_pkthdr;
+
+ VERIFY(m->m_flags & M_PKTHDR);
+
+ /* See comments in <rdar://problem/14040693> */
+ if (pkt->pkt_flags & PKTF_PRIV_GUARDED) {
+ panic_plain("Invalid attempt to modify guarded module-private "
+ "area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags);
+ /* NOTREACHED */
+ }
+
+ bzero(&pkt->pkt_mpriv, sizeof(pkt->pkt_mpriv));
+}
+
+/*
+ * This routine is reserved for mbuf_get_driver_scratch(); clients inside
+ * xnu that intend on utilizing the module-private area should directly
+ * refer to the pkt_mpriv structure in the pkthdr. They are also expected
+ * to set and clear PKTF_PRIV_GUARDED, while owning the packet and prior
+ * to handing it off to another module, respectively.
+ */
+u_int32_t
+m_scratch_get(struct mbuf *m, u_int8_t **p)
+{
+ struct pkthdr *pkt = &m->m_pkthdr;
+
+ VERIFY(m->m_flags & M_PKTHDR);
+
+ /* See comments in <rdar://problem/14040693> */
+ if (pkt->pkt_flags & PKTF_PRIV_GUARDED) {
+ panic_plain("Invalid attempt to access guarded module-private "
+ "area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags);
+ /* NOTREACHED */
+ }
+
+ if (mcltrace) {
+ mcache_audit_t *mca;
+
+ lck_mtx_lock(mbuf_mlock);
+ mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
+ if (mca->mca_uflags & MB_SCVALID) {
+ mcl_audit_scratch(mca);
+ }
+ lck_mtx_unlock(mbuf_mlock);
+ }
+
+ *p = (u_int8_t *)&pkt->pkt_mpriv;
+ return sizeof(pkt->pkt_mpriv);
+}
+
+static void
+m_redzone_init(struct mbuf *m)
+{
+ VERIFY(m->m_flags & M_PKTHDR);
+ /*
+ * Each mbuf has a unique red zone pattern, which is a XOR
+ * of the red zone cookie and the address of the mbuf.
+ */
+ m->m_pkthdr.redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie;
+}
+
+static void
+m_redzone_verify(struct mbuf *m)
+{
+ u_int32_t mb_redzone;
+
+ VERIFY(m->m_flags & M_PKTHDR);
+
+ mb_redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie;
+ if (m->m_pkthdr.redzone != mb_redzone) {
+ panic("mbuf %p redzone violation with value 0x%x "
+ "(instead of 0x%x, using cookie 0x%x)\n",
+ m, m->m_pkthdr.redzone, mb_redzone, mb_redzone_cookie);
+ /* NOTREACHED */
+ }
+}
+
+__private_extern__ inline void
+m_set_ext(struct mbuf *m, struct ext_ref *rfa, m_ext_free_func_t ext_free,
+ caddr_t ext_arg)
+{
+ VERIFY(m->m_flags & M_EXT);
+ if (rfa != NULL) {
+ m->m_ext.ext_refflags =
+ (struct ext_ref *)(((uintptr_t)rfa) ^ mb_obscure_extref);
+ if (ext_free != NULL) {
+ rfa->ext_token = ((uintptr_t)&rfa->ext_token) ^
+ mb_obscure_extfree;
+ m->m_ext.ext_free = (m_ext_free_func_t)
+ (((uintptr_t)ext_free) ^ rfa->ext_token);
+ if (ext_arg != NULL) {
+ m->m_ext.ext_arg =
+ (caddr_t)(((uintptr_t)ext_arg) ^ rfa->ext_token);
+ } else {
+ m->m_ext.ext_arg = NULL;
+ }
+ } else {
+ rfa->ext_token = 0;
+ m->m_ext.ext_free = NULL;
+ m->m_ext.ext_arg = NULL;
+ }
+ } else {
+ /*
+ * If we are going to loose the cookie in ext_token by
+ * resetting the rfa, we should use the global cookie
+ * to obscure the ext_free and ext_arg pointers.
+ */
+ if (ext_free != NULL) {
+ m->m_ext.ext_free =
+ (m_ext_free_func_t)((uintptr_t)ext_free ^
+ mb_obscure_extfree);
+ if (ext_arg != NULL) {
+ m->m_ext.ext_arg =
+ (caddr_t)((uintptr_t)ext_arg ^
+ mb_obscure_extfree);
+ } else {
+ m->m_ext.ext_arg = NULL;
+ }
+ } else {
+ m->m_ext.ext_free = NULL;
+ m->m_ext.ext_arg = NULL;
+ }
+ m->m_ext.ext_refflags = NULL;
+ }
+}
+
+__private_extern__ inline struct ext_ref *
+m_get_rfa(struct mbuf *m)
+{
+ if (m->m_ext.ext_refflags == NULL) {
+ return NULL;
+ } else {
+ return (struct ext_ref *)(((uintptr_t)m->m_ext.ext_refflags) ^ mb_obscure_extref);
+ }
+}
+
+__private_extern__ inline m_ext_free_func_t
+m_get_ext_free(struct mbuf *m)
+{
+ struct ext_ref *rfa;
+ if (m->m_ext.ext_free == NULL) {
+ return NULL;
+ }
+
+ rfa = m_get_rfa(m);
+ if (rfa == NULL) {
+ return (m_ext_free_func_t)((uintptr_t)m->m_ext.ext_free ^ mb_obscure_extfree);
+ } else {
+ return (m_ext_free_func_t)(((uintptr_t)m->m_ext.ext_free)
+ ^ rfa->ext_token);
+ }
+}
+
+__private_extern__ inline caddr_t
+m_get_ext_arg(struct mbuf *m)
+{
+ struct ext_ref *rfa;
+ if (m->m_ext.ext_arg == NULL) {
+ return NULL;
+ }
+
+ rfa = m_get_rfa(m);
+ if (rfa == NULL) {
+ return (caddr_t)((uintptr_t)m->m_ext.ext_arg ^ mb_obscure_extfree);
+ } else {
+ return (caddr_t)(((uintptr_t)m->m_ext.ext_arg) ^
+ rfa->ext_token);
+ }
+}
+
+/*
+ * Send a report of mbuf usage if the usage is at least 6% of max limit
+ * or if there has been at least 3% increase since the last report.
+ *
+ * The values 6% and 3% are chosen so that we can do simple arithmetic
+ * with shift operations.
+ */
+static boolean_t
+mbuf_report_usage(mbuf_class_t cl)
+{
+ /* if a report is already in progress, nothing to do */
+ if (mb_peak_newreport) {
+ return TRUE;
+ }
+
+ if (m_total(cl) > m_peak(cl) &&
+ m_total(cl) >= (m_maxlimit(cl) >> 4) &&
+ (m_total(cl) - m_peak(cl)) >= (m_peak(cl) >> 5)) {
+ return TRUE;
+ }
+ return FALSE;
+}
+
+__private_extern__ void
+mbuf_report_peak_usage(void)
+{
+ int i = 0;
+ u_int64_t uptime;
+ struct nstat_sysinfo_data ns_data;
+ uint32_t memreleased = 0;
+ static uint32_t prevmemreleased;
+
+ uptime = net_uptime();
+ lck_mtx_lock(mbuf_mlock);
+
+ /* Generate an initial report after 1 week of uptime */
+ if (!mb_peak_firstreport &&
+ uptime > MBUF_PEAK_FIRST_REPORT_THRESHOLD) {
+ mb_peak_newreport = TRUE;
+ mb_peak_firstreport = TRUE;
+ }
+
+ if (!mb_peak_newreport) {
+ lck_mtx_unlock(mbuf_mlock);
+ return;
+ }
/*
- * If first mbuf has no cluster, and has room for len bytes
- * without shifting current data, pullup into it,
- * otherwise allocate a new mbuf to prepend to the chain.
+ * Since a report is being generated before 1 week,
+ * we do not need to force another one later
*/
- if ((n->m_flags & M_EXT) == 0 &&
- n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
- if (n->m_len >= len)
- return (n);
- m = n;
- n = n->m_next;
- len -= m->m_len;
- } else {
- if (len > MHLEN)
- goto bad;
- MGET(m, M_DONTWAIT, n->m_type);
- if (m == 0)
- goto bad;
- m->m_len = 0;
- if (n->m_flags & M_PKTHDR) {
- M_COPY_PKTHDR(m, n);
- n->m_flags &= ~M_PKTHDR;
- }
+ if (uptime < MBUF_PEAK_FIRST_REPORT_THRESHOLD) {
+ mb_peak_firstreport = TRUE;
}
- space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
- do {
- count = min(min(max(len, max_protohdr), space), n->m_len);
- bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
- (unsigned)count);
- len -= count;
- m->m_len += count;
- n->m_len -= count;
- space -= count;
- if (n->m_len)
- n->m_data += count;
- else
- n = m_free(n);
- } while (len > 0 && n);
- if (len > 0) {
- (void) m_free(m);
- goto bad;
+
+ for (i = 0; i < NELEM(mbuf_table); i++) {
+ m_peak(m_class(i)) = m_total(m_class(i));
+ memreleased += m_release_cnt(i);
}
- m->m_next = n;
- return (m);
-bad:
- m_freem(n);
- MPFail++;
- return (0);
+ memreleased = memreleased - prevmemreleased;
+ prevmemreleased = memreleased;
+ mb_peak_newreport = FALSE;
+ lck_mtx_unlock(mbuf_mlock);
+
+ bzero(&ns_data, sizeof(ns_data));
+ ns_data.flags = NSTAT_SYSINFO_MBUF_STATS;
+ ns_data.u.mb_stats.total_256b = m_peak(MC_MBUF);
+ ns_data.u.mb_stats.total_2kb = m_peak(MC_CL);
+ ns_data.u.mb_stats.total_4kb = m_peak(MC_BIGCL);
+ ns_data.u.mb_stats.total_16kb = m_peak(MC_16KCL);
+ ns_data.u.mb_stats.sbmb_total = total_sbmb_cnt_peak;
+ ns_data.u.mb_stats.sb_atmbuflimit = sbmb_limreached;
+ ns_data.u.mb_stats.draincnt = mbstat.m_drain;
+ ns_data.u.mb_stats.memreleased = memreleased;
+ ns_data.u.mb_stats.sbmb_floor = total_sbmb_cnt_floor;
+
+ nstat_sysinfo_send_data(&ns_data);
+
+ /*
+ * Reset the floor whenever we report a new
+ * peak to track the trend (increase peek usage
+ * is not a leak if mbufs get released
+ * between reports and the floor stays low)
+ */
+ total_sbmb_cnt_floor = total_sbmb_cnt_peak;
}
/*
- * Partition an mbuf chain in two pieces, returning the tail --
- * all but the first len0 bytes. In case of failure, it returns NULL and
- * attempts to restore the chain to its original state.
+ * Simple routine to avoid taking the lock when we can't run the
+ * mbuf drain.
*/
-struct mbuf *
-m_split(m0, len0, wait)
- register struct mbuf *m0;
- int len0, wait;
+static int
+mbuf_drain_checks(boolean_t ignore_waiters)
{
- register struct mbuf *m, *n;
- unsigned len = len0, remain;
-
- for (m = m0; m && len > m->m_len; m = m->m_next)
- len -= m->m_len;
- if (m == 0)
- return (0);
- remain = m->m_len - len;
- if (m0->m_flags & M_PKTHDR) {
- MGETHDR(n, wait, m0->m_type);
- if (n == 0)
- return (0);
- n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
- n->m_pkthdr.len = m0->m_pkthdr.len - len0;
- m0->m_pkthdr.len = len0;
- if (m->m_flags & M_EXT)
- goto extpacket;
- if (remain > MHLEN) {
- /* m can't be the lead packet */
- MH_ALIGN(n, 0);
- n->m_next = m_split(m, len, wait);
- if (n->m_next == 0) {
- (void) m_free(n);
- return (0);
- } else
- return (n);
- } else
- MH_ALIGN(n, remain);
- } else if (remain == 0) {
- n = m->m_next;
- m->m_next = 0;
- return (n);
- } else {
- MGET(n, wait, m->m_type);
- if (n == 0)
- return (0);
- M_ALIGN(n, remain);
+ if (mb_drain_maxint == 0) {
+ return 0;
}
-extpacket:
- if (m->m_flags & M_EXT) {
- n->m_flags |= M_EXT;
- MBUF_LOCK();
- n->m_ext = m->m_ext;
- insque((queue_t)&n->m_ext.ext_refs, (queue_t)&m->m_ext.ext_refs);
- MBUF_UNLOCK();
- n->m_data = m->m_data + len;
- } else {
- bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
+ if (!ignore_waiters && mb_waiters != 0) {
+ return 0;
}
- n->m_len = remain;
- m->m_len = len;
- n->m_next = m->m_next;
- m->m_next = 0;
- return (n);
+
+ return 1;
}
+
/*
- * Routine to copy from device local memory into mbufs.
+ * Called by the VM when there's memory pressure or when we exhausted
+ * the 4k/16k reserved space.
*/
-struct mbuf *
-m_devget(buf, totlen, off0, ifp, copy)
- char *buf;
- int totlen, off0;
- struct ifnet *ifp;
- void (*copy)();
-{
- register struct mbuf *m;
- struct mbuf *top = 0, **mp = ⊤
- register int off = off0, len;
- register char *cp;
- char *epkt;
-
- cp = buf;
- epkt = cp + totlen;
- if (off) {
+static void
+mbuf_drain_locked(boolean_t ignore_waiters)
+{
+ mbuf_class_t mc;
+ mcl_slab_t *sp, *sp_tmp, *nsp;
+ unsigned int num, k, interval, released = 0;
+ unsigned long total_mem = 0, use_mem = 0;
+ boolean_t ret, purge_caches = FALSE;
+ ppnum_t offset;
+ mcache_obj_t *obj;
+ unsigned long per;
+ static unsigned char scratch[32];
+ static ppnum_t scratch_pa = 0;
+
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+ if (!mbuf_drain_checks(ignore_waiters)) {
+ return;
+ }
+ if (scratch_pa == 0) {
+ bzero(scratch, sizeof(scratch));
+ scratch_pa = pmap_find_phys(kernel_pmap, (addr64_t)scratch);
+ VERIFY(scratch_pa);
+ } else if (mclverify) {
/*
- * If 'off' is non-zero, packet is trailer-encapsulated,
- * so we have to skip the type and length fields.
+ * Panic if a driver wrote to our scratch memory.
*/
- cp += off + 2 * sizeof(u_int16_t);
- totlen -= 2 * sizeof(u_int16_t);
+ for (k = 0; k < sizeof(scratch); k++) {
+ if (scratch[k]) {
+ panic("suspect DMA to freed address");
+ }
+ }
}
- MGETHDR(m, M_DONTWAIT, MT_DATA);
- if (m == 0)
- return (0);
- m->m_pkthdr.rcvif = ifp;
- m->m_pkthdr.len = totlen;
- m->m_len = MHLEN;
-
- while (totlen > 0) {
- if (top) {
- MGET(m, M_DONTWAIT, MT_DATA);
- if (m == 0) {
- m_freem(top);
- return (0);
+ /*
+ * Don't free memory too often as that could cause excessive
+ * waiting times for mbufs. Purge caches if we were asked to drain
+ * in the last 5 minutes.
+ */
+ if (mbuf_drain_last_runtime != 0) {
+ interval = net_uptime() - mbuf_drain_last_runtime;
+ if (interval <= mb_drain_maxint) {
+ return;
+ }
+ if (interval <= mb_drain_maxint * 5) {
+ purge_caches = TRUE;
+ }
+ }
+ mbuf_drain_last_runtime = net_uptime();
+ /*
+ * Don't free any memory if we're using 60% or more.
+ */
+ for (mc = 0; mc < NELEM(mbuf_table); mc++) {
+ total_mem += m_total(mc) * m_maxsize(mc);
+ use_mem += m_active(mc) * m_maxsize(mc);
+ }
+ per = (use_mem * 100) / total_mem;
+ if (per >= 60) {
+ return;
+ }
+ /*
+ * Purge all the caches. This effectively disables
+ * caching for a few seconds, but the mbuf worker thread will
+ * re-enable them again.
+ */
+ if (purge_caches == TRUE) {
+ for (mc = 0; mc < NELEM(mbuf_table); mc++) {
+ if (m_total(mc) < m_avgtotal(mc)) {
+ continue;
+ }
+ lck_mtx_unlock(mbuf_mlock);
+ ret = mcache_purge_cache(m_cache(mc), FALSE);
+ lck_mtx_lock(mbuf_mlock);
+ if (ret == TRUE) {
+ m_purge_cnt(mc)++;
}
- m->m_len = MLEN;
}
- len = min(totlen, epkt - cp);
- if (len >= MINCLSIZE) {
- MCLGET(m, M_DONTWAIT);
- if (m->m_flags & M_EXT)
- m->m_len = len = min(len, MCLBYTES);
- else {
- /* give up when it's out of cluster mbufs */
- if (top)
- m_freem(top);
- m_freem(m);
- return (0);
+ }
+ /*
+ * Move the objects from the composite class freelist to
+ * the rudimentary slabs list, but keep at least 10% of the average
+ * total in the freelist.
+ */
+ for (mc = 0; mc < NELEM(mbuf_table); mc++) {
+ while (m_cobjlist(mc) &&
+ m_total(mc) < m_avgtotal(mc) &&
+ m_infree(mc) > 0.1 * m_avgtotal(mc) + m_minlimit(mc)) {
+ obj = m_cobjlist(mc);
+ m_cobjlist(mc) = obj->obj_next;
+ obj->obj_next = NULL;
+ num = cslab_free(mc, obj, 1);
+ VERIFY(num == 1);
+ m_free_cnt(mc)++;
+ m_infree(mc)--;
+ /* cslab_free() handles m_total */
+ }
+ }
+ /*
+ * Free the buffers present in the slab list up to 10% of the total
+ * average per class.
+ *
+ * We walk the list backwards in an attempt to reduce fragmentation.
+ */
+ for (mc = NELEM(mbuf_table) - 1; (int)mc >= 0; mc--) {
+ TAILQ_FOREACH_SAFE(sp, &m_slablist(mc), sl_link, sp_tmp) {
+ /*
+ * Process only unused slabs occupying memory.
+ */
+ if (sp->sl_refcnt != 0 || sp->sl_len == 0 ||
+ sp->sl_base == NULL) {
+ continue;
}
- } else {
+ if (m_total(mc) < m_avgtotal(mc) ||
+ m_infree(mc) < 0.1 * m_avgtotal(mc) + m_minlimit(mc)) {
+ break;
+ }
+ slab_remove(sp, mc);
+ switch (mc) {
+ case MC_MBUF:
+ m_infree(mc) -= NMBPG;
+ m_total(mc) -= NMBPG;
+ if (mclaudit != NULL) {
+ mcl_audit_free(sp->sl_base, NMBPG);
+ }
+ break;
+ case MC_CL:
+ m_infree(mc) -= NCLPG;
+ m_total(mc) -= NCLPG;
+ if (mclaudit != NULL) {
+ mcl_audit_free(sp->sl_base, NMBPG);
+ }
+ break;
+ case MC_BIGCL:
+ {
+ m_infree(mc) -= NBCLPG;
+ m_total(mc) -= NBCLPG;
+ if (mclaudit != NULL) {
+ mcl_audit_free(sp->sl_base, NMBPG);
+ }
+ break;
+ }
+ case MC_16KCL:
+ m_infree(mc)--;
+ m_total(mc)--;
+ for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
+ nsp = nsp->sl_next;
+ VERIFY(nsp->sl_refcnt == 0 &&
+ nsp->sl_base != NULL &&
+ nsp->sl_len == 0);
+ slab_init(nsp, 0, 0, NULL, NULL, 0, 0,
+ 0);
+ nsp->sl_flags = 0;
+ }
+ if (mclaudit != NULL) {
+ if (sp->sl_len == PAGE_SIZE) {
+ mcl_audit_free(sp->sl_base,
+ NMBPG);
+ } else {
+ mcl_audit_free(sp->sl_base, 1);
+ }
+ }
+ break;
+ default:
+ /*
+ * The composite classes have their own
+ * freelist (m_cobjlist), so we only
+ * process rudimentary classes here.
+ */
+ VERIFY(0);
+ }
+ m_release_cnt(mc) += m_size(mc);
+ released += m_size(mc);
+ VERIFY(sp->sl_base != NULL &&
+ sp->sl_len >= PAGE_SIZE);
+ offset = MTOPG(sp->sl_base);
/*
- * Place initial small packet/header at end of mbuf.
+ * Make sure the IOMapper points to a valid, but
+ * bogus, address. This should prevent further DMA
+ * accesses to freed memory.
*/
- if (len < m->m_len) {
- if (top == 0 && len + max_linkhdr <= m->m_len)
- m->m_data += max_linkhdr;
- m->m_len = len;
- } else
- len = m->m_len;
+ IOMapperInsertPage(mcl_paddr_base, offset, scratch_pa);
+ mcl_paddr[offset] = 0;
+ kmem_free(mb_map, (vm_offset_t)sp->sl_base,
+ sp->sl_len);
+ slab_init(sp, 0, 0, NULL, NULL, 0, 0, 0);
+ sp->sl_flags = 0;
}
- if (copy)
- copy(cp, mtod(m, caddr_t), (unsigned)len);
- else
- bcopy(cp, mtod(m, caddr_t), (unsigned)len);
- cp += len;
- *mp = m;
- mp = &m->m_next;
- totlen -= len;
- if (cp == epkt)
- cp = buf;
}
- return (top);
+ mbstat.m_drain++;
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
+ mbstat.m_clusters = m_total(MC_CL);
+ mbstat.m_mbufs = m_total(MC_MBUF);
+ mbuf_stat_sync();
+ mbuf_mtypes_sync(TRUE);
}
-/*
- * Cluster freelist allocation check. The mbuf lock must be held.
- * Ensure hysteresis between hi/lo.
- */
+__private_extern__ void
+mbuf_drain(boolean_t ignore_waiters)
+{
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_NOTOWNED);
+ if (!mbuf_drain_checks(ignore_waiters)) {
+ return;
+ }
+ lck_mtx_lock(mbuf_mlock);
+ mbuf_drain_locked(ignore_waiters);
+ lck_mtx_unlock(mbuf_mlock);
+}
+
+
static int
-m_howmany()
+m_drain_force_sysctl SYSCTL_HANDLER_ARGS
{
- register int i;
+#pragma unused(arg1, arg2)
+ int val = 0, err;
- /* Under minimum */
- if (mbstat.m_clusters < MINCL)
- return (MINCL - mbstat.m_clusters);
- /* Too few (free < 1/2 total) and not over maximum */
- if (mbstat.m_clusters < nmbclusters &&
- (i = ((mbstat.m_clusters >> 1) - mbstat.m_clfree)) > 0)
- return i;
- return 0;
-}
+ err = sysctl_handle_int(oidp, &val, 0, req);
+ if (err != 0 || req->newptr == USER_ADDR_NULL) {
+ return err;
+ }
+ if (val) {
+ mbuf_drain(TRUE);
+ }
+ return err;
+}
-/*
- * Copy data from a buffer back into the indicated mbuf chain,
- * starting "off" bytes from the beginning, extending the mbuf
- * chain if necessary.
- */
-void
-m_copyback(m0, off, len, cp)
- struct mbuf *m0;
- register int off;
- register int len;
- caddr_t cp;
-{
- register int mlen;
- register struct mbuf *m = m0, *n;
- int totlen = 0;
+#if DEBUG || DEVELOPMENT
+static void
+_mbwdog_logger(const char *func, const int line, const char *fmt, ...)
+{
+ va_list ap;
+ struct timeval now;
+ char str[384], p[256];
+ int len;
- if (m0 == 0)
- return;
- while (off > (mlen = m->m_len)) {
- off -= mlen;
- totlen += mlen;
- if (m->m_next == 0) {
- n = m_getclr(M_DONTWAIT, m->m_type);
- if (n == 0)
- goto out;
- n->m_len = min(MLEN, len + off);
- m->m_next = n;
+ LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+ if (mbwdog_logging == NULL) {
+ mbwdog_logging = _MALLOC(mbwdog_logging_size,
+ M_TEMP, M_ZERO | M_NOWAIT);
+ if (mbwdog_logging == NULL) {
+ return;
}
- m = m->m_next;
}
- while (len > 0) {
- mlen = min (m->m_len - off, len);
- bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
- cp += mlen;
- len -= mlen;
- mlen += off;
- off = 0;
- totlen += mlen;
- if (len == 0)
- break;
- if (m->m_next == 0) {
- n = m_get(M_DONTWAIT, m->m_type);
- if (n == 0)
- break;
- n->m_len = min(MLEN, len);
- m->m_next = n;
+ va_start(ap, fmt);
+ vsnprintf(p, sizeof(p), fmt, ap);
+ va_end(ap);
+ microuptime(&now);
+ len = scnprintf(str, sizeof(str),
+ "\n%ld.%d (%d/%llx) %s:%d %s",
+ now.tv_sec, now.tv_usec,
+ current_proc()->p_pid,
+ (uint64_t)VM_KERNEL_ADDRPERM(current_thread()),
+ func, line, p);
+ if (len < 0) {
+ return;
+ }
+ if (mbwdog_logging_used + len > mbwdog_logging_size) {
+ mbwdog_logging_used = mbwdog_logging_used / 2;
+ memmove(mbwdog_logging, mbwdog_logging + mbwdog_logging_used,
+ mbwdog_logging_size - mbwdog_logging_used);
+ mbwdog_logging[mbwdog_logging_used] = 0;
+ }
+ strlcat(mbwdog_logging, str, mbwdog_logging_size);
+ mbwdog_logging_used += len;
+}
+
+static int
+sysctl_mbwdog_log SYSCTL_HANDLER_ARGS
+{
+#pragma unused(oidp, arg1, arg2)
+ return SYSCTL_OUT(req, mbwdog_logging, mbwdog_logging_used);
+}
+SYSCTL_DECL(_kern_ipc);
+SYSCTL_PROC(_kern_ipc, OID_AUTO, mbwdog_log,
+ CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_LOCKED,
+ 0, 0, sysctl_mbwdog_log, "A", "");
+
+static int mbtest_val;
+static int mbtest_running;
+
+static void
+mbtest_thread(__unused void *arg)
+{
+ int i;
+ int scale_down = 1;
+ int iterations = 250;
+ int allocations = nmbclusters;
+ iterations = iterations / scale_down;
+ allocations = allocations / scale_down;
+ printf("%s thread starting\n", __func__);
+ for (i = 0; i < iterations; i++) {
+ unsigned int needed = allocations;
+ struct mbuf *m1, *m2, *m3;
+
+ if (njcl > 0) {
+ needed = allocations;
+ m3 = m_getpackets_internal(&needed, 0, M_DONTWAIT, 0, M16KCLBYTES);
+ m_freem_list(m3);
}
- m = m->m_next;
+
+ needed = allocations;
+ m2 = m_getpackets_internal(&needed, 0, M_DONTWAIT, 0, MBIGCLBYTES);
+ m_freem_list(m2);
+
+ m1 = m_getpackets_internal(&needed, 0, M_DONTWAIT, 0, MCLBYTES);
+ m_freem_list(m1);
}
-out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
- m->m_pkthdr.len = totlen;
+
+ printf("%s thread ending\n", __func__);
+
+ OSDecrementAtomic(&mbtest_running);
+ wakeup_one((caddr_t)&mbtest_running);
}
+static void
+sysctl_mbtest(void)
+{
+ /* We launch three threads - wait for all of them */
+ OSIncrementAtomic(&mbtest_running);
+ OSIncrementAtomic(&mbtest_running);
+ OSIncrementAtomic(&mbtest_running);
-char *mcl_to_paddr(register char *addr) {
- register int base_phys;
-
- if (addr < (char *)mbutl || addr >= (char *)embutl)
- return (0);
- base_phys = mcl_paddr[(addr - (char *)mbutl) >> PAGE_SHIFT];
+ thread_call_func_delayed((thread_call_func_t)mbtest_thread, NULL, 10);
+ thread_call_func_delayed((thread_call_func_t)mbtest_thread, NULL, 10);
+ thread_call_func_delayed((thread_call_func_t)mbtest_thread, NULL, 10);
- if (base_phys == 0)
- return (0);
- return ((char *)((int)base_phys | ((int)addr & PAGE_MASK)));
+ while (mbtest_running) {
+ msleep((caddr_t)&mbtest_running, NULL, PUSER, "mbtest_running", NULL);
+ }
}
-/*
- * Dup the mbuf chain passed in. The whole thing. No cute additional cruft.
- * And really copy the thing. That way, we don't "precompute" checksums
- * for unsuspecting consumers.
- * Assumption: m->m_nextpkt == 0.
- * Trick: for small packets, don't dup into a cluster. That way received
- * packets don't take up too much room in the sockbuf (cf. sbspace()).
- */
-int MDFail;
+static int
+mbtest SYSCTL_HANDLER_ARGS
+{
+#pragma unused(arg1, arg2)
+ int error = 0, val, oldval = mbtest_val;
-struct mbuf *
-m_dup(register struct mbuf *m, int how)
-{ register struct mbuf *n, **np;
- struct mbuf *top;
- int copyhdr = 0;
+ val = oldval;
+ error = sysctl_handle_int(oidp, &val, 0, req);
+ if (error || !req->newptr) {
+ return error;
+ }
- np = ⊤
- top = 0;
- if (m->m_flags & M_PKTHDR)
- copyhdr = 1;
+ if (val != oldval) {
+ sysctl_mbtest();
+ }
- /*
- * Quick check: if we have one mbuf and its data fits in an
- * mbuf with packet header, just copy and go.
- */
- if (m->m_next == NULL)
- { /* Then just move the data into an mbuf and be done... */
- if (copyhdr)
- { if (m->m_pkthdr.len <= MHLEN)
- { if ((n = m_gethdr(how, m->m_type)) == NULL)
- return(NULL);
- n->m_len = m->m_len;
- n->m_flags |= (m->m_flags & M_COPYFLAGS);
- n->m_pkthdr.len = m->m_pkthdr.len;
- n->m_pkthdr.rcvif = m->m_pkthdr.rcvif;
- n->m_pkthdr.header = NULL;
- n->m_pkthdr.csum_flags = 0;
- n->m_pkthdr.csum_data = 0;
- n->m_pkthdr.aux = NULL;
- n->m_pkthdr.reserved1 = 0;
- n->m_pkthdr.reserved2 = 0;
- bcopy(m->m_data, n->m_data, m->m_pkthdr.len);
- return(n);
- }
- } else if (m->m_len <= MLEN)
- { if ((n = m_get(how, m->m_type)) == NULL)
- return(NULL);
- bcopy(m->m_data, n->m_data, m->m_len);
- n->m_len = m->m_len;
- return(n);
+ mbtest_val = val;
+
+ return error;
+}
+#endif // DEBUG || DEVELOPMENT
+
+static void
+mtracelarge_register(size_t size)
+{
+ int i;
+ struct mtracelarge *trace;
+ uintptr_t bt[MLEAK_STACK_DEPTH];
+ unsigned int depth;
+
+ depth = backtrace(bt, MLEAK_STACK_DEPTH, NULL);
+ /* Check if this entry is already on the list. */
+ for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) {
+ trace = &mtracelarge_table[i];
+ if (trace->size == size && trace->depth == depth &&
+ memcmp(bt, trace->addr, depth * sizeof(uintptr_t)) == 0) {
+ return;
}
}
- while (m)
- {
-#if BLUE_DEBUG
- kprintf("<%x: %x, %x, %x\n", m, m->m_flags, m->m_len,
- m->m_data);
-#endif
- if (copyhdr)
- n = m_gethdr(how, m->m_type);
- else
- n = m_get(how, m->m_type);
- if (n == 0)
- goto nospace;
- if (m->m_flags & M_EXT)
- { MCLGET(n, how);
- if ((n->m_flags & M_EXT) == 0)
- goto nospace;
- }
- *np = n;
- if (copyhdr)
- { /* Don't use M_COPY_PKTHDR: preserve m_data */
- n->m_pkthdr = m->m_pkthdr;
- n->m_flags |= (m->m_flags & M_COPYFLAGS);
- copyhdr = 0;
- if ((n->m_flags & M_EXT) == 0)
- n->m_data = n->m_pktdat;
+ for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) {
+ trace = &mtracelarge_table[i];
+ if (size > trace->size) {
+ trace->depth = depth;
+ memcpy(trace->addr, bt, depth * sizeof(uintptr_t));
+ trace->size = size;
+ break;
}
- n->m_len = m->m_len;
- /*
- * Get the dup on the same bdry as the original
- * Assume that the two mbufs have the same offset to data area
- * (up to word bdries)
- */
- bcopy(mtod(m, caddr_t), mtod(n, caddr_t), (unsigned)n->m_len);
- m = m->m_next;
- np = &n->m_next;
-#if BLUE_DEBUG
- kprintf(">%x: %x, %x, %x\n", n, n->m_flags, n->m_len,
- n->m_data);
-#endif
}
-
- if (top == 0)
- MDFail++;
- return (top);
- nospace:
- m_freem(top);
- MDFail++;
- return (0);
}
-#if 0
-#include <sys/sysctl.h>
-
-static int mhog_num = 0;
-static struct mbuf *mhog_chain = 0;
-static int mhog_wait = 1;
-
-static int
-sysctl_mhog_num SYSCTL_HANDLER_ARGS
-{
- int old = mhog_num;
- int error;
-
- error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
- if (!error && req->newptr) {
- int i;
- struct mbuf *m;
-
- if (mhog_chain) {
- m_freem(mhog_chain);
- mhog_chain = 0;
- }
-
- for (i = 0; i < mhog_num; i++) {
- MGETHDR(m, mhog_wait ? M_WAIT : M_DONTWAIT, MT_DATA);
- if (m == 0)
- break;
-
- MCLGET(m, mhog_wait ? M_WAIT : M_DONTWAIT);
- if ((m->m_flags & M_EXT) == 0) {
- m_free(m);
- m = 0;
- break;
- }
- m->m_next = mhog_chain;
- mhog_chain = m;
- }
- mhog_num = i;
- }
-
- return error;
-}
-
-SYSCTL_NODE(_kern_ipc, OID_AUTO, mhog, CTLFLAG_RW, 0, "mbuf hog");
-
-SYSCTL_PROC(_kern_ipc_mhog, OID_AUTO, cluster, CTLTYPE_INT|CTLFLAG_RW,
- &mhog_num, 0, &sysctl_mhog_num, "I", "");
-SYSCTL_INT(_kern_ipc_mhog, OID_AUTO, wait, CTLFLAG_RW, &mhog_wait,
- 0, "");
+SYSCTL_DECL(_kern_ipc);
+#if DEBUG || DEVELOPMENT
+SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtest,
+ CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &mbtest_val, 0, &mbtest, "I",
+ "Toggle to test mbufs");
#endif
-
+SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat,
+ CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
+ 0, 0, mbstat_sysctl, "S,mbstat", "");
+SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat,
+ CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
+ 0, 0, mb_stat_sysctl, "S,mb_stat", "");
+SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_top_trace,
+ CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
+ 0, 0, mleak_top_trace_sysctl, "S,mb_top_trace", "");
+SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_table,
+ CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
+ 0, 0, mleak_table_sysctl, "S,mleak_table", "");
+SYSCTL_INT(_kern_ipc, OID_AUTO, mleak_sample_factor,
+ CTLFLAG_RW | CTLFLAG_LOCKED, &mleak_table.mleak_sample_factor, 0, "");
+SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized,
+ CTLFLAG_RD | CTLFLAG_LOCKED, &mb_normalized, 0, "");
+SYSCTL_INT(_kern_ipc, OID_AUTO, mb_watchdog,
+ CTLFLAG_RW | CTLFLAG_LOCKED, &mb_watchdog, 0, "");
+SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_drain_force,
+ CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0,
+ m_drain_force_sysctl, "I",
+ "Forces the mbuf garbage collection to run");
+SYSCTL_INT(_kern_ipc, OID_AUTO, mb_drain_maxint,
+ CTLFLAG_RW | CTLFLAG_LOCKED, &mb_drain_maxint, 0,
+ "Minimum time interval between garbage collection");