--- /dev/null
+/*
+ * Copyright (C) 2016-2020 Apple, Inc. All rights reserved.
+ * Some portions covered by other copyrights, listed below.
+ *---
+ * Copyright (C) 2016 and later: Unicode, Inc. and others.
+ * License & terms of use: http://www.unicode.org/copyright.html
+ *---
+ * Copyright (C) 1999-2015, International Business Machines
+ * Corporation and others. All Rights Reserved.
+ *
+ * add APPLE_OSREFERENCE_LICENSE_HEADER stuff...
+ */
+
+#include <libkern/libkern.h>
+#include <sys/errno.h>
+#include <sys/unicode.h>
+#include "vfs_unicode_data.h"
+#define STATIC_UNLESS_TEST static
+
+enum {
+ /* Maximum number of UTF8 bytes from one Unicode code point (one UTF32 code unit) */
+ kMaxUTF8BytesPerChar = 4
+};
+
+/* local prototypes used by exported functions (and themselves exported for testing) */
+STATIC_UNLESS_TEST
+int32_t utf8ToU32Code(int32_t u32char, const char** srcPtr, const char* srcLimit);
+STATIC_UNLESS_TEST
+int32_t normalizeOptCaseFoldU32Char(int32_t u32char, bool case_sens,
+ int32_t u32NormFoldBuf[kNFCSingleCharDecompMax],
+ uint8_t combClass[kNFCSingleCharDecompMax]);
+/* local prototypes used by exported functions (not exported for separate testing) */
+static int nextBaseAndAnyMarks(const char** strP, const char *strLimit, bool case_sens,
+ int32_t* unorm, uint8_t* unormcc, int32_t* unormlenP, int32_t* unormstartP,
+ int32_t* buf, uint8_t* bufcc, int32_t* buflenP,
+ bool* needReorderP, bool* startP);
+void doReorder(int32_t* buf, uint8_t* bufcc, int32_t buflen);
+int32_t u32CharToUTF8Bytes(uint32_t u32char, uint8_t utf8Bytes[kMaxUTF8BytesPerChar]);
+
+/*
+ * utf8_normalizeOptCaseFoldGetUVersion
+ *
+ * version[0] = Unicode major version; for Unicode 6.3.0 this would be 6
+ * version[1] = Unicode minor version; for Unicode 6.3.0 this would be 3
+ * version[2] = Unicode patch version; for Unicode 6.3.0 this would be 0
+ * version[3] = Code revision level; for any given Unicode version, this value starts
+ * at 0 and is incremented for each significant revision to the
+ * normalizeOptCaseFold functions.
+ */
+void
+utf8_normalizeOptCaseFoldGetUVersion(unsigned char version[4])
+{
+ version[0] = 13;
+ version[1] = 0;
+ version[2] = 0;
+ version[3] = 0;
+ return;
+}
+
+/*
+ * utf8_normalizeOptCaseFoldAndHash
+ *
+ * str: The input UTF-8 string (need not be 0 terminated)
+ * str_len: The byte length of the input string (excluding any 0 terminator)
+ * case_sens: False for case-insensitive behavior; generates canonical caseless form.
+ * True for case-sensitive behavior; generates standard NFD.
+ * hash_func: A pointer to a hashing function to compute the hash of the
+ * normalized/case-folded result. buf contains buf_len bytes
+ * of data to be added to the hash using the caller-supplied
+ * context (ctx).
+ * hash_ctx: The context for the hash function.
+ *
+ * Returns: 0 on success, or
+ * EILSEQ: The input string contains illegal ASCII-range characters
+ * (0x00 or '/'), or is not well-formed stream-safe UTF-8, or
+ * contains codepoints that are non-characters or unassigned in
+ * the version of Unicode currently supported (Unicode 9.0).
+ */
+
+int
+utf8_normalizeOptCaseFoldAndHash(const char *str,
+ size_t str_len,
+ bool case_sens,
+ void (*hash_func)(void *buf, size_t buf_len, void *ctx),
+ void *hash_ctx)
+{
+ const char *strLimit = str + str_len;
+
+ /* Data for the next pending single-char norm from input;
+ * This will always begin with a base char (combining class 0)
+ * or the first character in the string, which may no be a base */
+ int32_t unorm[kNFCSingleCharDecompMax];
+ uint8_t unormcc[kNFCSingleCharDecompMax];
+ int32_t unormlen = 0;
+ int32_t unormstart = 0;
+
+ bool start = true;
+
+ /* main loop:
+ * Each input character may be normalized to a sequence of one or more characters,
+ * some of which may have non-zero combining class. Any sequence of characters
+ * with non-zero combining class resulting from one or more input characters needs
+ * to be accumulated in the main buffer so we can reorder as necessary before
+ * calling the hash function.
+ *
+ * At the beginning of the main loop: The normalization buffer and main buffer are
+ * both empty.
+ *
+ * Each time through the main loop we do the following:
+ * 1. If there are characters available in the normalization result buffer (from the
+ * result of normalizing a previous input character), copy the first character and
+ * any following characters that have non-zero combining class to the main buffer.
+ * 2. If there is nothing left in the normalization buffer, then loop processing
+ * input characters as follows:
+ * a) Get the next input character from UTF8, get its normalized and case-folded
+ * result in the normalization buffer.
+ * b) If the first character in the normalization buffer has combining class 0,
+ * break; we will handle this normalization buffer next time through the main
+ * loop.
+ * c) Else copy the current normalization buffer (which has only combining marks)
+ * to the main buffer, and continue with the loop processing input characters.
+ * 3. At this point the first character in the main buffer may or may not have
+ * combining class 0, but any subsequent characters (up to the the limit for
+ * stream safe text) will be combining characters with nonzero combining class.
+ * Reorder the combining marks if necessary into canonical order.
+ * 4. Call the hash function for each character in the main buffer.
+ *
+ */
+ do {
+ /* Data for the buffers being built up from input */
+ int32_t buf[kNCFStreamSafeBufMax];
+ uint8_t bufcc[kNCFStreamSafeBufMax];
+ int32_t buflen = 0;
+ bool needReorder = false;
+ int err;
+
+ err = nextBaseAndAnyMarks(&str, strLimit, case_sens, unorm, unormcc, &unormlen, &unormstart,
+ buf, bufcc, &buflen, &needReorder, &start);
+ if (err != 0) {
+ return err;
+ }
+
+ if (buflen > 0) {
+ /* Now buffer should have all of the combining marks up to the next base char.
+ * Normally it will also start with the last base char encountered (unless the
+ * UTF8 string began with a combining mark). */
+ /* Now reorder combining marks if necessary. */
+ if (needReorder) {
+ doReorder(buf, bufcc, buflen);
+ }
+ /* Now write to hash func */
+ hash_func(buf, buflen * sizeof(buf[0]), hash_ctx);
+ }
+ /* OK so far, top of loop clears buffers to start refilling again */
+ } while (str < strLimit || unormlen > 0);
+ return 0;
+}
+
+/*
+ * utf8_normalizeOptCaseFoldAndCompare
+ *
+ * strA: A UTF-8 string to be compared (need not be 0 terminated)
+ * strA_len: The byte length of strA (excluding any 0 terminator)
+ * strB: The second UTF-8 string to be compared (need not be 0 terminated)
+ * strB_len: The byte length of strB (excluding any 0 terminator)
+ * case_sens: False for case-insensitive behavior; compares canonical caseless forms.
+ * True for case-sensitive behavior; compares standard NFD forms.
+ * are_equal: On success, set to true if the strings are equal, or set to false
+ * if they are not.
+ *
+ * Returns: 0 on success, or
+ * EILSEQ: One or both of the input strings contains illegal ASCII-range
+ * characters (0x00 or '/'), or is not well-formed stream-safe UTF-8,
+ * or contains codepoints that are non-characters or unassigned in
+ * the version of Unicode currently supported (Unicode 9.0).
+ * Note: The comparison may terminate early when a difference is
+ * detected, and may return 0 and set *are_equal=false even
+ * if one or both strings are invalid.
+ */
+enum { kNFCSingleCharDecompMaxPlusPushback = kNFCSingleCharDecompMax + 4 }; /* room for 03B9 pushback(s) */
+
+int
+utf8_normalizeOptCaseFoldAndCompare(const char *strA,
+ size_t strA_len,
+ const char *strB,
+ size_t strB_len,
+ bool case_sens,
+ bool *are_equal)
+{
+ const char *strALimit = strA + strA_len;
+ const char *strBLimit = strB + strB_len;
+
+ /* Data for the next pending single-char norms from each input;
+ * These will always begin with a base char (combining class 0)
+ * or the first character in the string, which may not be a base */
+ int32_t unormA[kNFCSingleCharDecompMaxPlusPushback], unormB[kNFCSingleCharDecompMaxPlusPushback];
+ uint8_t unormAcc[kNFCSingleCharDecompMaxPlusPushback], unormBcc[kNFCSingleCharDecompMaxPlusPushback];
+ int32_t unormAlen = 0, unormBlen = 0;
+ int32_t unormAstart = 0, unormBstart = 0;
+
+ bool startA = true, startB = true;
+
+ /* main loop:
+ * The main loop here is similar to the main loop in utf8_normalizeOptCaseFoldAndHash,
+ * described above. The differences are:
+ * - We keep a normalization buffer and main buffer for each string.
+ * - In the main loop, we do steps 1-3 for each string.
+ * - In step 4, instead of calling the hash function, we compare the two main
+ * buffers; if they are unequal, we return a non-equal result.
+ * - After the end of the main loop, if we still have data for one string but
+ * not the other, return a non-equal result, else return an equal result.
+ */
+ do {
+ /* Data for the buffers being built up from each input */
+ int32_t bufA[kNCFStreamSafeBufMax], bufB[kNCFStreamSafeBufMax];
+ uint8_t bufAcc[kNCFStreamSafeBufMax], bufBcc[kNCFStreamSafeBufMax];
+ int32_t bufAlen = 0, bufBlen = 0;
+ bool needReorderA = false, needReorderB = false;
+ int err;
+
+ err = nextBaseAndAnyMarks(&strA, strALimit, case_sens, unormA, unormAcc, &unormAlen, &unormAstart,
+ bufA, bufAcc, &bufAlen, &needReorderA, &startA);
+ if (err != 0) {
+ return err;
+ }
+ err = nextBaseAndAnyMarks(&strB, strBLimit, case_sens, unormB, unormBcc, &unormBlen, &unormBstart,
+ bufB, bufBcc, &bufBlen, &needReorderB, &startB);
+ if (err != 0) {
+ return err;
+ }
+
+ if (bufAlen > 0 || bufBlen > 0) {
+ /* Now each buffer should have all of the combining marks up to the next base char.
+ * Normally it will also start with the last base char encountered (unless the
+ * UTF8 string began with a combining mark). */
+ /* Now reorder combining marks if necessary. */
+ if (needReorderA) {
+ doReorder(bufA, bufAcc, bufAlen);
+ }
+ if (needReorderB) {
+ doReorder(bufB, bufBcc, bufBlen);
+ }
+ /* handle 03B9 pushback */
+ int32_t idx;
+ if (!case_sens) {
+ if (bufAlen > 1 && bufA[bufAlen - 1] == 0x03B9 && unormAstart == 0) {
+ int32_t tailCount = 0;
+ while (tailCount < kNFCSingleCharDecompMaxPlusPushback - unormAlen && bufAlen > 1 && bufA[bufAlen - 1] == 0x03B9) {
+ tailCount++;
+ bufAlen--;
+ }
+ for (idx = unormAlen; idx > 0; idx--) {
+ unormA[idx - 1 + tailCount] = unormA[idx - 1];
+ unormAcc[idx - 1 + tailCount] = unormAcc[idx - 1];
+ }
+ for (idx = 0; idx < tailCount; idx++) {
+ unormA[idx] = 0x03B9;
+ unormAcc[idx] = 0;
+ }
+ unormAlen += tailCount;
+ }
+ if (bufBlen > 1 && bufB[bufBlen - 1] == 0x03B9 && unormBstart == 0) {
+ int32_t tailCount = 0;
+ while (tailCount < kNFCSingleCharDecompMaxPlusPushback - unormBlen && bufBlen > 1 && bufB[bufBlen - 1] == 0x03B9) {
+ tailCount++;
+ bufBlen--;
+ }
+ for (idx = unormBlen; idx > 0; idx--) {
+ unormB[idx - 1 + tailCount] = unormB[idx - 1];
+ unormBcc[idx - 1 + tailCount] = unormBcc[idx - 1];
+ }
+ for (idx = 0; idx < tailCount; idx++) {
+ unormB[idx] = 0x03B9;
+ unormBcc[idx] = 0;
+ }
+ unormBlen += tailCount;
+ }
+ }
+ /* Now compare the buffers. */
+ if (bufAlen != bufBlen || memcmp(bufA, bufB, bufAlen * sizeof(bufA[0])) != 0) {
+ *are_equal = false;
+ return 0;
+ }
+ }
+ /* OK so far, top of loop clears buffers to start refilling again */
+ } while ((strA < strALimit || unormAlen > 0) && (strB < strBLimit || unormBlen > 0));
+
+ *are_equal = (strA == strALimit && unormAlen == 0 && strB == strBLimit && unormBlen == 0);
+ return 0;
+}
+
+/*
+ * utf8_normalizeOptCaseFold
+ *
+ * str: The input UTF-8 string (need not be 0 terminated)
+ * str_len: The byte length of the input string (excluding any 0 terminator)
+ * case_sens: False for case-insensitive behavior; generates canonical caseless form.
+ * True for case-sensitive behavior; generates standard NFD.
+ * ustr: A pointer to a buffer for the resulting UTF-32 string.
+ * ustr_size: The capacity of ustr, in UTF-32 units.
+ * ustr_len: Pointer to a value that will be filled in with the actual length
+ * in UTF-32 units of the string copied to ustr.
+ *
+ * Returns: 0 on success, or
+ * EILSEQ: The input string contains illegal ASCII-range characters
+ * (0x00 or '/'), or is not well-formed stream-safe UTF-8, or
+ * contains codepoints that are non-characters or unassigned in
+ * the version of Unicode currently supported.
+ * ENOMEM: ustr_size is insufficient for the resulting string. In this
+ * case the value returned in *ustr_len is invalid.
+ */
+int
+utf8_normalizeOptCaseFold(const char *str,
+ size_t str_len,
+ bool case_sens,
+ int32_t *ustr,
+ int32_t ustr_size,
+ int32_t *ustr_len)
+{
+ const char *strLimit = str + str_len;
+ int32_t *ustrCur = ustr;
+ const int32_t *ustrLimit = ustr + ustr_size;
+
+ /* Data for the next pending single-char norm from input;
+ * This will always begin with a base char (combining class 0) */
+ int32_t unorm[kNFCSingleCharDecompMax];
+ uint8_t unormcc[kNFCSingleCharDecompMax];
+ int32_t unormlen = 0;
+ int32_t unormstart = 0;
+
+ bool start = true;
+
+ *ustr_len = 0;
+ do {
+ /* Data for the buffers being built up from input */
+ int32_t buf[kNCFStreamSafeBufMax];
+ uint8_t bufcc[kNCFStreamSafeBufMax];
+ int32_t buflen = 0;
+ bool needReorder = false;
+ int err;
+
+ err = nextBaseAndAnyMarks(&str, strLimit, case_sens, unorm, unormcc, &unormlen, &unormstart,
+ buf, bufcc, &buflen, &needReorder, &start);
+ if (err != 0) {
+ return err;
+ }
+
+ if (buflen > 0) {
+ if (needReorder) {
+ doReorder(buf, bufcc, buflen);
+ }
+ /* Now copy to output buffer */
+ int32_t idx;
+ if (ustrCur + buflen > ustrLimit) {
+ return ENOMEM;
+ }
+ for (idx = 0; idx < buflen; idx++) {
+ *ustrCur++ = buf[idx];
+ }
+ }
+ /* OK so far, top of loop clears buffers to start refilling again */
+ } while (str < strLimit || unormlen > 0);
+ *ustr_len = (uint32_t)(ustrCur - ustr); // XXXpjr: the explicit (uint32_t) cast wasn't present in the original code drop
+ return 0;
+}
+
+/*
+ * utf8_normalizeOptCaseFoldToUTF8
+ * (This is similar to normalizeOptCaseFold except that this has a different output
+ * buffer type, and adds conversion to UTF8 while copying to output buffer)
+ *
+ * str: The input UTF-8 string (need not be 0 terminated)
+ * str_len: The byte length of the input string (excluding any 0 terminator)
+ * case_sens: False for case-insensitive behavior; generates canonical caseless form.
+ * True for case-sensitive behavior; generates standard NFD.
+ * ustr: A pointer to a buffer for the resulting UTF-8 string.
+ * ustr_size: The capacity of ustr, in bytes.
+ * ustr_len: Pointer to a value that will be filled in with the actual length
+ * in bytes of the string copied to ustr.
+ *
+ * Returns: 0 on success, or
+ * EILSEQ: The input string contains illegal ASCII-range characters
+ * (0x00 or '/'), or is not well-formed stream-safe UTF-8, or
+ * contains codepoints that are non-characters or unassigned in
+ * the version of Unicode currently supported.
+ * ENOMEM: ustr_size is insufficient for the resulting string. In this
+ * case the value returned in *ustr_len is invalid.
+ */
+int
+utf8_normalizeOptCaseFoldToUTF8(const char *str,
+ size_t str_len,
+ bool case_sens,
+ char *ustr,
+ size_t ustr_size,
+ size_t *ustr_len)
+{
+ const char *strLimit = str + str_len;
+ char *ustrCur = ustr;
+ const char *ustrLimit = ustr + ustr_size;
+
+ /* Data for the next pending single-char norm from input;
+ * This will always begin with a base char (combining class 0) */
+ int32_t unorm[kNFCSingleCharDecompMax];
+ uint8_t unormcc[kNFCSingleCharDecompMax];
+ int32_t unormlen = 0;
+ int32_t unormstart = 0;
+
+ bool start = true;
+
+ *ustr_len = 0;
+ do {
+ /* Data for the buffers being built up from input */
+ int32_t buf[kNCFStreamSafeBufMax];
+ uint8_t bufcc[kNCFStreamSafeBufMax];
+ int32_t buflen = 0;
+ bool needReorder = false;
+ int err;
+
+ err = nextBaseAndAnyMarks(&str, strLimit, case_sens, unorm, unormcc, &unormlen, &unormstart,
+ buf, bufcc, &buflen, &needReorder, &start);
+ if (err != 0) {
+ return err;
+ }
+
+ if (buflen > 0) {
+ uint8_t utf8Bytes[kMaxUTF8BytesPerChar];
+ int32_t *bufPtr = buf;
+ if (needReorder) {
+ doReorder(buf, bufcc, buflen);
+ }
+ /* Now copy to output buffer */
+ while (buflen-- > 0) {
+ int32_t idx, utf8Len = u32CharToUTF8Bytes((uint32_t)*bufPtr++, utf8Bytes);
+ if (ustrCur + utf8Len > ustrLimit) {
+ return ENOMEM;
+ }
+ for (idx = 0; idx < utf8Len; idx++) {
+ *ustrCur++ = (char)utf8Bytes[idx];
+ }
+ }
+ }
+ /* OK so far, top of loop clears buffers to start refilling again */
+ } while (str < strLimit || unormlen > 0);
+ *ustr_len = ustrCur - ustr;
+ return 0;
+}
+
+/*
+ * utf8_normalizeOptCaseFoldAndMatchSubstring
+ *
+ * strA: A UTF-8 string (need not be 0 terminated) in which to search for the
+ * substring specified by ustrB.
+ * strA_len: The byte length of strA (excluding any 0 terminator)
+ * ustrB: A normalized UTF-32 substring (need not be 0 terminated) to be searched
+ * for in the UTF-32 string resulting from converting strA to the normalized
+ * UTF-32 form specified by the case_sens parameter; ustrB must already be
+ * in that form.
+ * ustrB_len: The length of ustrB in UTF-32 units (excluding any 0 terminator).
+ * case_sens: False for case-insensitive matching; compares canonical caseless forms.
+ * True for case-sensitive matching; compares standard NFD forms.
+ * buf: Pointer to caller-supplied working memory for storing the portion of
+ * strA which has been converted to normalized UTF-32.
+ * buf_size: The size of buf.
+ * has_match: On success, set to true if strA (when converter to UTF-32 and normalized
+ * per case_sens) contains ustrB, set to false otherwise.
+ *
+ * Returns: 0 on success, or
+ * EILSEQ: strA contains illegal ASCII-range characters (0x00 or '/'), or is
+ * not well-formed stream-safe UTF-8, or contains codepoints that are
+ * non-characters or unassigned in the version of Unicode currently
+ * supported.
+ * Note: The search may terminate early when a match is detected, and
+ * may return 0 and set *has_match=true even if strA is invalid.
+ * ENOMEM: buf_size is insufficient.
+ */
+int
+utf8_normalizeOptCaseFoldAndMatchSubstring(const char *strA,
+ size_t strA_len,
+ const int32_t *ustrB,
+ int32_t ustrB_len,
+ bool case_sens,
+ void *buf,
+ size_t buf_size,
+ bool *has_match)
+{
+ /*
+ * ustrA represents the current position in the UTF-32 normalized version of strA
+ * at which we want to test for a match; ustrANormEnd is the position beyond that
+ * which is just after the end of what has already been converted from strA to
+ * UTF-32 normalized form.
+ * Each time through the main loop:
+ * - The first task is to make sure we have enough of strA converted to UTF32
+ * normalized form to test for match with ustrB at the current match position.
+ * If we don't, then convert more of strA to UTF-32 normalized form until we
+ * have enough to compare with ustrB. To do this, run a loop which is like the
+ * main loop in utf8_normalizeOptCaseFoldAndHash except that in step 4, instead of
+ * calling the hash function, we copy the normalized buffer to ustrANormEnd,
+ * advancing the latter. We keep doing this until we have enough additional
+ * converted to match with ustrB.
+ * - Then we test for match of ustrB at the current ustrA position. If there is
+ * a match we return; otherwise, if there is more strA to convert we advance
+ * ustrA and repeat the main loop, otherwise we return without a match.
+ */
+ if (ustrB_len == 0) { /* always matches */
+ *has_match = true;
+ return 0;
+ }
+ *has_match = false; /* initialize return value */
+ if (ustrB_len > 2 * strA_len) {
+ /* If ustrB is clearly too long to find in strA, don't bother normalizing strA.
+ * A UTF-8 character of 1 byte (ASCII) will normalize to 1 UTF-32 unit.
+ * A UTF-8 character of 2-4 bytes will normalize to a maximum of 4 UTF-32 units.
+ * The maximum expansion from unnormalized UTF-8 byte length to normalized
+ * UTF-32 unit length is thus 2. */
+ return 0;
+ }
+
+ const char *strALimit = strA + strA_len;
+ int32_t *ustrA = (int32_t *)buf;
+ const int32_t *ustrALimit = ustrA + (buf_size / sizeof(int32_t));
+ int32_t *ustrANormEnd = ustrA; /* how far we have already normalized in ustrA */
+
+ /* Data for the next pending single-char norms from each input;
+ * These will always begin with a base char (combining class 0)
+ * or the first character in the string, which may not be a base */
+ int32_t unormA[kNFCSingleCharDecompMax];
+ uint8_t unormAcc[kNFCSingleCharDecompMax];
+ int32_t unormAlen = 0;
+ int32_t unormAstart = 0;
+
+ bool startA = true;
+
+ while (true) {
+ /* convert enough more of strA to normalized UTF-32 in ustrA to check for match */
+ if (ustrANormEnd - ustrA < ustrB_len) {
+ do {
+ /* Data for the buffers being built up from each input */
+ int32_t bufA[kNCFStreamSafeBufMax];
+ uint8_t bufAcc[kNCFStreamSafeBufMax];
+ int32_t bufAlen = 0;
+ bool needReorderA = false;
+ int err;
+
+ err = nextBaseAndAnyMarks(&strA, strALimit, case_sens, unormA, unormAcc, &unormAlen, &unormAstart,
+ bufA, bufAcc, &bufAlen, &needReorderA, &startA);
+ if (err != 0) {
+ return err;
+ }
+
+ if (bufAlen > 0) {
+ /* Now each buffer should have all of the combining marks up to the next base char.
+ * Normally it will also start with the last base char encountered (unless the
+ * UTF8 string began with a combining mark). */
+ /* Now reorder combining marks if necessary. Should be rare, and sequences should
+ * usually be short when does occur => simple bubblesort should be sufficient. */
+ if (needReorderA) {
+ doReorder(bufA, bufAcc, bufAlen);
+ }
+ /* Now copy to working buffer */
+ int32_t idx;
+ if (ustrANormEnd + bufAlen > ustrALimit) {
+ return ENOMEM;
+ }
+ for (idx = 0; idx < bufAlen; idx++) {
+ *ustrANormEnd++ = bufA[idx];
+ }
+ }
+ /* OK so far, top of loop clears buffers to start refilling again */
+ } while ((ustrANormEnd - ustrA < ustrB_len) && (strA < strALimit || unormAlen > 0));
+ }
+
+ if (ustrANormEnd - ustrA < ustrB_len) {
+ return 0; /* not enough of strA left for match */
+ }
+ /* check for match, return if so */
+ if (memcmp(ustrA, ustrB, ustrB_len * sizeof(ustrB[0])) == 0) {
+ *has_match = true;
+ return 0;
+ }
+ ustrA++; /* advance match position */
+ }
+}
+
+/* nextBaseAndAnyMarks:
+ * Guts of code to get next bufferful of base character (or first char in string)
+ * and all trailing combining marks.
+ * This is called each time through the main loop of functions above, and does the
+ * following:
+ * 1. If there are characters available in the normalization result buffer (from the
+ * result of normalizing a previous input character), copy the first character and
+ * any following characters that have non-zero combining class to the main buffer.
+ * 2. If there is nothing left in the normalization buffer, then loop processing
+ * input characters as follows:
+ * a) Get the next input character from UTF8, get its normalized and case-folded
+ * result in the normalization buffer.
+ * b) If the first character in the normalization buffer has combining class 0,
+ * break; we will handle this normalization buffer next time through the main
+ * loop.
+ * c) Else copy the current normalization buffer (which has only combining marks)
+ * to the main buffer, and continue with the loop processing input characters.
+ */
+
+static int
+nextBaseAndAnyMarks(const char** strP, const char *strLimit, bool case_sens,
+ int32_t* unorm, uint8_t* unormcc, int32_t* unormlenP, int32_t* unormstartP,
+ int32_t* buf, uint8_t* bufcc, int32_t* buflenP,
+ bool* needReorderP, bool* startP)
+{
+ /* update buffers for str */
+ if (*unormlenP > 0 && *unormstartP < *unormlenP) {
+ /* unorm begins with a base char; buflen should be 0 */
+ *needReorderP = false;
+ for (*buflenP = 0; true;) {
+ if (*buflenP > 0 && unormcc[*unormstartP] > 0 && unormcc[*unormstartP] < bufcc[(*buflenP) - 1]) {
+ *needReorderP = true;
+ }
+ buf[*buflenP] = unorm[*unormstartP];
+ bufcc[(*buflenP)++] = unormcc[(*unormstartP)++];
+ if (*unormstartP >= *unormlenP || unormcc[*unormstartP] == 0) {
+ break;
+ }
+ }
+ }
+ if (*unormstartP >= *unormlenP) {
+ *unormstartP = *unormlenP = 0;
+ while (*strP < strLimit) {
+ int32_t idx;
+ uint32_t bytevalue = (uint8_t)*(*strP)++;
+ /* '/' is not produced by NFD decomposition from another character so we can
+ * check for it before normalization */
+ if (bytevalue == 0 || bytevalue == 0x2F /*'/'*/) {
+ return EILSEQ;
+ }
+ if (bytevalue < 0x80) {
+ unorm[0] = (!case_sens && bytevalue >= 'A' && bytevalue <= 'Z')? bytevalue += 0x20: bytevalue;
+ *unormlenP = 1;
+ unormcc[0] = 0;
+ *startP = false;
+ break;
+ } else {
+ int32_t u32char = utf8ToU32Code(bytevalue, strP, strLimit);
+ if (u32char <= 0) {
+ return EILSEQ;
+ }
+ *unormlenP = normalizeOptCaseFoldU32Char(u32char, case_sens, unorm, unormcc);
+ if (*unormlenP <= 0) {
+ return EILSEQ;
+ }
+ if (unormcc[0] == 0 || *startP) {
+ *startP = false;
+ break;
+ }
+ }
+ /* the latest char decomposes to just combining sequence, add to buffer being built */
+ if (*buflenP + *unormlenP > kNCFStreamSafeBufMax) {
+ return EILSEQ;
+ }
+ for (idx = 0; idx < *unormlenP; idx++, (*buflenP)++) {
+ if (*buflenP > 0 && unormcc[idx] > 0 && unormcc[idx] < bufcc[(*buflenP) - 1]) {
+ *needReorderP = true;
+ }
+ buf[*buflenP] = unorm[idx];
+ bufcc[*buflenP] = unormcc[idx];
+ }
+ *unormlenP = 0;
+ }
+ }
+ return 0;
+}
+
+/* local prototypes used only by internal functions */
+static void swapBufCharCCWithPrevious(int32_t jdx, int32_t buf[], uint8_t bufcc[]);
+static int32_t adjustCase(bool case_sens, int32_t uSeqLen,
+ int32_t u32NormFoldBuf[kNFCSingleCharDecompMax]);
+static uint8_t getCombClassU32Char(int32_t u32char);
+static int32_t decomposeHangul(int32_t u32char, int32_t u32NormFoldBuf[kNFCSingleCharDecompMax]);
+
+/* Reorder combining marks if necessary. Should be rare, and sequences should
+ * usually be short when does occur => simple bubblesort should be sufficient. */
+void
+doReorder(int32_t* buf, uint8_t* bufcc, int32_t buflen)
+{
+ int32_t idx, jdx;
+ for (idx = 0; idx < buflen - 1; idx++) {
+ for (jdx = buflen - 1; jdx > idx; jdx--) {
+ if (bufcc[jdx] < bufcc[jdx - 1]) {
+ swapBufCharCCWithPrevious(jdx, buf, bufcc);
+ }
+ }
+ }
+}
+/* swap function for bubblesort */
+static void
+swapBufCharCCWithPrevious(int32_t jdx, int32_t buf[], uint8_t bufcc[])
+{
+ int32_t bufchar = buf[jdx];
+ uint8_t bufccval = bufcc[jdx];
+ buf[jdx] = buf[jdx - 1];
+ bufcc[jdx] = bufcc[jdx - 1];
+ buf[jdx - 1] = bufchar;
+ bufcc[jdx - 1] = bufccval;
+}
+
+/*
+ * u32CharToUTF8Bytes, map a valid Unicode character (UTF32 code point) to 1..4 UTF8 bytes,
+ * and returns the number of UTF8 bytes.
+ *
+ * adapted from ICU macro U8_APPEND_UNSAFE (utf8.h).
+ */
+int32_t
+u32CharToUTF8Bytes(uint32_t u32char, uint8_t utf8Bytes[kMaxUTF8BytesPerChar])
+{
+ int32_t idx = 0;
+ if (u32char <= 0x7F) {
+ utf8Bytes[idx++] = (uint8_t)u32char;
+ } else {
+ if (u32char <= 0x7FF) {
+ utf8Bytes[idx++] = (uint8_t)((u32char >> 6) | 0xC0);
+ } else {
+ if (u32char <= 0xFFFF) {
+ utf8Bytes[idx++] = (uint8_t)((u32char >> 12) | 0xE0);
+ } else {
+ utf8Bytes[idx++] = (uint8_t)((u32char >> 18) | 0xF0);
+ utf8Bytes[idx++] = (uint8_t)(((u32char >> 12) & 0x3F) | 0x80);
+ }
+ utf8Bytes[idx++] = (uint8_t)(((u32char >> 6) & 0x3F) | 0x80);
+ }
+ utf8Bytes[idx++] = (uint8_t)((u32char & 0x3F) | 0x80);
+ }
+ return idx;
+}
+
+/* two macros adapted from ICU's utf8.h */
+#define U8_COUNT_TRAIL_BYTES_LOC(leadByte) \
+((uint8_t)(leadByte)<0XF0 ? \
+((uint8_t)(leadByte)>=0XC0)+((uint8_t)(leadByte)>=0XE0) : \
+(uint8_t)(leadByte)<0XFE ? 3+((uint8_t)(leadByte)>=0XF8)+((uint8_t)(leadByte)>=0XFC) : 0)
+
+#define U8_MASK_LEAD_BYTE_LOC(leadByte, countTrailBytes) ((leadByte)&=(1<<(6-(countTrailBytes)))-1)
+
+/* array adapted from ICU's utf_impl.c */
+static const int32_t utf8_minLegal[4] = { 0, 0X80, 0x800, 0x10000 };
+
+/*
+ * utf8ToU32Code, map a non-ASCII byte value plus a buffer of trail bytes to a UTF32 code point
+ *
+ * adapted from ICU macro U8_NEXT (utf8.h) and function utf8_nextCharSafeBody (utf_impl.c);
+ * verified to produce the same results (adusted for the difference in API signature).
+ *
+ * assumes at entry that:
+ * 1. a non-ASCII byte value (>= 0x80) that purports to be the beginning of a UTF8 character
+ * has been read, and its value is in u32char
+ * 2. *srcPtr points to the input buffer just after that non-ASCII byte, i.e. it purportedly
+ * points to the trail bytes for that UTF8 char.
+ * 3. srcLimit points to end of the input buffer (just after the last byte in the buffer)
+ *
+ * For a valid and complete UTF8 character, the function returns its value and advances
+ * *srcPtr to the first byte after the UTF8 char. Otherwise, the function returns -1
+ * (and the value in *srcPtr is undefined).
+ * Note that while it does not map to surrogate values (generates an error for malformed
+ * UTF-8 that would map to values in 0xD800..0xD8FF), it does output noncharacter values
+ * whose low 16 bits are 0xFFFE or 0xFFFF without generating an error.
+ *
+ * equivalences used in adapted ICU code:
+ * UChar = uint16_t
+ * UChar32 = int32_t
+ *
+ * This has been validated against ICU behavior.
+ */
+STATIC_UNLESS_TEST
+int32_t
+utf8ToU32Code(int32_t u32char, const char** srcPtr, const char* srcLimit)
+{
+ const char* src = *srcPtr;
+ uint8_t pt1, pt2;
+ if (0xE0 < u32char && u32char <= 0xEC && src + 1 < srcLimit && (pt1 = (uint8_t)(src[0] - 0x80)) <= 0x3F && (pt2 = (uint8_t)(src[1] - 0x80)) <= 0x3F) {
+ /* handle U+1000..U+CFFF */
+ /* no need for (u32char&0xF) because the upper bits are truncated after <<12 in the cast to (uint16_t) */
+ u32char = (uint16_t)((u32char << 12) | (pt1 << 6) | pt2);
+ src += 2;
+ } else if (u32char < 0xE0 && u32char >= 0xC2 && src < srcLimit && (pt1 = (uint8_t)(src[0] - 0x80)) <= 0x3F) {
+ /* handle U+0080..U+07FF */
+ u32char = ((u32char & 0x1F) << 6) | pt1;
+ src++;
+ } else {
+ /* "complicated" and error cases, adapted from ICU's utf8_nextCharSafeBody() */
+ uint8_t count = U8_COUNT_TRAIL_BYTES_LOC(u32char);
+ if (src + count <= srcLimit) {
+ uint8_t trail;
+
+ U8_MASK_LEAD_BYTE_LOC(u32char, count);
+ switch (count) {
+ /* branches 3, 2 fall through to the next one */
+ case 0: /* count==0 for illegally leading trail bytes and the illegal bytes 0XFE and 0XFF */
+ case 5:
+ case 4: /* count>=4 is always illegal: no more than 3 trail bytes in Unicode's UTF-8 */
+ break;
+ case 3:
+ trail = *src++ - 0X80;
+ u32char = (u32char << 6) | trail;
+ /* u32char>=0x110 would result in code point>0x10FFFF, outside Unicode */
+ if (u32char >= 0x110 || trail > 0X3F) {
+ break;
+ }
+ case 2:
+ trail = *src++ - 0X80;
+ u32char = (u32char << 6) | trail;
+ /*
+ * test for a surrogate D800..DFFF:
+ * before the last (u32char<<6), a surrogate is u32char=360..37F
+ */
+ if (((u32char & 0xFFE0) == 0x360) || trail > 0X3F) {
+ break;
+ }
+ case 1:
+ trail = *src++ - 0X80;
+ u32char = (u32char << 6) | trail;
+ if (trail > 0X3F) {
+ break;
+ }
+ /* correct sequence - all trail bytes have (b7..b6)==(10) */
+ if (u32char >= utf8_minLegal[count]) {
+ *srcPtr = src;
+ return u32char;
+ }
+ /* no default branch to optimize switch() - all values are covered */
+ }
+ }
+ u32char = -1;
+ }
+ *srcPtr = src;
+ return u32char;
+}
+
+/*
+ * normalizeCaseFoldU32Code, map a single UTF32 code point to its normalized result
+ * and the combining classes for each resulting char, or indicate it is invalid.
+ *
+ * The normalized and case-folded result might be up to 4 UTF32 characters (current
+ * max, could change in the future).
+ *
+ * u32char - input UTF32 code point
+ * case_sens - false for case insensiive => casefold, true for case sensitive => NFD only
+ * u32NormFoldBuf - output buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
+ * to receive the normalize result.
+ * combClass - output buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
+ * to receive the combining classes for the characters in u32NormFoldBuf. If
+ * the first entry has non-zero combining class, the remaining entries do too.
+ *
+ * returns -1 if input code point is invalid, 0 if the buffer length kNFCSingleCharDecompMax
+ * is insufficient (though it is assumed to be at least 3), else the length of the
+ * normalized and case-folded result (currently in the range 1..4).
+ *
+ * This has been validated against ICU behavior.
+ *
+ * This function is highly dependent on the structure of the data trie; for details on
+ * that structure, see comments in normalizeCaseFoldData.h
+ */
+STATIC_UNLESS_TEST
+int32_t
+normalizeOptCaseFoldU32Char(int32_t u32char, bool case_sens,
+ int32_t u32NormFoldBuf[kNFCSingleCharDecompMax],
+ uint8_t combClass[kNFCSingleCharDecompMax])
+{
+ combClass[0] = 0;
+ /* return hi-range PUA as self, except non-characters */
+ if (u32char >= kU32HiPUAStart) {
+ if ((u32char & 0xFFFE) == 0xFFFE) {
+ return -1;
+ }
+ u32NormFoldBuf[0] = u32char;
+ return 1;
+ }
+ /* for trie lookup, shift the range 0xE0000-0xE01FF down to be just after the range */
+ /* 0 - 0x313FF; everything in between in currently invalid. */
+ int32_t u32charLookup = u32char;
+ if (u32charLookup >= kU32LowRangeLimit) {
+ u32charLookup -= (kU32HiRangeStart - kU32LowRangeLimit);
+ if (u32charLookup < kU32LowRangeLimit || u32charLookup >= (kU32LowRangeLimit + kU32HiRangeLen)) {
+ return -1; /* in the large range of currently-unassigned code points */
+ }
+ }
+ /* Now we have u32charLookup either in 0..0x313FF representing u32char itself,
+ * or in 0x31400..0x315FF representing u32char 0xE0000..0xE01FF; look it up in
+ * the trie that identifies unassigneds in this range, or maps others to
+ * decomps or combining class or just self. */
+ uint16_t trieValue;
+ /* TrieHi */
+ trieValue = nfTrieHi[u32charLookup >> kNFTrieHiShift];
+ if (trieValue == kInvalidCodeFlag) {
+ return -1;
+ }
+ if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) { /* return self; */
+ u32NormFoldBuf[0] = u32char;
+ combClass[0] = trieValue & kFlagValueMask;
+ return 1;
+ }
+ if (trieValue == kHangulMask) {
+ combClass[1] = combClass[2] = 0;
+ return decomposeHangul(u32char, u32NormFoldBuf);
+ }
+ /* TrieMid */
+ trieValue = nfTrieMid[trieValue & kNextIndexValueMask][(u32charLookup >> kNFTrieMidShift) & kNFTrieMidMask];
+ if (trieValue == kInvalidCodeFlag) {
+ return -1;
+ }
+ if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) {
+ u32NormFoldBuf[0] = u32char;
+ combClass[0] = trieValue & kFlagValueMask;
+ return adjustCase(case_sens, 1, u32NormFoldBuf);
+ }
+ if ((trieValue & kFlagTestMask) == kInvMaskFlag) {
+ uint16_t invalidMask = nfU16InvMasks[trieValue & kFlagValueMask];
+ uint16_t testBit = (uint16_t)(1 << (u32charLookup & kNFTrieLoMask));
+ if (testBit & invalidMask) {
+ /* invalid */
+ return -1;
+ } else {
+ /* treat like trieValue == 0 above */
+ u32NormFoldBuf[0] = u32char;
+ return adjustCase(case_sens, 1, u32NormFoldBuf);;
+ }
+ }
+ if (trieValue == kHangulMask) {
+ combClass[1] = combClass[2] = 0;
+ return decomposeHangul(u32char, u32NormFoldBuf);
+ }
+ /* TrieLo */
+ trieValue = nfTrieLo[trieValue & kNextIndexValueMask][u32charLookup & kNFTrieLoMask];
+ if (trieValue == kInvalidCodeFlag) {
+ return -1;
+ }
+ if (trieValue == kHangulMask) {
+ combClass[1] = combClass[2] = 0;
+ return decomposeHangul(u32char, u32NormFoldBuf);
+ }
+ if (trieValue < kToU16Seq2Mask || trieValue > kSpecialsEnd) {
+ if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) {
+ u32NormFoldBuf[0] = u32char;
+ combClass[0] = trieValue & kFlagValueMask;
+ } else {
+ u32NormFoldBuf[0] = trieValue;
+ }
+ return adjustCase(case_sens, 1, u32NormFoldBuf);;
+ }
+ const uint16_t* u16SeqPtr = NULL;
+ const int32_t* u32SeqPtr = NULL;
+ int32_t uSeqLen = 0;
+ switch (trieValue & kSpecialsMask) {
+ case kToU16Seq2Mask:
+ if (case_sens && (trieValue & kToSeqCaseFoldMask)) {
+ /* don't use the mapping, it is only for case folding */
+ u32NormFoldBuf[0] = u32char;
+ /* already have combClass[0] = 0 */
+ return 1;
+ }
+ u16SeqPtr = nfU16Seq2[trieValue & kToSeqIndexMask];
+ uSeqLen = 2;
+ break;
+ case kToU16Seq3Mask:
+ if (case_sens && (trieValue & kToSeqCaseFoldMask)) {
+ /* don't use the mapping, it is only for case folding */
+ u32NormFoldBuf[0] = u32char;
+ /* already have combClass[0] = 0 */
+ return 1;
+ }
+ u16SeqPtr = nfU16Seq3[trieValue & kToSeqIndexMask];
+ uSeqLen = 3;
+ break;
+ case kToU16SeqMiscMask:
+ u16SeqPtr = &nfU16SeqMisc[trieValue & kToSeqMiscIndexMask];
+ uSeqLen = *u16SeqPtr & kToSeqMiscLenMask;
+ combClass[0] = (uint8_t)(*u16SeqPtr++ >> kToSeqMiscCCShift);
+ break;
+ case kToU32CharMask:
+ if (case_sens && (trieValue & kToSeqCaseFoldMask)) {
+ /* don't use the mapping, it is only for case folding */
+ u32NormFoldBuf[0] = u32char;
+ /* already have combClass[0] = 0 */
+ return 1;
+ }
+ u32SeqPtr = &nfU32Char[trieValue & kToSeqIndexMask];
+ uSeqLen = 1;
+ break;
+ case kToU32SeqMiscMask:
+ u32SeqPtr = &nfU32SeqMisc[trieValue & kToSeqMiscIndexMask];
+ uSeqLen = *u32SeqPtr & kToSeqMiscLenMask;
+ combClass[0] = (uint8_t)(*u32SeqPtr++ >> kToSeqMiscCCShift);
+ break;
+ default:
+ return -1;
+ }
+ if (kNFCSingleCharDecompMax < uSeqLen) {
+ return 0;
+ }
+ int32_t idx;
+ for (idx = 0; idx < uSeqLen; idx++) {
+ u32NormFoldBuf[idx] = (u16SeqPtr)? *u16SeqPtr++: *u32SeqPtr++;
+ if (idx > 0) {
+ combClass[idx] = getCombClassU32Char(u32NormFoldBuf[idx]);
+ }
+ }
+ return adjustCase(case_sens, uSeqLen, u32NormFoldBuf);
+}
+
+/*
+ * adjustCase, final adjustments to normalizeOptCaseFoldU32Char for case folding
+ *
+ * case_sens - false for case insensiive => casefold, true for case sensitive => NFD only
+ * uSeqLen - length of the sequence specified in the u32NormFoldBuf
+ * u32NormFoldBuf - buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
+ * with normalized result.
+ *
+ * returns uSeqLen if input code point is invalid, 0 if the buffer length kNFCSingleCharDecompMax
+ * is insufficient (though it is assumed to be at least 3), else the length of the
+ * normalized and case-folded result (currently in the range 1..4).
+ *
+ * This function is a reduced version of normalizeOptCaseFoldU32Char above.
+ */
+
+static int32_t
+adjustCase(bool case_sens, int32_t uSeqLen,
+ int32_t u32NormFoldBuf[kNFCSingleCharDecompMax])
+{
+ if (!case_sens && uSeqLen > 0) {
+ if (u32NormFoldBuf[0] < kSimpleCaseFoldLimit) {
+ u32NormFoldBuf[0] = nfBasicCF[u32NormFoldBuf[0]];
+ /* There is one case in which this maps to a character with different combining
+ * class: U+0345 (cc 240) casefolds to U+03B9 (cc 0). However when this is the
+ * first or only character in the sequence, we want to keep the original
+ * combining class, so nothing special to do here.
+ */
+ }
+ /* The following is the only case where we have a casefolding after the first
+ * character in the sequence. Don't worry about combining class here. that gets
+ * set later for characters after the first.
+ */
+ if (uSeqLen > 1 && u32NormFoldBuf[uSeqLen - 1] == 0x0345) {
+ u32NormFoldBuf[uSeqLen - 1] = 0x03B9;
+ }
+ }
+ return uSeqLen;
+}
+
+/*
+ * getCombClassU32Char, map a single character (in UTF32 form) to its combining class.
+ *
+ * u32char - input UTF32 code point. This is assumed to be a valid character that does
+ * not have a decomposition.
+ *
+ * returns combining class of the character.
+ *
+ * This is only called for characters after the first is a decomposition expansion. In
+ * this situation, if we encounter U+03B9 (combining class 0), it is only there as the
+ * case-folding of U+0345 (combining class 240). In this case it is the combining class
+ * for U+0345 that we want. In the non-casefold case we won't see U+03B9 here at all.
+ *
+ * This function is a reduced version of normalizeOptCaseFoldU32Char above.
+ */
+static uint8_t
+getCombClassU32Char(int32_t u32char)
+{
+ if (u32char >= kU32HiPUAStart) {
+ return 0;
+ }
+ if (u32char == 0x03B9) {
+ return 240;
+ }
+ /* for trie lookup, shift the range 0xE0000-0xE01FF down to be just after the range */
+ /* 0 - 0x313FF; everything in between in currently invalid. */
+ int32_t u32charLookup = u32char;
+ if (u32charLookup >= kU32LowRangeLimit) {
+ u32charLookup -= (kU32HiRangeStart - kU32LowRangeLimit);
+ }
+ /* Now we have u32charLookup either in 0..0x313FF representing u32char itself,
+ * or in 0x31400..0x315FF representing u32char 0xE0000..0xE01FF; look it up in
+ * the trie that identifies unassigneds in this range, or maps others to
+ * decomps or combining class or just self. */
+ uint16_t trieValue;
+ /* TrieHi */
+ trieValue = nfTrieHi[u32charLookup >> kNFTrieHiShift];
+ if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) {
+ return trieValue & kFlagValueMask;
+ }
+ /* TrieMid */
+ trieValue = nfTrieMid[trieValue & kNextIndexValueMask][(u32charLookup >> kNFTrieMidShift) & kNFTrieMidMask];
+ if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) { /* return self; */
+ return trieValue & kFlagValueMask;
+ }
+ if ((trieValue & kFlagTestMask) == kInvMaskFlag) {
+ return 0;
+ }
+ /* TrieLo */
+ trieValue = nfTrieLo[trieValue & kNextIndexValueMask][u32charLookup & kNFTrieMidMask];
+ return ((trieValue & kFlagTestMask) == kCombClassFlag)? (trieValue & kFlagValueMask): 0;
+}
+
+/*
+ * decomposeHangul, map a single UTF32 code point for a composed Hangul
+ * in the range AC00-D7A3, using algorithmic decomp
+ *
+ * The normalized result will be 2 or 3 UTF32 characters.
+ *
+ * u32char - input UTF32 code point
+ * u32NormFoldBuf - output buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
+ * to receive the normalize result.
+ *
+ * returns the length of the normalized result (2..3).
+ *
+ * Adapted from ICU Hangul:decompose in normalizer2impl.h
+ *
+ */
+
+enum {
+ HANGUL_BASE=0xAC00,
+ JAMO_L_BASE=0x1100, /* "lead" jamo */
+ JAMO_V_BASE=0x1161, /* "vowel" jamo */
+ JAMO_T_BASE=0x11A7, /* "trail" jamo */
+ JAMO_L_COUNT=19,
+ JAMO_V_COUNT=21,
+ JAMO_T_COUNT=28,
+};
+
+static int32_t
+decomposeHangul(int32_t u32char, int32_t u32NormFoldBuf[kNFCSingleCharDecompMax])
+{
+ u32char -= HANGUL_BASE;
+ int32_t tIndex = u32char % JAMO_T_COUNT;
+ u32char /= JAMO_T_COUNT;
+ u32NormFoldBuf[0] = (uint16_t)(JAMO_L_BASE + u32char / JAMO_V_COUNT);
+ u32NormFoldBuf[1] = (uint16_t)(JAMO_V_BASE + u32char % JAMO_V_COUNT);
+ if (tIndex == 0) {
+ return 2;
+ }
+ u32NormFoldBuf[2] = (uint16_t)(JAMO_T_BASE + tIndex);
+ return 3;
+}