*/
#include <string.h>
-#include <mach_kdb.h>
#include <mach_ldebug.h>
#include <libkern/OSAtomic.h>
#include <kern/thread.h>
#include <kern/zalloc.h>
#include <kern/queue.h>
+#include <kern/ledger.h>
#include <kern/mach_param.h>
-#include <kern/lock.h>
#include <kern/kalloc.h>
#include <kern/spl.h>
#include <i386/tsc.h>
#include <i386/pmap_internal.h>
#include <i386/pmap_pcid.h>
-
-#if MACH_KDB
-#include <ddb/db_command.h>
-#include <ddb/db_output.h>
-#include <ddb/db_sym.h>
-#include <ddb/db_print.h>
-#endif /* MACH_KDB */
+#if CONFIG_VMX
+#include <i386/vmx/vmx_cpu.h>
+#endif
#include <vm/vm_protos.h>
#include <i386/mp.h>
#include <i386/mp_desc.h>
+#include <libkern/kernel_mach_header.h>
+
+#include <pexpert/i386/efi.h>
#ifdef IWANTTODEBUG
pv_hashed_entry_t *pv_hash_table; /* hash lists */
-uint32_t npvhash = 0;
+uint32_t npvhashmask = 0, npvhashbuckets = 0;
pv_hashed_entry_t pv_hashed_free_list = PV_HASHED_ENTRY_NULL;
pv_hashed_entry_t pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL;
decl_simple_lock_data(,pv_hashed_kern_free_list_lock)
decl_simple_lock_data(,pv_hash_table_lock)
+decl_simple_lock_data(,phys_backup_lock)
+
zone_t pv_hashed_list_zone; /* zone of pv_hashed_entry structures */
/*
* One byte per physical page.
*/
char *pmap_phys_attributes;
-unsigned int last_managed_page = 0;
+ppnum_t last_managed_page = 0;
/*
* Amount of virtual memory mapped by one
struct pmap kernel_pmap_store;
pmap_t kernel_pmap;
-pd_entry_t high_shared_pde;
-pd_entry_t commpage64_pde;
-
struct zone *pmap_zone; /* zone of pmap structures */
struct zone *pmap_anchor_zone;
caddr_t DADDR1;
caddr_t DADDR2;
-/*
- * unlinks the pv_hashed_entry_t pvh from the singly linked hash chain.
- * properly deals with the anchor.
- * must be called with the hash locked, does not unlock it
- */
+boolean_t pmap_disable_kheap_nx = FALSE;
+boolean_t pmap_disable_kstack_nx = FALSE;
+extern boolean_t doconstro_override;
+
+extern long __stack_chk_guard[];
+
+boolean_t pmap_ept_support_ad = FALSE;
/*
ps = PAGE_SIZE;
while (start_addr < end_addr) {
pmap_enter(kernel_pmap, (vm_map_offset_t)virt,
- (ppnum_t) i386_btop(start_addr), prot, flags, FALSE);
+ (ppnum_t) i386_btop(start_addr), prot, VM_PROT_NONE, flags, TRUE);
virt += ps;
start_addr += ps;
}
return(virt);
}
-/*
- * Back-door routine for mapping kernel VM at initialization.
- * Useful for mapping memory outside the range
- * Sets no-cache, A, D.
- * Otherwise like pmap_map.
- */
-vm_offset_t
-pmap_map_bd(
- vm_offset_t virt,
- vm_map_offset_t start_addr,
- vm_map_offset_t end_addr,
- vm_prot_t prot,
- unsigned int flags)
-{
- pt_entry_t template;
- pt_entry_t *pte;
- spl_t spl;
- vm_offset_t base = virt;
- template = pa_to_pte(start_addr)
- | INTEL_PTE_REF
- | INTEL_PTE_MOD
- | INTEL_PTE_WIRED
- | INTEL_PTE_VALID;
-
- if (flags & (VM_MEM_NOT_CACHEABLE | VM_WIMG_USE_DEFAULT)) {
- template |= INTEL_PTE_NCACHE;
- if (!(flags & (VM_MEM_GUARDED | VM_WIMG_USE_DEFAULT)))
- template |= INTEL_PTE_PTA;
- }
- if (prot & VM_PROT_WRITE)
- template |= INTEL_PTE_WRITE;
-
- while (start_addr < end_addr) {
- spl = splhigh();
- pte = pmap_pte(kernel_pmap, (vm_map_offset_t)virt);
- if (pte == PT_ENTRY_NULL) {
- panic("pmap_map_bd: Invalid kernel address\n");
- }
- pmap_store_pte(pte, template);
- splx(spl);
- pte_increment_pa(template);
- virt += PAGE_SIZE;
- start_addr += PAGE_SIZE;
- }
- (void)base;
- PMAP_UPDATE_TLBS(kernel_pmap, base, base + end_addr - start_addr);
- return(virt);
-}
-
extern char *first_avail;
extern vm_offset_t virtual_avail, virtual_end;
extern pmap_paddr_t avail_start, avail_end;
extern vm_offset_t eHIB;
extern vm_offset_t stext;
extern vm_offset_t etext;
-extern vm_offset_t sdata;
+extern vm_offset_t sdata, edata;
+extern vm_offset_t sconstdata, econstdata;
extern void *KPTphys;
+boolean_t pmap_smep_enabled = FALSE;
+boolean_t pmap_smap_enabled = FALSE;
+
void
pmap_cpu_init(void)
{
+ cpu_data_t *cdp = current_cpu_datap();
/*
* Here early in the life of a processor (from cpu_mode_init()).
* Ensure global page feature is disabled at this point.
/*
* Initialize the per-cpu, TLB-related fields.
*/
- current_cpu_datap()->cpu_kernel_cr3 = kernel_pmap->pm_cr3;
- current_cpu_datap()->cpu_active_cr3 = kernel_pmap->pm_cr3;
- current_cpu_datap()->cpu_tlb_invalid = FALSE;
- current_cpu_datap()->cpu_task_map = TASK_MAP_64BIT;
+ cdp->cpu_kernel_cr3 = kernel_pmap->pm_cr3;
+ cdp->cpu_active_cr3 = kernel_pmap->pm_cr3;
+ cdp->cpu_tlb_invalid = FALSE;
+ cdp->cpu_task_map = TASK_MAP_64BIT;
pmap_pcid_configure();
+ if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMEP) {
+ boolean_t nsmep;
+ if (!PE_parse_boot_argn("-pmap_smep_disable", &nsmep, sizeof(nsmep))) {
+ set_cr4(get_cr4() | CR4_SMEP);
+ pmap_smep_enabled = TRUE;
+ }
+ }
+ if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMAP) {
+ boolean_t nsmap;
+ if (!PE_parse_boot_argn("-pmap_smap_disable", &nsmap, sizeof(nsmap))) {
+ set_cr4(get_cr4() | CR4_SMAP);
+ pmap_smap_enabled = TRUE;
+ }
+ }
+
+ if (cdp->cpu_fixed_pmcs_enabled) {
+ boolean_t enable = TRUE;
+ cpu_pmc_control(&enable);
+ }
}
+static uint32_t pmap_scale_shift(void) {
+ uint32_t scale = 0;
+ if (sane_size <= 8*GB) {
+ scale = (uint32_t)(sane_size / (2 * GB));
+ } else if (sane_size <= 32*GB) {
+ scale = 4 + (uint32_t)((sane_size - (8 * GB))/ (4 * GB));
+ } else {
+ scale = 10 + (uint32_t)MIN(4, ((sane_size - (32 * GB))/ (8 * GB)));
+ }
+ return scale;
+}
/*
* Bootstrap the system enough to run with virtual memory.
kernel_pmap = &kernel_pmap_store;
kernel_pmap->ref_count = 1;
- kernel_pmap->nx_enabled = FALSE;
+ kernel_pmap->nx_enabled = TRUE;
kernel_pmap->pm_task_map = TASK_MAP_64BIT;
kernel_pmap->pm_obj = (vm_object_t) NULL;
kernel_pmap->dirbase = (pd_entry_t *)((uintptr_t)IdlePTD);
kernel_pmap->pm_pdpt = (pd_entry_t *) ((uintptr_t)IdlePDPT);
kernel_pmap->pm_pml4 = IdlePML4;
kernel_pmap->pm_cr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4);
+ kernel_pmap->pm_eptp = 0;
pmap_pcid_initialize_kernel(kernel_pmap);
virtual_avail = va;
#endif
+ if (!PE_parse_boot_argn("npvhash", &npvhashmask, sizeof (npvhashmask))) {
+ npvhashmask = ((NPVHASHBUCKETS) << pmap_scale_shift()) - 1;
- if (PE_parse_boot_argn("npvhash", &npvhash, sizeof (npvhash))) {
- if (0 != ((npvhash + 1) & npvhash)) {
- kprintf("invalid hash %d, must be ((2^N)-1), "
- "using default %d\n", npvhash, NPVHASH);
- npvhash = NPVHASH;
- }
- } else {
- npvhash = NPVHASH;
+ }
+
+ npvhashbuckets = npvhashmask + 1;
+
+ if (0 != ((npvhashbuckets) & npvhashmask)) {
+ panic("invalid hash %d, must be ((2^N)-1), "
+ "using default %d\n", npvhashmask, NPVHASHMASK);
}
simple_lock_init(&kernel_pmap->lock, 0);
simple_lock_init(&pv_hashed_free_list_lock, 0);
simple_lock_init(&pv_hashed_kern_free_list_lock, 0);
simple_lock_init(&pv_hash_table_lock,0);
+ simple_lock_init(&phys_backup_lock, 0);
pmap_cpu_init();
if (pmap_pcid_ncpus)
printf("PMAP: PCID enabled\n");
+ if (pmap_smep_enabled)
+ printf("PMAP: Supervisor Mode Execute Protection enabled\n");
+ if (pmap_smap_enabled)
+ printf("PMAP: Supervisor Mode Access Protection enabled\n");
+
+#if DEBUG
+ printf("Stack canary: 0x%lx\n", __stack_chk_guard[0]);
+ printf("early_random(): 0x%qx\n", early_random());
+#endif
+ boolean_t ptmp;
+ /* Check if the user has requested disabling stack or heap no-execute
+ * enforcement. These are "const" variables; that qualifier is cast away
+ * when altering them. The TEXT/DATA const sections are marked
+ * write protected later in the kernel startup sequence, so altering
+ * them is possible at this point, in pmap_bootstrap().
+ */
+ if (PE_parse_boot_argn("-pmap_disable_kheap_nx", &ptmp, sizeof(ptmp))) {
+ boolean_t *pdknxp = (boolean_t *) &pmap_disable_kheap_nx;
+ *pdknxp = TRUE;
+ }
+
+ if (PE_parse_boot_argn("-pmap_disable_kstack_nx", &ptmp, sizeof(ptmp))) {
+ boolean_t *pdknhp = (boolean_t *) &pmap_disable_kstack_nx;
+ *pdknhp = TRUE;
+ }
+
boot_args *args = (boot_args *)PE_state.bootArgs;
if (args->efiMode == kBootArgsEfiMode32) {
printf("EFI32: kernel virtual space limited to 4GB\n");
*endp = virtual_end;
}
+
+
+
+#if HIBERNATION
+
+#include <IOKit/IOHibernatePrivate.h>
+
+int32_t pmap_npages;
+int32_t pmap_teardown_last_valid_compact_indx = -1;
+
+
+void hibernate_rebuild_pmap_structs(void);
+void hibernate_teardown_pmap_structs(addr64_t *, addr64_t *);
+void pmap_pack_index(uint32_t);
+int32_t pmap_unpack_index(pv_rooted_entry_t);
+
+
+int32_t
+pmap_unpack_index(pv_rooted_entry_t pv_h)
+{
+ int32_t indx = 0;
+
+ indx = (int32_t)(*((uint64_t *)(&pv_h->qlink.next)) >> 48);
+ indx = indx << 16;
+ indx |= (int32_t)(*((uint64_t *)(&pv_h->qlink.prev)) >> 48);
+
+ *((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)0xffff << 48);
+ *((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)0xffff << 48);
+
+ return (indx);
+}
+
+
+void
+pmap_pack_index(uint32_t indx)
+{
+ pv_rooted_entry_t pv_h;
+
+ pv_h = &pv_head_table[indx];
+
+ *((uint64_t *)(&pv_h->qlink.next)) &= ~((uint64_t)0xffff << 48);
+ *((uint64_t *)(&pv_h->qlink.prev)) &= ~((uint64_t)0xffff << 48);
+
+ *((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)(indx >> 16)) << 48;
+ *((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)(indx & 0xffff)) << 48;
+}
+
+
+void
+hibernate_teardown_pmap_structs(addr64_t *unneeded_start, addr64_t *unneeded_end)
+{
+ int32_t i;
+ int32_t compact_target_indx;
+
+ compact_target_indx = 0;
+
+ for (i = 0; i < pmap_npages; i++) {
+ if (pv_head_table[i].pmap == PMAP_NULL) {
+
+ if (pv_head_table[compact_target_indx].pmap != PMAP_NULL)
+ compact_target_indx = i;
+ } else {
+ pmap_pack_index((uint32_t)i);
+
+ if (pv_head_table[compact_target_indx].pmap == PMAP_NULL) {
+ /*
+ * we've got a hole to fill, so
+ * move this pv_rooted_entry_t to it's new home
+ */
+ pv_head_table[compact_target_indx] = pv_head_table[i];
+ pv_head_table[i].pmap = PMAP_NULL;
+
+ pmap_teardown_last_valid_compact_indx = compact_target_indx;
+ compact_target_indx++;
+ } else
+ pmap_teardown_last_valid_compact_indx = i;
+ }
+ }
+ *unneeded_start = (addr64_t)&pv_head_table[pmap_teardown_last_valid_compact_indx+1];
+ *unneeded_end = (addr64_t)&pv_head_table[pmap_npages-1];
+
+ HIBLOG("hibernate_teardown_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx);
+}
+
+
+void
+hibernate_rebuild_pmap_structs(void)
+{
+ int32_t cindx, eindx, rindx;
+ pv_rooted_entry_t pv_h;
+
+ eindx = (int32_t)pmap_npages;
+
+ for (cindx = pmap_teardown_last_valid_compact_indx; cindx >= 0; cindx--) {
+
+ pv_h = &pv_head_table[cindx];
+
+ rindx = pmap_unpack_index(pv_h);
+ assert(rindx < pmap_npages);
+
+ if (rindx != cindx) {
+ /*
+ * this pv_rooted_entry_t was moved by hibernate_teardown_pmap_structs,
+ * so move it back to its real location
+ */
+ pv_head_table[rindx] = pv_head_table[cindx];
+ }
+ if (rindx+1 != eindx) {
+ /*
+ * the 'hole' between this vm_rooted_entry_t and the previous
+ * vm_rooted_entry_t we moved needs to be initialized as
+ * a range of zero'd vm_rooted_entry_t's
+ */
+ bzero((char *)&pv_head_table[rindx+1], (eindx - rindx - 1) * sizeof (struct pv_rooted_entry));
+ }
+ eindx = rindx;
+ }
+ if (rindx)
+ bzero ((char *)&pv_head_table[0], rindx * sizeof (struct pv_rooted_entry));
+
+ HIBLOG("hibernate_rebuild_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx);
+}
+
+#endif
+
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
kernel_pmap->pm_obj_pml4 = &kpml4obj_object_store;
- _vm_object_allocate((vm_object_size_t)NPML4PGS, &kpml4obj_object_store);
+ _vm_object_allocate((vm_object_size_t)NPML4PGS * PAGE_SIZE, &kpml4obj_object_store);
kernel_pmap->pm_obj_pdpt = &kpdptobj_object_store;
- _vm_object_allocate((vm_object_size_t)NPDPTPGS, &kpdptobj_object_store);
+ _vm_object_allocate((vm_object_size_t)NPDPTPGS * PAGE_SIZE, &kpdptobj_object_store);
kernel_pmap->pm_obj = &kptobj_object_store;
- _vm_object_allocate((vm_object_size_t)NPDEPGS, &kptobj_object_store);
+ _vm_object_allocate((vm_object_size_t)NPDEPGS * PAGE_SIZE, &kptobj_object_store);
/*
* Allocate memory for the pv_head_table and its lock bits,
*/
npages = i386_btop(avail_end);
+#if HIBERNATION
+ pmap_npages = (uint32_t)npages;
+#endif
s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages
- + (sizeof (struct pv_hashed_entry_t *) * (npvhash+1))
+ + (sizeof (struct pv_hashed_entry_t *) * (npvhashbuckets))
+ pv_lock_table_size(npages)
- + pv_hash_lock_table_size((npvhash+1))
+ + pv_hash_lock_table_size((npvhashbuckets))
+ npages);
-
s = round_page(s);
if (kernel_memory_allocate(kernel_map, &addr, s, 0,
- KMA_KOBJECT | KMA_PERMANENT)
+ KMA_KOBJECT | KMA_PERMANENT, VM_KERN_MEMORY_PMAP)
!= KERN_SUCCESS)
panic("pmap_init");
vsize = s;
#if PV_DEBUG
- if (0 == npvhash) panic("npvhash not initialized");
+ if (0 == npvhashmask) panic("npvhashmask not initialized");
#endif
/*
addr = (vm_offset_t) (pv_head_table + npages);
pv_hash_table = (pv_hashed_entry_t *)addr;
- addr = (vm_offset_t) (pv_hash_table + (npvhash + 1));
+ addr = (vm_offset_t) (pv_hash_table + (npvhashbuckets));
pv_lock_table = (char *) addr;
addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages));
pv_hash_lock_table = (char *) addr;
- addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhash+1)));
+ addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhashbuckets)));
pmap_phys_attributes = (char *) addr;
for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
if (pmptr->type != kEfiConventionalMemory)
continue;
- unsigned int pn;
+ ppnum_t pn;
for (pn = pmptr->base; pn <= pmptr->end; pn++) {
if (pn < last_pn) {
pmap_phys_attributes[pn] |= PHYS_MANAGED;
if (pn > last_managed_page)
last_managed_page = pn;
- if (pn < lowest_lo)
- pmap_phys_attributes[pn] |= PHYS_NOENCRYPT;
- else if (pn >= lowest_hi && pn <= highest_hi)
+ if (pn >= lowest_hi && pn <= highest_hi)
pmap_phys_attributes[pn] |= PHYS_NOENCRYPT;
}
}
pmap_anchor_zone = zinit(PAGE_SIZE, task_max, PAGE_SIZE, "pagetable anchors");
zone_change(pmap_anchor_zone, Z_NOENCRYPT, TRUE);
-#if ZONE_DEBUG
/* The anchor is required to be page aligned. Zone debugging adds
- * padding which may violate that requirement. Disable it
- * to avoid assumptions.
+ * padding which may violate that requirement. Tell the zone
+ * subsystem that alignment is required.
*/
- zone_debug_disable(pmap_anchor_zone);
-#endif
+
+ zone_change(pmap_anchor_zone, Z_ALIGNMENT_REQUIRED, TRUE);
s = (vm_size_t) sizeof(struct pv_hashed_entry);
pv_hashed_list_zone = zinit(s, 10000*s /* Expandable zone */,
* Ensure the kernel's PML4 entry exists for the basement
* before this is shared with any user.
*/
- pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT);
+ pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT, PMAP_EXPAND_OPTIONS_NONE);
+
+#if CONFIG_VMX
+ pmap_ept_support_ad = vmx_hv_support() && (VMX_CAP(MSR_IA32_VMX_EPT_VPID_CAP, MSR_IA32_VMX_EPT_VPID_CAP_AD_SHIFT, 1) ? TRUE : FALSE);
+#else
+ pmap_ept_support_ad = FALSE;
+#endif /* CONFIG_VMX */
+}
+
+static
+void pmap_mark_range(pmap_t npmap, uint64_t sv, uint64_t nxrosz, boolean_t NX, boolean_t ro) {
+ uint64_t ev = sv + nxrosz, cv = sv;
+ pd_entry_t *pdep;
+ pt_entry_t *ptep = NULL;
+
+ assert(!is_ept_pmap(npmap));
+
+ assert(((sv & 0xFFFULL) | (nxrosz & 0xFFFULL)) == 0);
+
+ for (pdep = pmap_pde(npmap, cv); pdep != NULL && (cv < ev);) {
+ uint64_t pdev = (cv & ~((uint64_t)PDEMASK));
+
+ if (*pdep & INTEL_PTE_PS) {
+ if (NX)
+ *pdep |= INTEL_PTE_NX;
+ if (ro)
+ *pdep &= ~INTEL_PTE_WRITE;
+ cv += NBPD;
+ cv &= ~((uint64_t) PDEMASK);
+ pdep = pmap_pde(npmap, cv);
+ continue;
+ }
+
+ for (ptep = pmap_pte(npmap, cv); ptep != NULL && (cv < (pdev + NBPD)) && (cv < ev);) {
+ if (NX)
+ *ptep |= INTEL_PTE_NX;
+ if (ro)
+ *ptep &= ~INTEL_PTE_WRITE;
+ cv += NBPT;
+ ptep = pmap_pte(npmap, cv);
+ }
+ }
+ DPRINTF("%s(0x%llx, 0x%llx, %u, %u): 0x%llx, 0x%llx\n", __FUNCTION__, sv, nxrosz, NX, ro, cv, ptep ? *ptep: 0);
}
/*
* 4K pages covering [stext,etext] are coalesced as 2M large pages.
* The now unused level-1 PTE pages are also freed.
*/
-extern uint32_t pmap_reserved_ranges;
+extern ppnum_t vm_kernel_base_page;
void
pmap_lowmem_finalize(void)
{
spl_t spl;
int i;
- /* Check the kernel is linked at the expected base address */
- if (i386_btop(kvtophys((vm_offset_t) &IdlePML4)) !=
- I386_KERNEL_IMAGE_BASE_PAGE)
- panic("pmap_lowmem_finalize() unexpected kernel base address");
-
/*
* Update wired memory statistics for early boot pages
*/
- PMAP_ZINFO_PALLOC(bootstrap_wired_pages * PAGE_SIZE);
+ PMAP_ZINFO_PALLOC(kernel_pmap, bootstrap_wired_pages * PAGE_SIZE);
/*
- * Free all pages in pmap regions below the base:
+ * Free pages in pmap regions below the base:
* rdar://6332712
* We can't free all the pages to VM that EFI reports available.
* Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
* There's also a size miscalculation here: pend is one page less
* than it should be but this is not fixed to be backwards
* compatible.
- * Due to this current EFI limitation, we take only the first
- * entry in the memory region table. However, the loop is retained
- * (with the intended termination criteria commented out) in the
- * hope that some day we can free all low-memory ranges.
+ * This is important for KASLR because up to 256*2MB = 512MB of space
+ * needs has to be released to VM.
*/
for (i = 0;
-// pmap_memory_regions[i].end <= I386_KERNEL_IMAGE_BASE_PAGE;
- i < 1 && (pmap_reserved_ranges == 0);
+ pmap_memory_regions[i].end < vm_kernel_base_page;
i++) {
- vm_offset_t pbase = (vm_offset_t)i386_ptob(pmap_memory_regions[i].base);
- vm_offset_t pend = (vm_offset_t)i386_ptob(pmap_memory_regions[i].end);
-// vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1);
+ vm_offset_t pbase = i386_ptob(pmap_memory_regions[i].base);
+ vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1);
+
+ DBG("pmap region %d [%p..[%p\n",
+ i, (void *) pbase, (void *) pend);
- DBG("ml_static_mfree(%p,%p) for pmap region %d\n",
+ if (pmap_memory_regions[i].attribute & EFI_MEMORY_KERN_RESERVED)
+ continue;
+ /*
+ * rdar://6332712
+ * Adjust limits not to free pages in range 0xc0000-0xff000.
+ */
+ if (pbase >= 0xc0000 && pend <= 0x100000)
+ continue;
+ if (pbase < 0xc0000 && pend > 0x100000) {
+ /* page range entirely within region, free lower part */
+ DBG("- ml_static_mfree(%p,%p)\n",
+ (void *) ml_static_ptovirt(pbase),
+ (void *) (0xc0000-pbase));
+ ml_static_mfree(ml_static_ptovirt(pbase),0xc0000-pbase);
+ pbase = 0x100000;
+ }
+ if (pbase < 0xc0000)
+ pend = MIN(pend, 0xc0000);
+ if (pend > 0x100000)
+ pbase = MAX(pbase, 0x100000);
+ DBG("- ml_static_mfree(%p,%p)\n",
(void *) ml_static_ptovirt(pbase),
- (void *) (pend - pbase), i);
+ (void *) (pend - pbase));
ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase);
}
+ /* A final pass to get rid of all initial identity mappings to
+ * low pages.
+ */
+ DPRINTF("%s: Removing mappings from 0->0x%lx\n", __FUNCTION__, vm_kernel_base);
+
+ /*
+ * Remove all mappings past the boot-cpu descriptor aliases and low globals.
+ * Non-boot-cpu GDT aliases will be remapped later as needed.
+ */
+ pmap_remove(kernel_pmap, LOWGLOBAL_ALIAS + PAGE_SIZE, vm_kernel_base);
+
/*
* If text and data are both 2MB-aligned,
* we can map text with large-pages,
ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
if (ptep)
- pmap_store_pte(ptep, *ptep & ~INTEL_PTE_RW);
+ pmap_store_pte(ptep, *ptep & ~INTEL_PTE_WRITE);
}
}
pde |= pte_phys; /* take page frame from pte */
if (wpkernel)
- pde &= ~INTEL_PTE_RW;
+ pde &= ~INTEL_PTE_WRITE;
DBG("pmap_store_pte(%p,0x%llx)\n",
(void *)pdep, pde);
pmap_store_pte(pdep, pde);
pmap_kernel_text_ps = I386_LPGBYTES;
}
- /* map lowmem global page into fixed addr */
- pt_entry_t *pte = NULL;
- if (0 == (pte = pmap_pte(kernel_pmap,
- VM_MIN_KERNEL_LOADED_ADDRESS + 0x2000)))
- panic("lowmem pte");
- /* make sure it is defined on page boundary */
- assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK));
- pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)
- | INTEL_PTE_REF
- | INTEL_PTE_MOD
- | INTEL_PTE_WIRED
- | INTEL_PTE_VALID
- | INTEL_PTE_RW);
+ boolean_t doconstro = TRUE;
+
+ (void) PE_parse_boot_argn("dataconstro", &doconstro, sizeof(doconstro));
+
+ if ((sconstdata | econstdata) & PAGE_MASK) {
+ kprintf("Const DATA misaligned 0x%lx 0x%lx\n", sconstdata, econstdata);
+ if ((sconstdata & PAGE_MASK) || (doconstro_override == FALSE))
+ doconstro = FALSE;
+ }
+
+ if ((sconstdata > edata) || (sconstdata < sdata) || ((econstdata - sconstdata) >= (edata - sdata))) {
+ kprintf("Const DATA incorrect size 0x%lx 0x%lx 0x%lx 0x%lx\n", sconstdata, econstdata, sdata, edata);
+ doconstro = FALSE;
+ }
+
+ if (doconstro)
+ kprintf("Marking const DATA read-only\n");
+
+ vm_offset_t dva;
+
+ for (dva = sdata; dva < edata; dva += I386_PGBYTES) {
+ assert(((sdata | edata) & PAGE_MASK) == 0);
+ if ( (sdata | edata) & PAGE_MASK) {
+ kprintf("DATA misaligned, 0x%lx, 0x%lx\n", sdata, edata);
+ break;
+ }
+
+ pt_entry_t dpte, *dptep = pmap_pte(kernel_pmap, dva);
+
+ dpte = *dptep;
+
+ assert((dpte & INTEL_PTE_VALID));
+ if ((dpte & INTEL_PTE_VALID) == 0) {
+ kprintf("Missing data mapping 0x%lx 0x%lx 0x%lx\n", dva, sdata, edata);
+ continue;
+ }
+
+ dpte |= INTEL_PTE_NX;
+ if (doconstro && (dva >= sconstdata) && (dva < econstdata)) {
+ dpte &= ~INTEL_PTE_WRITE;
+ }
+ pmap_store_pte(dptep, dpte);
+ }
+ kernel_segment_command_t * seg;
+ kernel_section_t * sec;
+
+ for (seg = firstseg(); seg != NULL; seg = nextsegfromheader(&_mh_execute_header, seg)) {
+ if (!strcmp(seg->segname, "__TEXT") ||
+ !strcmp(seg->segname, "__DATA")) {
+ continue;
+ }
+ //XXX
+ if (!strcmp(seg->segname, "__KLD")) {
+ continue;
+ }
+ if (!strcmp(seg->segname, "__HIB")) {
+ for (sec = firstsect(seg); sec != NULL; sec = nextsect(seg, sec)) {
+ if (sec->addr & PAGE_MASK)
+ panic("__HIB segment's sections misaligned");
+ if (!strcmp(sec->sectname, "__text")) {
+ pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), FALSE, TRUE);
+ } else {
+ pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), TRUE, FALSE);
+ }
+ }
+ } else {
+ pmap_mark_range(kernel_pmap, seg->vmaddr, round_page_64(seg->vmsize), TRUE, FALSE);
+ }
+ }
+
+ /*
+ * If we're debugging, map the low global vector page at the fixed
+ * virtual address. Otherwise, remove the mapping for this.
+ */
+ if (debug_boot_arg) {
+ pt_entry_t *pte = NULL;
+ if (0 == (pte = pmap_pte(kernel_pmap, LOWGLOBAL_ALIAS)))
+ panic("lowmem pte");
+ /* make sure it is defined on page boundary */
+ assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK));
+ pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)
+ | INTEL_PTE_REF
+ | INTEL_PTE_MOD
+ | INTEL_PTE_WIRED
+ | INTEL_PTE_VALID
+ | INTEL_PTE_WRITE
+ | INTEL_PTE_NX);
+ } else {
+ pmap_remove(kernel_pmap,
+ LOWGLOBAL_ALIAS, LOWGLOBAL_ALIAS + PAGE_SIZE);
+ }
+
splx(spl);
if (pmap_pcid_ncpus)
tlb_flush_global();
return TRUE;
}
+void
+hv_ept_pmap_create(void **ept_pmap, void **eptp)
+{
+ pmap_t p;
+
+ if ((ept_pmap == NULL) || (eptp == NULL)) {
+ return;
+ }
+
+ p = pmap_create_options(get_task_ledger(current_task()), 0, (PMAP_CREATE_64BIT | PMAP_CREATE_EPT));
+ if (p == PMAP_NULL) {
+ *ept_pmap = NULL;
+ *eptp = NULL;
+ return;
+ }
+
+ assert(is_ept_pmap(p));
+
+ *ept_pmap = (void*)p;
+ *eptp = (void*)(p->pm_eptp);
+ return;
+}
/*
* Create and return a physical map.
* is bounded by that size.
*/
pmap_t
-pmap_create(
- vm_map_size_t sz,
- boolean_t is_64bit)
+pmap_create_options(
+ ledger_t ledger,
+ vm_map_size_t sz,
+ int flags)
{
pmap_t p;
vm_size_t size;
pml4_entry_t *kpml4;
PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
- (uint32_t) (sz>>32), (uint32_t) sz, is_64bit, 0, 0);
+ (uint32_t) (sz>>32), (uint32_t) sz, flags, 0, 0);
size = (vm_size_t) sz;
return(PMAP_NULL);
}
+ /*
+ * Return error when unrecognized flags are passed.
+ */
+ if ((flags & ~(PMAP_CREATE_KNOWN_FLAGS)) != 0) {
+ return(PMAP_NULL);
+ }
+
p = (pmap_t) zalloc(pmap_zone);
if (PMAP_NULL == p)
panic("pmap_create zalloc");
bzero(p, sizeof(*p));
/* init counts now since we'll be bumping some */
simple_lock_init(&p->lock, 0);
+#if 00
p->stats.resident_count = 0;
p->stats.resident_max = 0;
p->stats.wired_count = 0;
+#else
+ bzero(&p->stats, sizeof (p->stats));
+#endif
p->ref_count = 1;
p->nx_enabled = 1;
p->pm_shared = FALSE;
+ ledger_reference(ledger);
+ p->ledger = ledger;
- p->pm_task_map = is_64bit ? TASK_MAP_64BIT : TASK_MAP_32BIT;;
+ p->pm_task_map = ((flags & PMAP_CREATE_64BIT) ? TASK_MAP_64BIT : TASK_MAP_32BIT);
if (pmap_pcid_ncpus)
pmap_pcid_initialize(p);
+
p->pm_pml4 = zalloc(pmap_anchor_zone);
pmap_assert((((uintptr_t)p->pm_pml4) & PAGE_MASK) == 0);
memset((char *)p->pm_pml4, 0, PAGE_SIZE);
- p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4);
+ if (flags & PMAP_CREATE_EPT) {
+ p->pm_eptp = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4);
+ p->pm_cr3 = 0;
+ } else {
+ p->pm_eptp = 0;
+ p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4);
+ }
/* allocate the vm_objs to hold the pdpt, pde and pte pages */
- p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS));
+ p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS) * PAGE_SIZE);
if (NULL == p->pm_obj_pml4)
panic("pmap_create pdpt obj");
- p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS));
+ p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS) * PAGE_SIZE);
if (NULL == p->pm_obj_pdpt)
panic("pmap_create pdpt obj");
- p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS));
+ p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS) * PAGE_SIZE);
if (NULL == p->pm_obj)
panic("pmap_create pte obj");
kpml4 = kernel_pmap->pm_pml4;
pml4[KERNEL_PML4_INDEX] = kpml4[KERNEL_PML4_INDEX];
pml4[KERNEL_KEXTS_INDEX] = kpml4[KERNEL_KEXTS_INDEX];
- pml4[KERNEL_PHYSMAP_INDEX] = kpml4[KERNEL_PHYSMAP_INDEX];
+ pml4[KERNEL_PHYSMAP_PML4_INDEX] = kpml4[KERNEL_PHYSMAP_PML4_INDEX];
PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
- p, is_64bit, 0, 0, 0);
+ p, flags, 0, 0, 0);
return(p);
}
+pmap_t
+pmap_create(
+ ledger_t ledger,
+ vm_map_size_t sz,
+ boolean_t is_64bit)
+{
+ return pmap_create_options(ledger, sz, ((is_64bit) ? PMAP_CREATE_64BIT : 0));
+}
+
/*
* Retire the given physical map from service.
* Should only be called if the map contains
* no valid mappings.
*/
+extern int vm_wired_objects_page_count;
void
pmap_destroy(pmap_t p)
vm_object_deallocate(p->pm_obj);
OSAddAtomic(-inuse_ptepages, &inuse_ptepages_count);
- PMAP_ZINFO_PFREE(inuse_ptepages * PAGE_SIZE);
-
+ PMAP_ZINFO_PFREE(p, inuse_ptepages * PAGE_SIZE);
+ ledger_dereference(p->ledger);
zfree(pmap_zone, p);
PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
}
+void
+pmap_protect(
+ pmap_t map,
+ vm_map_offset_t sva,
+ vm_map_offset_t eva,
+ vm_prot_t prot)
+{
+ pmap_protect_options(map, sva, eva, prot, 0, NULL);
+}
+
+
/*
* Set the physical protection on the
* specified range of this map as requested.
* Will not increase permissions.
*/
void
-pmap_protect(
+pmap_protect_options(
pmap_t map,
vm_map_offset_t sva,
vm_map_offset_t eva,
- vm_prot_t prot)
+ vm_prot_t prot,
+ unsigned int options,
+ void *arg)
{
pt_entry_t *pde;
pt_entry_t *spte, *epte;
vm_map_offset_t orig_sva;
boolean_t set_NX;
int num_found = 0;
+ boolean_t is_ept;
pmap_intr_assert();
return;
if (prot == VM_PROT_NONE) {
- pmap_remove(map, sva, eva);
+ pmap_remove_options(map, sva, eva, options);
return;
}
PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START,
else
set_NX = TRUE;
+ is_ept = is_ept_pmap(map);
+
+
PMAP_LOCK(map);
orig_sva = sva;
if (lva > eva)
lva = eva;
pde = pmap_pde(map, sva);
- if (pde && (*pde & INTEL_PTE_VALID)) {
- if (*pde & INTEL_PTE_PS) {
+ if (pde && (*pde & PTE_VALID_MASK(is_ept))) {
+ if (*pde & PTE_PS) {
/* superpage */
spte = pde;
epte = spte+1; /* excluded */
}
for (; spte < epte; spte++) {
- if (!(*spte & INTEL_PTE_VALID))
+ if (!(*spte & PTE_VALID_MASK(is_ept)))
continue;
+ if (is_ept) {
+ if (prot & VM_PROT_READ)
+ pmap_update_pte(spte, 0, PTE_READ(is_ept));
+ else
+ pmap_update_pte(spte, PTE_READ(is_ept), 0);
+ }
if (prot & VM_PROT_WRITE)
- pmap_update_pte(spte, *spte,
- *spte | INTEL_PTE_WRITE);
- else
- pmap_update_pte(spte, *spte,
- *spte & ~INTEL_PTE_WRITE);
-
- if (set_NX)
- pmap_update_pte(spte, *spte,
- *spte | INTEL_PTE_NX);
+ pmap_update_pte(spte, 0, PTE_WRITE(is_ept));
else
- pmap_update_pte(spte, *spte,
- *spte & ~INTEL_PTE_NX);
-
+ pmap_update_pte(spte, PTE_WRITE(is_ept), 0);
+
+ if (set_NX) {
+ if (!is_ept)
+ pmap_update_pte(spte, 0, INTEL_PTE_NX);
+ else
+ pmap_update_pte(spte, INTEL_EPT_EX, 0);
+ } else {
+ if (!is_ept)
+ pmap_update_pte(spte, INTEL_PTE_NX, 0);
+ else
+ pmap_update_pte(spte, 0, INTEL_EPT_EX);
+ }
num_found++;
}
}
sva = lva;
}
- if (num_found)
- PMAP_UPDATE_TLBS(map, orig_sva, eva);
-
+ if (num_found) {
+ if (options & PMAP_OPTIONS_NOFLUSH)
+ PMAP_UPDATE_TLBS_DELAYED(map, orig_sva, eva, (pmap_flush_context *)arg);
+ else
+ PMAP_UPDATE_TLBS(map, orig_sva, eva);
+ }
PMAP_UNLOCK(map);
PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END,
cur_page_size = PAGE_SIZE;
for (page = 0; page < size; page+=cur_page_size/PAGE_SIZE) {
- pmap_enter(pmap, va, pa, prot, attr, TRUE);
+ pmap_enter(pmap, va, pa, prot, VM_PROT_NONE, attr, TRUE);
va += cur_page_size;
pa+=cur_page_size/PAGE_SIZE;
}
}
-
-void
+kern_return_t
pmap_expand_pml4(
pmap_t map,
- vm_map_offset_t vaddr)
+ vm_map_offset_t vaddr,
+ unsigned int options)
{
vm_page_t m;
pmap_paddr_t pa;
uint64_t i;
ppnum_t pn;
pml4_entry_t *pml4p;
+ boolean_t is_ept = is_ept_pmap(map);
DBG("pmap_expand_pml4(%p,%p)\n", map, (void *)vaddr);
/*
* Allocate a VM page for the pml4 page
*/
- while ((m = vm_page_grab()) == VM_PAGE_NULL)
+ while ((m = vm_page_grab()) == VM_PAGE_NULL) {
+ if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
+ return KERN_RESOURCE_SHORTAGE;
VM_PAGE_WAIT();
-
+ }
/*
* put the page into the pmap's obj list so it
* can be found later.
pmap_zero_page(pn);
vm_page_lockspin_queues();
- vm_page_wire(m);
+ vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE);
vm_page_unlock_queues();
OSAddAtomic(1, &inuse_ptepages_count);
OSAddAtomic64(1, &alloc_ptepages_count);
- PMAP_ZINFO_PALLOC(PAGE_SIZE);
+ PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
vm_object_lock(map->pm_obj_pml4);
VM_PAGE_FREE(m);
OSAddAtomic(-1, &inuse_ptepages_count);
- PMAP_ZINFO_PFREE(PAGE_SIZE);
- return;
+ PMAP_ZINFO_PFREE(map, PAGE_SIZE);
+ return KERN_SUCCESS;
}
#if 0 /* DEBUG */
- if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i)) {
+ if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE)) {
panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
map, map->pm_obj_pml4, vaddr, i);
}
#endif
- vm_page_insert(m, map->pm_obj_pml4, (vm_object_offset_t)i);
+ vm_page_insert_wired(m, map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE, VM_KERN_MEMORY_PTE);
vm_object_unlock(map->pm_obj_pml4);
/*
pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */
pmap_store_pte(pml4p, pa_to_pte(pa)
- | INTEL_PTE_VALID
- | INTEL_PTE_USER
- | INTEL_PTE_WRITE);
+ | PTE_READ(is_ept)
+ | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
+ | PTE_WRITE(is_ept));
PMAP_UNLOCK(map);
- return;
+ return KERN_SUCCESS;
}
-void
-pmap_expand_pdpt(
- pmap_t map,
- vm_map_offset_t vaddr)
+kern_return_t
+pmap_expand_pdpt(pmap_t map, vm_map_offset_t vaddr, unsigned int options)
{
vm_page_t m;
pmap_paddr_t pa;
uint64_t i;
ppnum_t pn;
pdpt_entry_t *pdptp;
+ boolean_t is_ept = is_ept_pmap(map);
DBG("pmap_expand_pdpt(%p,%p)\n", map, (void *)vaddr);
while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) {
- pmap_expand_pml4(map, vaddr);
+ kern_return_t pep4kr = pmap_expand_pml4(map, vaddr, options);
+ if (pep4kr != KERN_SUCCESS)
+ return pep4kr;
}
/*
* Allocate a VM page for the pdpt page
*/
- while ((m = vm_page_grab()) == VM_PAGE_NULL)
+ while ((m = vm_page_grab()) == VM_PAGE_NULL) {
+ if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
+ return KERN_RESOURCE_SHORTAGE;
VM_PAGE_WAIT();
+ }
/*
* put the page into the pmap's obj list so it
pmap_zero_page(pn);
vm_page_lockspin_queues();
- vm_page_wire(m);
+ vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE);
vm_page_unlock_queues();
OSAddAtomic(1, &inuse_ptepages_count);
OSAddAtomic64(1, &alloc_ptepages_count);
- PMAP_ZINFO_PALLOC(PAGE_SIZE);
+ PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
vm_object_lock(map->pm_obj_pdpt);
VM_PAGE_FREE(m);
OSAddAtomic(-1, &inuse_ptepages_count);
- PMAP_ZINFO_PFREE(PAGE_SIZE);
- return;
+ PMAP_ZINFO_PFREE(map, PAGE_SIZE);
+ return KERN_SUCCESS;
}
#if 0 /* DEBUG */
- if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i)) {
+ if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE)) {
panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
map, map->pm_obj_pdpt, vaddr, i);
}
#endif
- vm_page_insert(m, map->pm_obj_pdpt, (vm_object_offset_t)i);
+ vm_page_insert_wired(m, map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE, VM_KERN_MEMORY_PTE);
vm_object_unlock(map->pm_obj_pdpt);
/*
pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */
pmap_store_pte(pdptp, pa_to_pte(pa)
- | INTEL_PTE_VALID
- | INTEL_PTE_USER
- | INTEL_PTE_WRITE);
+ | PTE_READ(is_ept)
+ | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
+ | PTE_WRITE(is_ept));
PMAP_UNLOCK(map);
- return;
+ return KERN_SUCCESS;
}
* has been expanded enough.
* (We won't loop forever, since page tables aren't shrunk.)
*/
-void
+kern_return_t
pmap_expand(
pmap_t map,
- vm_map_offset_t vaddr)
+ vm_map_offset_t vaddr,
+ unsigned int options)
{
pt_entry_t *pdp;
register vm_page_t m;
register pmap_paddr_t pa;
uint64_t i;
ppnum_t pn;
+ boolean_t is_ept = is_ept_pmap(map);
/*
while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) {
- /* need room for another pde entry */
- pmap_expand_pdpt(map, vaddr);
+ kern_return_t pepkr = pmap_expand_pdpt(map, vaddr, options);
+ if (pepkr != KERN_SUCCESS)
+ return pepkr;
}
/*
* Allocate a VM page for the pde entries.
*/
- while ((m = vm_page_grab()) == VM_PAGE_NULL)
+ while ((m = vm_page_grab()) == VM_PAGE_NULL) {
+ if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
+ return KERN_RESOURCE_SHORTAGE;
VM_PAGE_WAIT();
+ }
/*
* put the page into the pmap's obj list so it
pmap_zero_page(pn);
vm_page_lockspin_queues();
- vm_page_wire(m);
+ vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE);
vm_page_unlock_queues();
OSAddAtomic(1, &inuse_ptepages_count);
OSAddAtomic64(1, &alloc_ptepages_count);
- PMAP_ZINFO_PALLOC(PAGE_SIZE);
+ PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
vm_object_lock(map->pm_obj);
VM_PAGE_FREE(m);
OSAddAtomic(-1, &inuse_ptepages_count);
- PMAP_ZINFO_PFREE(PAGE_SIZE);
- return;
+ PMAP_ZINFO_PFREE(map, PAGE_SIZE);
+ return KERN_SUCCESS;
}
#if 0 /* DEBUG */
- if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i)) {
+ if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE)) {
panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
map, map->pm_obj, vaddr, i);
}
#endif
- vm_page_insert(m, map->pm_obj, (vm_object_offset_t)i);
+ vm_page_insert_wired(m, map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE, VM_KERN_MEMORY_PTE);
vm_object_unlock(map->pm_obj);
/*
*/
pdp = pmap_pde(map, vaddr);
pmap_store_pte(pdp, pa_to_pte(pa)
- | INTEL_PTE_VALID
- | INTEL_PTE_USER
- | INTEL_PTE_WRITE);
+ | PTE_READ(is_ept)
+ | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
+ | PTE_WRITE(is_ept));
PMAP_UNLOCK(map);
- return;
+ return KERN_SUCCESS;
}
/* On K64 machines with more than 32GB of memory, pmap_steal_memory
{
ppnum_t pn;
pt_entry_t *pte;
+ boolean_t is_ept = is_ept_pmap(pmap);
PMAP_LOCK(pmap);
pte = pmap64_pml4(pmap, vaddr);
pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
- | INTEL_PTE_VALID
- | INTEL_PTE_USER
- | INTEL_PTE_WRITE);
+ | PTE_READ(is_ept)
+ | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
+ | PTE_WRITE(is_ept));
}
if(pmap64_pde(pmap, vaddr) == PD_ENTRY_NULL) {
pte = pmap64_pdpt(pmap, vaddr);
pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
- | INTEL_PTE_VALID
- | INTEL_PTE_USER
- | INTEL_PTE_WRITE);
+ | PTE_READ(is_ept)
+ | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
+ | PTE_WRITE(is_ept));
}
if(pmap_pte(pmap, vaddr) == PT_ENTRY_NULL) {
pte = pmap64_pde(pmap, vaddr);
pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
- | INTEL_PTE_VALID
- | INTEL_PTE_USER
- | INTEL_PTE_WRITE);
+ | PTE_READ(is_ept)
+ | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
+ | PTE_WRITE(is_ept));
}
PMAP_UNLOCK(pmap);
register pt_entry_t *pdp, *ptp;
pt_entry_t *eptp;
int wired;
+ boolean_t is_ept;
if (p == PMAP_NULL)
return;
if (p == kernel_pmap)
return;
+ is_ept = is_ept_pmap(p);
+
/*
* Garbage collect map.
*/
pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)];
pdp++)
{
- if (*pdp & INTEL_PTE_VALID) {
- if(*pdp & INTEL_PTE_REF) {
- pmap_store_pte(pdp, *pdp & ~INTEL_PTE_REF);
- collect_ref++;
- } else {
- collect_unref++;
- ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase));
- eptp = ptp + NPTEPG;
+ if (*pdp & PTE_VALID_MASK(is_ept)) {
+ if (*pdp & PTE_REF(is_ept)) {
+ pmap_store_pte(pdp, *pdp & ~PTE_REF(is_ept));
+ collect_ref++;
+ } else {
+ collect_unref++;
+ ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase));
+ eptp = ptp + NPTEPG;
- /*
- * If the pte page has any wired mappings, we cannot
- * free it.
- */
- wired = 0;
- {
- register pt_entry_t *ptep;
- for (ptep = ptp; ptep < eptp; ptep++) {
- if (iswired(*ptep)) {
- wired = 1;
- break;
+ /*
+ * If the pte page has any wired mappings, we cannot
+ * free it.
+ */
+ wired = 0;
+ {
+ register pt_entry_t *ptep;
+ for (ptep = ptp; ptep < eptp; ptep++) {
+ if (iswired(*ptep)) {
+ wired = 1;
+ break;
+ }
+ }
+ }
+ if (!wired) {
+ /*
+ * Remove the virtual addresses mapped by this pte page.
+ */
+ pmap_remove_range(p,
+ pdetova(pdp - (pt_entry_t *)p->dirbase),
+ ptp,
+ eptp);
+
+ /*
+ * Invalidate the page directory pointer.
+ */
+ pmap_store_pte(pdp, 0x0);
+
+ PMAP_UNLOCK(p);
+
+ /*
+ * And free the pte page itself.
+ */
+ {
+ register vm_page_t m;
+
+ vm_object_lock(p->pm_obj);
+
+ m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0]) * PAGE_SIZE);
+ if (m == VM_PAGE_NULL)
+ panic("pmap_collect: pte page not in object");
+
+ vm_object_unlock(p->pm_obj);
+
+ VM_PAGE_FREE(m);
+
+ OSAddAtomic(-1, &inuse_ptepages_count);
+ PMAP_ZINFO_PFREE(p, PAGE_SIZE);
+ }
+
+ PMAP_LOCK(p);
+ }
}
- }
}
- if (!wired) {
- /*
- * Remove the virtual addresses mapped by this pte page.
- */
- pmap_remove_range(p,
- pdetova(pdp - (pt_entry_t *)p->dirbase),
- ptp,
- eptp);
-
- /*
- * Invalidate the page directory pointer.
- */
- pmap_store_pte(pdp, 0x0);
-
- PMAP_UNLOCK(p);
-
- /*
- * And free the pte page itself.
- */
- {
- register vm_page_t m;
-
- vm_object_lock(p->pm_obj);
-
- m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0]));
- if (m == VM_PAGE_NULL)
- panic("pmap_collect: pte page not in object");
-
- vm_object_unlock(p->pm_obj);
-
- VM_PAGE_FREE(m);
-
- OSAddAtomic(-1, &inuse_ptepages_count);
- PMAP_ZINFO_PFREE(PAGE_SIZE);
- }
-
- PMAP_LOCK(p);
- }
- }
- }
}
PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL);
PMAP_UNLOCK(p);
return;
-
}
#endif
#endif /* lint */
}
-
void
invalidate_icache(__unused vm_offset_t addr,
__unused unsigned cnt,
{
thread_t thread = current_thread();
uint64_t ccr3;
-
if (current_map() == kernel_map)
return KERN_FAILURE;
else if (((ccr3 = get_cr3_base()) != thread->map->pmap->pm_cr3) && (no_shared_cr3 == FALSE))
return KERN_FAILURE;
else if (no_shared_cr3 && (ccr3 != kernel_pmap->pm_cr3))
return KERN_FAILURE;
- else if (thread->machine.specFlags & CopyIOActive)
- return KERN_FAILURE;
else
return KERN_SUCCESS;
}
spl_t s;
s = splhigh(); /* Make sure interruptions are disabled */
- set_dirbase(tpmap, current_thread());
+ set_dirbase(tpmap, current_thread(), cpu_number());
splx(s);
}
*caller_acct = 1;
}
-static inline void
-pmap_cpuset_NMIPI(cpu_set cpu_mask) {
- unsigned int cpu, cpu_bit;
- uint64_t deadline;
- for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
- if (cpu_mask & cpu_bit)
- cpu_NMI_interrupt(cpu);
+void
+pmap_flush_context_init(pmap_flush_context *pfc)
+{
+ pfc->pfc_cpus = 0;
+ pfc->pfc_invalid_global = 0;
+}
+
+extern unsigned TLBTimeOut;
+void
+pmap_flush(
+ pmap_flush_context *pfc)
+{
+ unsigned int my_cpu;
+ unsigned int cpu;
+ unsigned int cpu_bit;
+ cpumask_t cpus_to_respond = 0;
+ cpumask_t cpus_to_signal = 0;
+ cpumask_t cpus_signaled = 0;
+ boolean_t flush_self = FALSE;
+ uint64_t deadline;
+
+ mp_disable_preemption();
+
+ my_cpu = cpu_number();
+ cpus_to_signal = pfc->pfc_cpus;
+
+ PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_START,
+ NULL, cpus_to_signal, 0, 0, 0);
+
+ for (cpu = 0, cpu_bit = 1; cpu < real_ncpus && cpus_to_signal; cpu++, cpu_bit <<= 1) {
+
+ if (cpus_to_signal & cpu_bit) {
+
+ cpus_to_signal &= ~cpu_bit;
+
+ if (!cpu_datap(cpu)->cpu_running)
+ continue;
+
+ if (pfc->pfc_invalid_global & cpu_bit)
+ cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE;
+ else
+ cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE;
+ mfence();
+
+ if (cpu == my_cpu) {
+ flush_self = TRUE;
+ continue;
+ }
+ if (CPU_CR3_IS_ACTIVE(cpu)) {
+ cpus_to_respond |= cpu_bit;
+ i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
+ }
+ }
}
- deadline = mach_absolute_time() + (LockTimeOut);
- while (mach_absolute_time() < deadline)
- cpu_pause();
+ cpus_signaled = cpus_to_respond;
+
+ /*
+ * Flush local tlb if required.
+ * Do this now to overlap with other processors responding.
+ */
+ if (flush_self && cpu_datap(my_cpu)->cpu_tlb_invalid != FALSE)
+ process_pmap_updates();
+
+ if (cpus_to_respond) {
+
+ deadline = mach_absolute_time() +
+ (TLBTimeOut ? TLBTimeOut : LockTimeOut);
+ boolean_t is_timeout_traced = FALSE;
+
+ /*
+ * Wait for those other cpus to acknowledge
+ */
+ while (cpus_to_respond != 0) {
+ long orig_acks = 0;
+
+ for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
+ /* Consider checking local/global invalidity
+ * as appropriate in the PCID case.
+ */
+ if ((cpus_to_respond & cpu_bit) != 0) {
+ if (!cpu_datap(cpu)->cpu_running ||
+ cpu_datap(cpu)->cpu_tlb_invalid == FALSE ||
+ !CPU_CR3_IS_ACTIVE(cpu)) {
+ cpus_to_respond &= ~cpu_bit;
+ }
+ cpu_pause();
+ }
+ if (cpus_to_respond == 0)
+ break;
+ }
+ if (cpus_to_respond && (mach_absolute_time() > deadline)) {
+ if (machine_timeout_suspended())
+ continue;
+ if (TLBTimeOut == 0) {
+ if (is_timeout_traced)
+ continue;
+ PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS_TO),
+ NULL, cpus_to_signal, cpus_to_respond, 0, 0);
+ is_timeout_traced = TRUE;
+ continue;
+ }
+ pmap_tlb_flush_timeout = TRUE;
+ orig_acks = NMIPI_acks;
+ mp_cpus_NMIPI(cpus_to_respond);
+
+ panic("TLB invalidation IPI timeout: "
+ "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%llx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
+ cpus_to_respond, orig_acks, NMIPI_acks);
+ }
+ }
+ }
+ PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_END,
+ NULL, cpus_signaled, flush_self, 0, 0);
+
+ mp_enable_preemption();
+}
+
+
+static void
+invept(void *eptp)
+{
+ struct {
+ uint64_t eptp;
+ uint64_t reserved;
+ } __attribute__((aligned(16), packed)) invept_descriptor = {(uint64_t)eptp, 0};
+
+ __asm__ volatile("invept (%%rax), %%rcx"
+ : : "c" (PMAP_INVEPT_SINGLE_CONTEXT), "a" (&invept_descriptor)
+ : "cc", "memory");
}
/*
*/
void
-pmap_flush_tlbs(pmap_t pmap, vm_map_offset_t startv, vm_map_offset_t endv)
+pmap_flush_tlbs(pmap_t pmap, vm_map_offset_t startv, vm_map_offset_t endv, int options, pmap_flush_context *pfc)
{
unsigned int cpu;
unsigned int cpu_bit;
- cpu_set cpus_to_signal;
+ cpumask_t cpus_to_signal;
unsigned int my_cpu = cpu_number();
pmap_paddr_t pmap_cr3 = pmap->pm_cr3;
boolean_t flush_self = FALSE;
uint64_t deadline;
boolean_t pmap_is_shared = (pmap->pm_shared || (pmap == kernel_pmap));
+ boolean_t need_global_flush = FALSE;
+ uint32_t event_code;
+ vm_map_offset_t event_startv, event_endv;
+ boolean_t is_ept = is_ept_pmap(pmap);
assert((processor_avail_count < 2) ||
(ml_get_interrupts_enabled() && get_preemption_level() != 0));
+ if (pmap == kernel_pmap) {
+ event_code = PMAP_CODE(PMAP__FLUSH_KERN_TLBS);
+ event_startv = VM_KERNEL_UNSLIDE_OR_PERM(startv);
+ event_endv = VM_KERNEL_UNSLIDE_OR_PERM(endv);
+ } else if (is_ept) {
+ event_code = PMAP_CODE(PMAP__FLUSH_EPT);
+ event_startv = startv;
+ event_endv = endv;
+ } else {
+ event_code = PMAP_CODE(PMAP__FLUSH_TLBS);
+ event_startv = startv;
+ event_endv = endv;
+ }
+
+ PMAP_TRACE_CONSTANT(event_code | DBG_FUNC_START,
+ VM_KERNEL_UNSLIDE_OR_PERM(pmap), options, event_startv, event_endv, 0);
+
+ if (is_ept) {
+ mp_cpus_call(CPUMASK_ALL, ASYNC, invept, (void*)pmap->pm_eptp);
+ goto out;
+ }
+
/*
* Scan other cpus for matching active or task CR3.
* For idle cpus (with no active map) we mark them invalid but
cpus_to_signal = 0;
if (pmap_pcid_ncpus) {
+ if (pmap_is_shared)
+ need_global_flush = TRUE;
pmap_pcid_invalidate_all_cpus(pmap);
- __asm__ volatile("mfence":::"memory");
+ mfence();
}
-
for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
if (!cpu_datap(cpu)->cpu_running)
continue;
if ((pmap_cr3 == cpu_task_cr3) ||
(pmap_cr3 == cpu_active_cr3) ||
(pmap_is_shared)) {
+
+ if (options & PMAP_DELAY_TLB_FLUSH) {
+ if (need_global_flush == TRUE)
+ pfc->pfc_invalid_global |= cpu_bit;
+ pfc->pfc_cpus |= cpu_bit;
+
+ continue;
+ }
if (cpu == my_cpu) {
flush_self = TRUE;
continue;
}
- if (pmap_pcid_ncpus && pmap_is_shared)
+ if (need_global_flush == TRUE)
cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE;
else
cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE;
- __asm__ volatile("mfence":::"memory");
+ mfence();
/*
* We don't need to signal processors which will flush
*/
if (CPU_CR3_IS_ACTIVE(cpu) &&
(pmap_cr3 == CPU_GET_ACTIVE_CR3(cpu) ||
- pmap->pm_shared ||
- (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) {
+ pmap->pm_shared ||
+ (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) {
cpus_to_signal |= cpu_bit;
i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
}
}
}
-
- PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_START,
- pmap, cpus_to_signal, flush_self, startv, endv);
+ if ((options & PMAP_DELAY_TLB_FLUSH))
+ goto out;
/*
* Flush local tlb if required.
}
if (cpus_to_signal) {
- cpu_set cpus_to_respond = cpus_to_signal;
+ cpumask_t cpus_to_respond = cpus_to_signal;
+
+ deadline = mach_absolute_time() +
+ (TLBTimeOut ? TLBTimeOut : LockTimeOut);
+ boolean_t is_timeout_traced = FALSE;
- deadline = mach_absolute_time() + LockTimeOut;
/*
* Wait for those other cpus to acknowledge
*/
if (cpus_to_respond && (mach_absolute_time() > deadline)) {
if (machine_timeout_suspended())
continue;
+ if (TLBTimeOut == 0) {
+ /* cut tracepoint but don't panic */
+ if (is_timeout_traced)
+ continue;
+ PMAP_TRACE_CONSTANT(
+ PMAP_CODE(PMAP__FLUSH_TLBS_TO),
+ VM_KERNEL_UNSLIDE_OR_PERM(pmap), cpus_to_signal, cpus_to_respond, 0, 0);
+ is_timeout_traced = TRUE;
+ continue;
+ }
pmap_tlb_flush_timeout = TRUE;
orig_acks = NMIPI_acks;
- pmap_cpuset_NMIPI(cpus_to_respond);
+ mp_cpus_NMIPI(cpus_to_respond);
panic("TLB invalidation IPI timeout: "
- "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
+ "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%llx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
cpus_to_respond, orig_acks, NMIPI_acks);
}
}
}
- PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_END,
- pmap, cpus_to_signal, startv, endv, 0);
+ if (__improbable((pmap == kernel_pmap) && (flush_self != TRUE))) {
+ panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, pmap_cr3: 0x%llx, CPU active CR3: 0x%llX, CPU Task Map: %d", kernel_pmap->pm_cr3, pmap_cr3, current_cpu_datap()->cpu_active_cr3, current_cpu_datap()->cpu_task_map);
+ }
+
+out:
+ PMAP_TRACE_CONSTANT(event_code | DBG_FUNC_END,
+ VM_KERNEL_UNSLIDE_OR_PERM(pmap), cpus_to_signal, event_startv, event_endv, 0);
+
}
void
flush_tlb_raw();
}
- __asm__ volatile("mfence");
+ mfence();
}
void
PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START,
0, 0, 0, 0, 0);
- process_pmap_updates();
+ if (current_cpu_datap()->cpu_tlb_invalid)
+ process_pmap_updates();
PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END,
0, 0, 0, 0, 0);
}
+
+#include <mach/mach_vm.h> /* mach_vm_region_recurse() */
+/* Scan kernel pmap for W+X PTEs, scan kernel VM map for W+X map entries
+ * and identify ranges with mismatched VM permissions and PTE permissions
+ */
+kern_return_t
+pmap_permissions_verify(pmap_t ipmap, vm_map_t ivmmap, vm_offset_t sv, vm_offset_t ev) {
+ vm_offset_t cv = sv;
+ kern_return_t rv = KERN_SUCCESS;
+ uint64_t skip4 = 0, skip2 = 0;
+
+ assert(!is_ept_pmap(ipmap));
+
+ sv &= ~PAGE_MASK_64;
+ ev &= ~PAGE_MASK_64;
+ while (cv < ev) {
+ if (__improbable((cv > 0x00007FFFFFFFFFFFULL) &&
+ (cv < 0xFFFF800000000000ULL))) {
+ cv = 0xFFFF800000000000ULL;
+ }
+ /* Potential inconsistencies from not holding pmap lock
+ * but harmless for the moment.
+ */
+ if (((cv & PML4MASK) == 0) && (pmap64_pml4(ipmap, cv) == 0)) {
+ if ((cv + NBPML4) > cv)
+ cv += NBPML4;
+ else
+ break;
+ skip4++;
+ continue;
+ }
+ if (((cv & PDMASK) == 0) && (pmap_pde(ipmap, cv) == 0)) {
+ if ((cv + NBPD) > cv)
+ cv += NBPD;
+ else
+ break;
+ skip2++;
+ continue;
+ }
+
+ pt_entry_t *ptep = pmap_pte(ipmap, cv);
+ if (ptep && (*ptep & INTEL_PTE_VALID)) {
+ if (*ptep & INTEL_PTE_WRITE) {
+ if (!(*ptep & INTEL_PTE_NX)) {
+ kprintf("W+X PTE at 0x%lx, P4: 0x%llx, P3: 0x%llx, P2: 0x%llx, PT: 0x%llx, VP: %u\n", cv, *pmap64_pml4(ipmap, cv), *pmap64_pdpt(ipmap, cv), *pmap64_pde(ipmap, cv), *ptep, pmap_valid_page((ppnum_t)(i386_btop(pte_to_pa(*ptep)))));
+ rv = KERN_FAILURE;
+ }
+ }
+ }
+ cv += PAGE_SIZE;
+ }
+ kprintf("Completed pmap scan\n");
+ cv = sv;
+
+ struct vm_region_submap_info_64 vbr;
+ mach_msg_type_number_t vbrcount = 0;
+ mach_vm_size_t vmsize;
+ vm_prot_t prot;
+ uint32_t nesting_depth = 0;
+ kern_return_t kret;
+
+ while (cv < ev) {
+
+ for (;;) {
+ vbrcount = VM_REGION_SUBMAP_INFO_COUNT_64;
+ if((kret = mach_vm_region_recurse(ivmmap,
+ (mach_vm_address_t *) &cv, &vmsize, &nesting_depth,
+ (vm_region_recurse_info_t)&vbr,
+ &vbrcount)) != KERN_SUCCESS) {
+ break;
+ }
+
+ if(vbr.is_submap) {
+ nesting_depth++;
+ continue;
+ } else {
+ break;
+ }
+ }
+
+ if(kret != KERN_SUCCESS)
+ break;
+
+ prot = vbr.protection;
+
+ if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) {
+ kprintf("W+X map entry at address 0x%lx\n", cv);
+ rv = KERN_FAILURE;
+ }
+
+ if (prot) {
+ vm_offset_t pcv;
+ for (pcv = cv; pcv < cv + vmsize; pcv += PAGE_SIZE) {
+ pt_entry_t *ptep = pmap_pte(ipmap, pcv);
+ vm_prot_t tprot;
+
+ if ((ptep == NULL) || !(*ptep & INTEL_PTE_VALID))
+ continue;
+ tprot = VM_PROT_READ;
+ if (*ptep & INTEL_PTE_WRITE)
+ tprot |= VM_PROT_WRITE;
+ if ((*ptep & INTEL_PTE_NX) == 0)
+ tprot |= VM_PROT_EXECUTE;
+ if (tprot != prot) {
+ kprintf("PTE/map entry permissions mismatch at address 0x%lx, pte: 0x%llx, protection: 0x%x\n", pcv, *ptep, prot);
+ rv = KERN_FAILURE;
+ }
+ }
+ }
+ cv += vmsize;
+ }
+ return rv;
+}