]> git.saurik.com Git - apple/xnu.git/blobdiff - bsd/vfs/vfs_unicode.c
xnu-7195.50.7.100.1.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_unicode.c
diff --git a/bsd/vfs/vfs_unicode.c b/bsd/vfs/vfs_unicode.c
new file mode 100644 (file)
index 0000000..19b2d33
--- /dev/null
@@ -0,0 +1,1137 @@
+/*
+ * Copyright (C) 2016-2020 Apple, Inc. All rights reserved.
+ * Some portions covered by other copyrights, listed below.
+ *---
+ * Copyright (C) 2016 and later: Unicode, Inc. and others.
+ * License & terms of use: http://www.unicode.org/copyright.html
+ *---
+ * Copyright (C) 1999-2015, International Business Machines
+ * Corporation and others.  All Rights Reserved.
+ *
+ * add APPLE_OSREFERENCE_LICENSE_HEADER stuff...
+ */
+
+#include <libkern/libkern.h>
+#include <sys/errno.h>
+#include <sys/unicode.h>
+#include "vfs_unicode_data.h"
+#define STATIC_UNLESS_TEST static
+
+enum {
+       /* Maximum number of UTF8 bytes from one Unicode code point (one UTF32 code unit) */
+       kMaxUTF8BytesPerChar = 4
+};
+
+/* local prototypes used by exported functions (and themselves exported for testing) */
+STATIC_UNLESS_TEST
+int32_t utf8ToU32Code(int32_t u32char, const char** srcPtr, const char* srcLimit);
+STATIC_UNLESS_TEST
+int32_t normalizeOptCaseFoldU32Char(int32_t u32char, bool case_sens,
+    int32_t u32NormFoldBuf[kNFCSingleCharDecompMax],
+    uint8_t combClass[kNFCSingleCharDecompMax]);
+/* local prototypes used by exported functions (not exported for separate testing) */
+static int nextBaseAndAnyMarks(const char** strP, const char *strLimit, bool case_sens,
+    int32_t* unorm, uint8_t* unormcc, int32_t* unormlenP, int32_t* unormstartP,
+    int32_t* buf, uint8_t* bufcc, int32_t* buflenP,
+    bool* needReorderP, bool* startP);
+void doReorder(int32_t* buf, uint8_t* bufcc, int32_t buflen);
+int32_t u32CharToUTF8Bytes(uint32_t u32char, uint8_t utf8Bytes[kMaxUTF8BytesPerChar]);
+
+/*
+ * utf8_normalizeOptCaseFoldGetUVersion
+ *
+ * version[0] = Unicode major version; for Unicode 6.3.0 this would be 6
+ * version[1] = Unicode minor version; for Unicode 6.3.0 this would be 3
+ * version[2] = Unicode patch version; for Unicode 6.3.0 this would be 0
+ * version[3] = Code revision level; for any given Unicode version, this value starts
+ *              at 0 and is incremented for each significant revision to the
+ *              normalizeOptCaseFold functions.
+ */
+void
+utf8_normalizeOptCaseFoldGetUVersion(unsigned char version[4])
+{
+       version[0] = 13;
+       version[1] = 0;
+       version[2] = 0;
+       version[3] = 0;
+       return;
+}
+
+/*
+ * utf8_normalizeOptCaseFoldAndHash
+ *
+ * str:       The input UTF-8 string (need not be 0 terminated)
+ * str_len:   The byte length of the input string (excluding any 0 terminator)
+ * case_sens: False for case-insensitive behavior; generates canonical caseless form.
+ *            True for case-sensitive behavior; generates standard NFD.
+ * hash_func: A pointer to a hashing function to compute the hash of the
+ *            normalized/case-folded result. buf contains buf_len bytes
+ *            of data to be added to the hash using the caller-supplied
+ *            context (ctx).
+ * hash_ctx:  The context for the hash function.
+ *
+ * Returns: 0 on success, or
+ *          EILSEQ: The input string contains illegal ASCII-range characters
+ *                  (0x00 or '/'), or is not well-formed stream-safe UTF-8, or
+ *                  contains codepoints that are non-characters or unassigned in
+ *                  the version of Unicode currently supported (Unicode 9.0).
+ */
+
+int
+utf8_normalizeOptCaseFoldAndHash(const char *str,
+    size_t      str_len,
+    bool        case_sens,
+    void      (*hash_func)(void *buf, size_t buf_len, void *ctx),
+    void       *hash_ctx)
+{
+       const char *strLimit = str + str_len;
+
+       /* Data for the next pending single-char norm from input;
+        *  This will always begin with a base char (combining class 0)
+        *  or the first character in the string, which may no be a base */
+       int32_t unorm[kNFCSingleCharDecompMax];
+       uint8_t unormcc[kNFCSingleCharDecompMax];
+       int32_t unormlen = 0;
+       int32_t unormstart = 0;
+
+       bool start = true;
+
+       /* main loop:
+        * Each input character may be normalized to a sequence of one or more characters,
+        * some of which may have non-zero combining class. Any sequence of characters
+        * with non-zero combining class resulting from one or more input characters needs
+        * to be accumulated in the main buffer so we can reorder as necessary before
+        * calling the hash function.
+        *
+        * At the beginning of the main loop: The normalization buffer and main buffer are
+        * both empty.
+        *
+        * Each time through the main loop we do the following:
+        * 1. If there are characters available in the normalization result buffer (from the
+        *    result of normalizing a previous input character), copy the first character and
+        *    any following characters that have non-zero combining class to the main buffer.
+        * 2. If there is nothing left in the normalization buffer, then loop processing
+        *    input characters as follows:
+        *   a) Get the next input character from UTF8, get its normalized and case-folded
+        *      result in the normalization buffer.
+        *   b) If the first character in the normalization buffer has combining class 0,
+        *      break; we will handle this normalization buffer next time through the main
+        *      loop.
+        *   c) Else copy the current normalization buffer (which has only combining marks)
+        *      to the main buffer, and continue with the loop processing input characters.
+        * 3. At this point the first character in the main buffer may or may not have
+        *    combining class 0, but any subsequent characters (up to the the limit for
+        *    stream safe text) will be combining characters with nonzero combining class.
+        *    Reorder the combining marks if necessary into canonical order.
+        * 4. Call the hash function for each character in the main buffer.
+        *
+        */
+       do {
+               /* Data for the buffers being built up from input */
+               int32_t buf[kNCFStreamSafeBufMax];
+               uint8_t bufcc[kNCFStreamSafeBufMax];
+               int32_t buflen = 0;
+               bool needReorder = false;
+               int err;
+
+               err = nextBaseAndAnyMarks(&str, strLimit, case_sens, unorm, unormcc, &unormlen, &unormstart,
+                   buf, bufcc, &buflen, &needReorder, &start);
+               if (err != 0) {
+                       return err;
+               }
+
+               if (buflen > 0) {
+                       /* Now buffer should have all of the combining marks up to the next base char.
+                        * Normally it will also start with the last base char encountered (unless the
+                        * UTF8 string began with a combining mark). */
+                       /* Now reorder combining marks if necessary. */
+                       if (needReorder) {
+                               doReorder(buf, bufcc, buflen);
+                       }
+                       /* Now write to hash func */
+                       hash_func(buf, buflen * sizeof(buf[0]), hash_ctx);
+               }
+               /* OK so far, top of loop clears buffers to start refilling again */
+       } while (str < strLimit || unormlen > 0);
+       return 0;
+}
+
+/*
+ * utf8_normalizeOptCaseFoldAndCompare
+ *
+ * strA:      A UTF-8 string to be compared (need not be 0 terminated)
+ * strA_len:  The byte length of strA (excluding any 0 terminator)
+ * strB:      The second UTF-8 string to be compared (need not be 0 terminated)
+ * strB_len:  The byte length of strB (excluding any 0 terminator)
+ * case_sens: False for case-insensitive behavior; compares canonical caseless forms.
+ *            True for case-sensitive behavior; compares standard NFD forms.
+ * are_equal: On success, set to true if the strings are equal, or set to false
+ *            if they are not.
+ *
+ * Returns: 0 on success, or
+ *          EILSEQ: One or both of the input strings contains illegal ASCII-range
+ *                  characters (0x00 or '/'), or is not well-formed stream-safe UTF-8,
+ *                  or contains codepoints that are non-characters or unassigned in
+ *                  the version of Unicode currently supported (Unicode 9.0).
+ *                  Note: The comparison may terminate early when a difference is
+ *                        detected, and may return 0 and set *are_equal=false even
+ *                        if one or both strings are invalid.
+ */
+enum { kNFCSingleCharDecompMaxPlusPushback = kNFCSingleCharDecompMax + 4 }; /* room for 03B9 pushback(s) */
+
+int
+utf8_normalizeOptCaseFoldAndCompare(const char *strA,
+    size_t      strA_len,
+    const char *strB,
+    size_t      strB_len,
+    bool        case_sens,
+    bool       *are_equal)
+{
+       const char *strALimit = strA + strA_len;
+       const char *strBLimit = strB + strB_len;
+
+       /* Data for the next pending single-char norms from each input;
+        *  These will always begin with a base char (combining class 0)
+        *  or the first character in the string, which may not be a base */
+       int32_t unormA[kNFCSingleCharDecompMaxPlusPushback], unormB[kNFCSingleCharDecompMaxPlusPushback];
+       uint8_t unormAcc[kNFCSingleCharDecompMaxPlusPushback], unormBcc[kNFCSingleCharDecompMaxPlusPushback];
+       int32_t unormAlen = 0, unormBlen = 0;
+       int32_t unormAstart = 0, unormBstart = 0;
+
+       bool startA = true, startB = true;
+
+       /* main loop:
+        * The main loop here is similar to the main loop in utf8_normalizeOptCaseFoldAndHash,
+        * described above. The differences are:
+        * - We keep a normalization buffer and main buffer for each string.
+        * - In the main loop, we do steps 1-3 for each string.
+        * - In step 4, instead of calling the hash function, we compare the two main
+        *   buffers; if they are unequal, we return a non-equal result.
+        * - After the end of the main loop, if we still have data for one string but
+        *   not the other, return a non-equal result, else return an equal result.
+        */
+       do {
+               /* Data for the buffers being built up from each input */
+               int32_t bufA[kNCFStreamSafeBufMax], bufB[kNCFStreamSafeBufMax];
+               uint8_t bufAcc[kNCFStreamSafeBufMax], bufBcc[kNCFStreamSafeBufMax];
+               int32_t bufAlen = 0, bufBlen = 0;
+               bool needReorderA = false, needReorderB = false;
+               int err;
+
+               err = nextBaseAndAnyMarks(&strA, strALimit, case_sens, unormA, unormAcc, &unormAlen, &unormAstart,
+                   bufA, bufAcc, &bufAlen, &needReorderA, &startA);
+               if (err != 0) {
+                       return err;
+               }
+               err = nextBaseAndAnyMarks(&strB, strBLimit, case_sens, unormB, unormBcc, &unormBlen, &unormBstart,
+                   bufB, bufBcc, &bufBlen, &needReorderB, &startB);
+               if (err != 0) {
+                       return err;
+               }
+
+               if (bufAlen > 0 || bufBlen > 0) {
+                       /* Now each buffer should have all of the combining marks up to the next base char.
+                        * Normally it will also start with the last base char encountered (unless the
+                        * UTF8 string began with a combining mark). */
+                       /* Now reorder combining marks if necessary. */
+                       if (needReorderA) {
+                               doReorder(bufA, bufAcc, bufAlen);
+                       }
+                       if (needReorderB) {
+                               doReorder(bufB, bufBcc, bufBlen);
+                       }
+                       /* handle 03B9 pushback */
+                       int32_t idx;
+                       if (!case_sens) {
+                               if (bufAlen > 1 && bufA[bufAlen - 1] == 0x03B9 && unormAstart == 0) {
+                                       int32_t tailCount = 0;
+                                       while (tailCount < kNFCSingleCharDecompMaxPlusPushback - unormAlen && bufAlen > 1 && bufA[bufAlen - 1] == 0x03B9) {
+                                               tailCount++;
+                                               bufAlen--;
+                                       }
+                                       for (idx = unormAlen; idx > 0; idx--) {
+                                               unormA[idx - 1 + tailCount] = unormA[idx - 1];
+                                               unormAcc[idx - 1 + tailCount] = unormAcc[idx - 1];
+                                       }
+                                       for (idx = 0; idx < tailCount; idx++) {
+                                               unormA[idx] = 0x03B9;
+                                               unormAcc[idx] = 0;
+                                       }
+                                       unormAlen += tailCount;
+                               }
+                               if (bufBlen > 1 && bufB[bufBlen - 1] == 0x03B9 && unormBstart == 0) {
+                                       int32_t tailCount = 0;
+                                       while (tailCount < kNFCSingleCharDecompMaxPlusPushback - unormBlen && bufBlen > 1 && bufB[bufBlen - 1] == 0x03B9) {
+                                               tailCount++;
+                                               bufBlen--;
+                                       }
+                                       for (idx = unormBlen; idx > 0; idx--) {
+                                               unormB[idx - 1 + tailCount] = unormB[idx - 1];
+                                               unormBcc[idx - 1 + tailCount] = unormBcc[idx - 1];
+                                       }
+                                       for (idx = 0; idx < tailCount; idx++) {
+                                               unormB[idx] = 0x03B9;
+                                               unormBcc[idx] = 0;
+                                       }
+                                       unormBlen += tailCount;
+                               }
+                       }
+                       /* Now compare the buffers. */
+                       if (bufAlen != bufBlen || memcmp(bufA, bufB, bufAlen * sizeof(bufA[0])) != 0) {
+                               *are_equal = false;
+                               return 0;
+                       }
+               }
+               /* OK so far, top of loop clears buffers to start refilling again */
+       } while ((strA < strALimit || unormAlen > 0) && (strB < strBLimit || unormBlen > 0));
+
+       *are_equal = (strA == strALimit && unormAlen == 0 && strB == strBLimit && unormBlen == 0);
+       return 0;
+}
+
+/*
+ * utf8_normalizeOptCaseFold
+ *
+ * str:       The input UTF-8 string (need not be 0 terminated)
+ * str_len:   The byte length of the input string (excluding any 0 terminator)
+ * case_sens: False for case-insensitive behavior; generates canonical caseless form.
+ *            True for case-sensitive behavior; generates standard NFD.
+ * ustr:      A pointer to a buffer for the resulting UTF-32 string.
+ * ustr_size: The capacity of ustr, in UTF-32 units.
+ * ustr_len:  Pointer to a value that will be filled in with the actual length
+ *            in UTF-32 units of the string copied to ustr.
+ *
+ * Returns: 0 on success, or
+ *          EILSEQ: The input string contains illegal ASCII-range characters
+ *                  (0x00 or '/'), or is not well-formed stream-safe UTF-8, or
+ *                  contains codepoints that are non-characters or unassigned in
+ *                  the version of Unicode currently supported.
+ *          ENOMEM: ustr_size is insufficient for the resulting string. In this
+ *                  case the value returned in *ustr_len is invalid.
+ */
+int
+utf8_normalizeOptCaseFold(const char *str,
+    size_t      str_len,
+    bool        case_sens,
+    int32_t    *ustr,
+    int32_t     ustr_size,
+    int32_t    *ustr_len)
+{
+       const char *strLimit = str + str_len;
+       int32_t *ustrCur = ustr;
+       const int32_t *ustrLimit = ustr + ustr_size;
+
+       /* Data for the next pending single-char norm from input;
+        *  This will always begin with a base char (combining class 0) */
+       int32_t unorm[kNFCSingleCharDecompMax];
+       uint8_t unormcc[kNFCSingleCharDecompMax];
+       int32_t unormlen = 0;
+       int32_t unormstart = 0;
+
+       bool start = true;
+
+       *ustr_len = 0;
+       do {
+               /* Data for the buffers being built up from input */
+               int32_t buf[kNCFStreamSafeBufMax];
+               uint8_t bufcc[kNCFStreamSafeBufMax];
+               int32_t buflen = 0;
+               bool needReorder = false;
+               int err;
+
+               err = nextBaseAndAnyMarks(&str, strLimit, case_sens, unorm, unormcc, &unormlen, &unormstart,
+                   buf, bufcc, &buflen, &needReorder, &start);
+               if (err != 0) {
+                       return err;
+               }
+
+               if (buflen > 0) {
+                       if (needReorder) {
+                               doReorder(buf, bufcc, buflen);
+                       }
+                       /* Now copy to output buffer */
+                       int32_t idx;
+                       if (ustrCur + buflen > ustrLimit) {
+                               return ENOMEM;
+                       }
+                       for (idx = 0; idx < buflen; idx++) {
+                               *ustrCur++ = buf[idx];
+                       }
+               }
+               /* OK so far, top of loop clears buffers to start refilling again */
+       } while (str < strLimit || unormlen > 0);
+       *ustr_len = (uint32_t)(ustrCur - ustr); // XXXpjr: the explicit (uint32_t) cast wasn't present in the original code drop
+       return 0;
+}
+
+/*
+ * utf8_normalizeOptCaseFoldToUTF8
+ * (This is similar to normalizeOptCaseFold except that this has a different output
+ * buffer type, and adds conversion to UTF8 while copying to output buffer)
+ *
+ * str:       The input UTF-8 string (need not be 0 terminated)
+ * str_len:   The byte length of the input string (excluding any 0 terminator)
+ * case_sens: False for case-insensitive behavior; generates canonical caseless form.
+ *            True for case-sensitive behavior; generates standard NFD.
+ * ustr:      A pointer to a buffer for the resulting UTF-8 string.
+ * ustr_size: The capacity of ustr, in bytes.
+ * ustr_len:  Pointer to a value that will be filled in with the actual length
+ *            in bytes of the string copied to ustr.
+ *
+ * Returns: 0 on success, or
+ *          EILSEQ: The input string contains illegal ASCII-range characters
+ *                  (0x00 or '/'), or is not well-formed stream-safe UTF-8, or
+ *                  contains codepoints that are non-characters or unassigned in
+ *                  the version of Unicode currently supported.
+ *          ENOMEM: ustr_size is insufficient for the resulting string. In this
+ *                  case the value returned in *ustr_len is invalid.
+ */
+int
+utf8_normalizeOptCaseFoldToUTF8(const char *str,
+    size_t      str_len,
+    bool        case_sens,
+    char       *ustr,
+    size_t      ustr_size,
+    size_t     *ustr_len)
+{
+       const char *strLimit = str + str_len;
+       char *ustrCur = ustr;
+       const char *ustrLimit = ustr + ustr_size;
+
+       /* Data for the next pending single-char norm from input;
+        *  This will always begin with a base char (combining class 0) */
+       int32_t unorm[kNFCSingleCharDecompMax];
+       uint8_t unormcc[kNFCSingleCharDecompMax];
+       int32_t unormlen = 0;
+       int32_t unormstart = 0;
+
+       bool start = true;
+
+       *ustr_len = 0;
+       do {
+               /* Data for the buffers being built up from input */
+               int32_t buf[kNCFStreamSafeBufMax];
+               uint8_t bufcc[kNCFStreamSafeBufMax];
+               int32_t buflen = 0;
+               bool needReorder = false;
+               int err;
+
+               err = nextBaseAndAnyMarks(&str, strLimit, case_sens, unorm, unormcc, &unormlen, &unormstart,
+                   buf, bufcc, &buflen, &needReorder, &start);
+               if (err != 0) {
+                       return err;
+               }
+
+               if (buflen > 0) {
+                       uint8_t utf8Bytes[kMaxUTF8BytesPerChar];
+                       int32_t *bufPtr = buf;
+                       if (needReorder) {
+                               doReorder(buf, bufcc, buflen);
+                       }
+                       /* Now copy to output buffer */
+                       while (buflen-- > 0) {
+                               int32_t idx, utf8Len = u32CharToUTF8Bytes((uint32_t)*bufPtr++, utf8Bytes);
+                               if (ustrCur + utf8Len > ustrLimit) {
+                                       return ENOMEM;
+                               }
+                               for (idx = 0; idx < utf8Len; idx++) {
+                                       *ustrCur++ = (char)utf8Bytes[idx];
+                               }
+                       }
+               }
+               /* OK so far, top of loop clears buffers to start refilling again */
+       } while (str < strLimit || unormlen > 0);
+       *ustr_len = ustrCur - ustr;
+       return 0;
+}
+
+/*
+ * utf8_normalizeOptCaseFoldAndMatchSubstring
+ *
+ * strA:      A UTF-8 string (need not be 0 terminated) in which to search for the
+ *            substring specified by ustrB.
+ * strA_len:  The byte length of strA (excluding any 0 terminator)
+ * ustrB:     A normalized UTF-32 substring (need not be 0 terminated) to be searched
+ *            for in the UTF-32 string resulting from converting strA to the normalized
+ *            UTF-32 form specified by the case_sens parameter; ustrB must already be
+ *            in that form.
+ * ustrB_len: The length of ustrB in UTF-32 units (excluding any 0 terminator).
+ * case_sens: False for case-insensitive matching; compares canonical caseless forms.
+ *            True for case-sensitive matching; compares standard NFD forms.
+ * buf:       Pointer to caller-supplied working memory for storing the portion of
+ *            strA which has been converted to normalized UTF-32.
+ * buf_size:  The size of buf.
+ * has_match: On success, set to true if strA (when converter to UTF-32 and normalized
+ *            per case_sens) contains ustrB, set to false otherwise.
+ *
+ * Returns: 0 on success, or
+ *          EILSEQ: strA contains illegal ASCII-range characters (0x00 or '/'), or is
+ *                  not well-formed stream-safe UTF-8, or contains codepoints that are
+ *                  non-characters or unassigned in the version of Unicode currently
+ *                  supported.
+ *                  Note: The search may terminate early when a match is detected, and
+ *                        may return 0 and set *has_match=true even if strA is invalid.
+ *          ENOMEM: buf_size is insufficient.
+ */
+int
+utf8_normalizeOptCaseFoldAndMatchSubstring(const char    *strA,
+    size_t         strA_len,
+    const int32_t *ustrB,
+    int32_t        ustrB_len,
+    bool           case_sens,
+    void          *buf,
+    size_t         buf_size,
+    bool          *has_match)
+{
+       /*
+        * ustrA represents the current position in the UTF-32 normalized version of strA
+        * at which we want to test for a match; ustrANormEnd is the position beyond that
+        * which is just after the end of what has already been converted from strA to
+        * UTF-32 normalized form.
+        * Each time through the main loop:
+        * - The first task is to make sure we have enough of strA converted to UTF32
+        *   normalized form to test for match with ustrB at the current match position.
+        *   If we don't, then convert more of strA to UTF-32 normalized form until we
+        *   have enough to compare with ustrB. To do this, run a loop which is like the
+        *   main loop in utf8_normalizeOptCaseFoldAndHash except that in step 4, instead of
+        *   calling the hash function, we copy the normalized buffer to ustrANormEnd,
+        *   advancing the latter. We keep doing this until we have enough additional
+        *   converted to match with ustrB.
+        * - Then we test for match of ustrB at the current ustrA position. If there is
+        *   a match we return; otherwise, if there is more strA to convert we advance
+        *   ustrA  and repeat the main loop, otherwise we return without a match.
+        */
+       if (ustrB_len == 0) { /* always matches */
+               *has_match = true;
+               return 0;
+       }
+       *has_match = false; /* initialize return value */
+       if (ustrB_len > 2 * strA_len) {
+               /* If ustrB is clearly too long to find in strA, don't bother normalizing strA.
+                * A UTF-8 character of 1 byte (ASCII) will normalize to 1 UTF-32 unit.
+                * A UTF-8 character of 2-4 bytes will normalize to a maximum of 4 UTF-32 units.
+                * The maximum expansion from unnormalized UTF-8 byte length to normalized
+                *  UTF-32 unit length is thus 2. */
+               return 0;
+       }
+
+       const char *strALimit = strA + strA_len;
+       int32_t *ustrA = (int32_t *)buf;
+       const int32_t *ustrALimit = ustrA + (buf_size / sizeof(int32_t));
+       int32_t *ustrANormEnd = ustrA; /* how far we have already normalized in ustrA */
+
+       /* Data for the next pending single-char norms from each input;
+        *  These will always begin with a base char (combining class 0)
+        *  or the first character in the string, which may not be a base */
+       int32_t unormA[kNFCSingleCharDecompMax];
+       uint8_t unormAcc[kNFCSingleCharDecompMax];
+       int32_t unormAlen = 0;
+       int32_t unormAstart = 0;
+
+       bool startA = true;
+
+       while (true) {
+               /* convert enough more of strA to normalized UTF-32 in ustrA to check for match */
+               if (ustrANormEnd - ustrA < ustrB_len) {
+                       do {
+                               /* Data for the buffers being built up from each input */
+                               int32_t bufA[kNCFStreamSafeBufMax];
+                               uint8_t bufAcc[kNCFStreamSafeBufMax];
+                               int32_t bufAlen = 0;
+                               bool needReorderA = false;
+                               int err;
+
+                               err = nextBaseAndAnyMarks(&strA, strALimit, case_sens, unormA, unormAcc, &unormAlen, &unormAstart,
+                                   bufA, bufAcc, &bufAlen, &needReorderA, &startA);
+                               if (err != 0) {
+                                       return err;
+                               }
+
+                               if (bufAlen > 0) {
+                                       /* Now each buffer should have all of the combining marks up to the next base char.
+                                        * Normally it will also start with the last base char encountered (unless the
+                                        * UTF8 string began with a combining mark). */
+                                       /* Now reorder combining marks if necessary. Should be rare, and sequences should
+                                        * usually be short when does occur => simple bubblesort should be sufficient. */
+                                       if (needReorderA) {
+                                               doReorder(bufA, bufAcc, bufAlen);
+                                       }
+                                       /* Now copy to working buffer */
+                                       int32_t idx;
+                                       if (ustrANormEnd + bufAlen > ustrALimit) {
+                                               return ENOMEM;
+                                       }
+                                       for (idx = 0; idx < bufAlen; idx++) {
+                                               *ustrANormEnd++ = bufA[idx];
+                                       }
+                               }
+                               /* OK so far, top of loop clears buffers to start refilling again */
+                       } while ((ustrANormEnd - ustrA < ustrB_len) && (strA < strALimit || unormAlen > 0));
+               }
+
+               if (ustrANormEnd - ustrA < ustrB_len) {
+                       return 0; /* not enough of strA left for match */
+               }
+               /* check for match, return if so */
+               if (memcmp(ustrA, ustrB, ustrB_len * sizeof(ustrB[0])) == 0) {
+                       *has_match = true;
+                       return 0;
+               }
+               ustrA++; /* advance match position */
+       }
+}
+
+/* nextBaseAndAnyMarks:
+ * Guts of code to get next bufferful of base character (or first char in string)
+ * and all trailing combining marks.
+ * This is called each time through the main loop of functions above, and does the
+ * following:
+ * 1. If there are characters available in the normalization result buffer (from the
+ *    result of normalizing a previous input character), copy the first character and
+ *    any following characters that have non-zero combining class to the main buffer.
+ * 2. If there is nothing left in the normalization buffer, then loop processing
+ *    input characters as follows:
+ *   a) Get the next input character from UTF8, get its normalized and case-folded
+ *      result in the normalization buffer.
+ *   b) If the first character in the normalization buffer has combining class 0,
+ *      break; we will handle this normalization buffer next time through the main
+ *      loop.
+ *   c) Else copy the current normalization buffer (which has only combining marks)
+ *      to the main buffer, and continue with the loop processing input characters.
+ */
+
+static int
+nextBaseAndAnyMarks(const char** strP, const char *strLimit, bool case_sens,
+    int32_t* unorm, uint8_t* unormcc, int32_t* unormlenP, int32_t* unormstartP,
+    int32_t* buf, uint8_t* bufcc, int32_t* buflenP,
+    bool* needReorderP, bool* startP)
+{
+       /* update buffers for str */
+       if (*unormlenP > 0 && *unormstartP < *unormlenP) {
+               /* unorm begins with a base char; buflen should be 0 */
+               *needReorderP = false;
+               for (*buflenP = 0; true;) {
+                       if (*buflenP > 0 && unormcc[*unormstartP] > 0 && unormcc[*unormstartP] < bufcc[(*buflenP) - 1]) {
+                               *needReorderP = true;
+                       }
+                       buf[*buflenP] = unorm[*unormstartP];
+                       bufcc[(*buflenP)++] = unormcc[(*unormstartP)++];
+                       if (*unormstartP >= *unormlenP || unormcc[*unormstartP] == 0) {
+                               break;
+                       }
+               }
+       }
+       if (*unormstartP >= *unormlenP) {
+               *unormstartP = *unormlenP = 0;
+               while (*strP < strLimit) {
+                       int32_t idx;
+                       uint32_t bytevalue = (uint8_t)*(*strP)++;
+                       /* '/' is not produced by NFD decomposition from another character so we can
+                        * check for it before normalization */
+                       if (bytevalue == 0 || bytevalue == 0x2F /*'/'*/) {
+                               return EILSEQ;
+                       }
+                       if (bytevalue < 0x80) {
+                               unorm[0] = (!case_sens && bytevalue >= 'A' && bytevalue <= 'Z')? bytevalue += 0x20: bytevalue;
+                               *unormlenP = 1;
+                               unormcc[0] = 0;
+                               *startP = false;
+                               break;
+                       } else {
+                               int32_t u32char = utf8ToU32Code(bytevalue, strP, strLimit);
+                               if (u32char <= 0) {
+                                       return EILSEQ;
+                               }
+                               *unormlenP = normalizeOptCaseFoldU32Char(u32char, case_sens, unorm, unormcc);
+                               if (*unormlenP <= 0) {
+                                       return EILSEQ;
+                               }
+                               if (unormcc[0] == 0 || *startP) {
+                                       *startP = false;
+                                       break;
+                               }
+                       }
+                       /* the latest char decomposes to just combining sequence, add to buffer being built */
+                       if (*buflenP + *unormlenP > kNCFStreamSafeBufMax) {
+                               return EILSEQ;
+                       }
+                       for (idx = 0; idx < *unormlenP; idx++, (*buflenP)++) {
+                               if (*buflenP > 0 && unormcc[idx] > 0 && unormcc[idx] < bufcc[(*buflenP) - 1]) {
+                                       *needReorderP = true;
+                               }
+                               buf[*buflenP] = unorm[idx];
+                               bufcc[*buflenP] = unormcc[idx];
+                       }
+                       *unormlenP = 0;
+               }
+       }
+       return 0;
+}
+
+/*  local prototypes used only by internal functions */
+static void swapBufCharCCWithPrevious(int32_t jdx, int32_t buf[], uint8_t bufcc[]);
+static int32_t adjustCase(bool case_sens, int32_t uSeqLen,
+    int32_t u32NormFoldBuf[kNFCSingleCharDecompMax]);
+static uint8_t getCombClassU32Char(int32_t u32char);
+static int32_t decomposeHangul(int32_t u32char, int32_t u32NormFoldBuf[kNFCSingleCharDecompMax]);
+
+/* Reorder combining marks if necessary. Should be rare, and sequences should
+ * usually be short when does occur => simple bubblesort should be sufficient. */
+void
+doReorder(int32_t* buf, uint8_t* bufcc, int32_t buflen)
+{
+       int32_t idx, jdx;
+       for (idx = 0; idx < buflen - 1; idx++) {
+               for (jdx = buflen - 1; jdx > idx; jdx--) {
+                       if (bufcc[jdx] < bufcc[jdx - 1]) {
+                               swapBufCharCCWithPrevious(jdx, buf, bufcc);
+                       }
+               }
+       }
+}
+/*  swap function for bubblesort */
+static void
+swapBufCharCCWithPrevious(int32_t jdx, int32_t buf[], uint8_t bufcc[])
+{
+       int32_t bufchar = buf[jdx];
+       uint8_t bufccval = bufcc[jdx];
+       buf[jdx] = buf[jdx - 1];
+       bufcc[jdx] = bufcc[jdx - 1];
+       buf[jdx - 1] = bufchar;
+       bufcc[jdx - 1] = bufccval;
+}
+
+/*
+ * u32CharToUTF8Bytes, map a valid Unicode character (UTF32 code point) to 1..4 UTF8 bytes,
+ * and returns the number of UTF8 bytes.
+ *
+ * adapted from ICU macro U8_APPEND_UNSAFE (utf8.h).
+ */
+int32_t
+u32CharToUTF8Bytes(uint32_t u32char, uint8_t utf8Bytes[kMaxUTF8BytesPerChar])
+{
+       int32_t idx = 0;
+       if (u32char <= 0x7F) {
+               utf8Bytes[idx++] = (uint8_t)u32char;
+       } else {
+               if (u32char <= 0x7FF) {
+                       utf8Bytes[idx++] = (uint8_t)((u32char >> 6) | 0xC0);
+               } else {
+                       if (u32char <= 0xFFFF) {
+                               utf8Bytes[idx++] = (uint8_t)((u32char >> 12) | 0xE0);
+                       } else {
+                               utf8Bytes[idx++] = (uint8_t)((u32char >> 18) | 0xF0);
+                               utf8Bytes[idx++] = (uint8_t)(((u32char >> 12) & 0x3F) | 0x80);
+                       }
+                       utf8Bytes[idx++] = (uint8_t)(((u32char >> 6) & 0x3F) | 0x80);
+               }
+               utf8Bytes[idx++] = (uint8_t)((u32char & 0x3F) | 0x80);
+       }
+       return idx;
+}
+
+/* two macros adapted from ICU's utf8.h */
+#define U8_COUNT_TRAIL_BYTES_LOC(leadByte) \
+((uint8_t)(leadByte)<0XF0 ? \
+((uint8_t)(leadByte)>=0XC0)+((uint8_t)(leadByte)>=0XE0) : \
+(uint8_t)(leadByte)<0XFE ? 3+((uint8_t)(leadByte)>=0XF8)+((uint8_t)(leadByte)>=0XFC) : 0)
+
+#define U8_MASK_LEAD_BYTE_LOC(leadByte, countTrailBytes) ((leadByte)&=(1<<(6-(countTrailBytes)))-1)
+
+/* array adapted from ICU's utf_impl.c */
+static const int32_t utf8_minLegal[4] = { 0, 0X80, 0x800, 0x10000 };
+
+/*
+ * utf8ToU32Code, map a non-ASCII byte value plus a buffer of trail bytes to a UTF32 code point
+ *
+ * adapted from ICU macro U8_NEXT (utf8.h) and function utf8_nextCharSafeBody (utf_impl.c);
+ * verified to produce the same results (adusted for the difference in API signature).
+ *
+ * assumes at entry that:
+ * 1. a non-ASCII byte value (>= 0x80) that purports to be the beginning of a UTF8 character
+ *    has been read, and its value is in u32char
+ * 2. *srcPtr points to the input buffer just after that non-ASCII byte, i.e. it purportedly
+ *    points to the trail bytes for that UTF8 char.
+ * 3. srcLimit points to end of the input buffer (just after the last byte in the buffer)
+ *
+ * For a valid and complete UTF8 character, the function returns its value and advances
+ * *srcPtr to the first byte after the UTF8 char. Otherwise, the function returns -1
+ * (and the value in *srcPtr is undefined).
+ * Note that while it does not map to surrogate values (generates an error for malformed
+ * UTF-8 that would map to values in 0xD800..0xD8FF), it does output noncharacter values
+ * whose low 16 bits are 0xFFFE or 0xFFFF without generating an error.
+ *
+ * equivalences used in adapted ICU code:
+ * UChar = uint16_t
+ * UChar32 = int32_t
+ *
+ * This has been validated against ICU behavior.
+ */
+STATIC_UNLESS_TEST
+int32_t
+utf8ToU32Code(int32_t u32char, const char** srcPtr, const char* srcLimit)
+{
+       const char* src = *srcPtr;
+       uint8_t pt1, pt2;
+       if (0xE0 < u32char && u32char <= 0xEC && src + 1 < srcLimit && (pt1 = (uint8_t)(src[0] - 0x80)) <= 0x3F && (pt2 = (uint8_t)(src[1] - 0x80)) <= 0x3F) {
+               /* handle U+1000..U+CFFF */
+               /* no need for (u32char&0xF) because the upper bits are truncated after <<12 in the cast to (uint16_t) */
+               u32char = (uint16_t)((u32char << 12) | (pt1 << 6) | pt2);
+               src += 2;
+       } else if (u32char < 0xE0 && u32char >= 0xC2 && src < srcLimit && (pt1 = (uint8_t)(src[0] - 0x80)) <= 0x3F) {
+               /* handle U+0080..U+07FF */
+               u32char = ((u32char & 0x1F) << 6) | pt1;
+               src++;
+       } else {
+               /* "complicated" and error cases, adapted from ICU's utf8_nextCharSafeBody() */
+               uint8_t count = U8_COUNT_TRAIL_BYTES_LOC(u32char);
+               if (src + count <= srcLimit) {
+                       uint8_t trail;
+
+                       U8_MASK_LEAD_BYTE_LOC(u32char, count);
+                       switch (count) {
+                       /* branches 3, 2 fall through to the next one */
+                       case 0:         /* count==0 for illegally leading trail bytes and the illegal bytes 0XFE and 0XFF */
+                       case 5:
+                       case 4:          /* count>=4 is always illegal: no more than 3 trail bytes in Unicode's UTF-8 */
+                               break;
+                       case 3:
+                               trail = *src++ - 0X80;
+                               u32char = (u32char << 6) | trail;
+                               /* u32char>=0x110 would result in code point>0x10FFFF, outside Unicode */
+                               if (u32char >= 0x110 || trail > 0X3F) {
+                                       break;
+                               }
+                       case 2:
+                               trail = *src++ - 0X80;
+                               u32char = (u32char << 6) | trail;
+                               /*
+                                * test for a surrogate D800..DFFF:
+                                * before the last (u32char<<6), a surrogate is u32char=360..37F
+                                */
+                               if (((u32char & 0xFFE0) == 0x360) || trail > 0X3F) {
+                                       break;
+                               }
+                       case 1:
+                               trail = *src++ - 0X80;
+                               u32char = (u32char << 6) | trail;
+                               if (trail > 0X3F) {
+                                       break;
+                               }
+                               /* correct sequence - all trail bytes have (b7..b6)==(10) */
+                               if (u32char >= utf8_minLegal[count]) {
+                                       *srcPtr = src;
+                                       return u32char;
+                               }
+                               /* no default branch to optimize switch()  - all values are covered */
+                       }
+               }
+               u32char = -1;
+       }
+       *srcPtr = src;
+       return u32char;
+}
+
+/*
+ * normalizeCaseFoldU32Code, map a single UTF32 code point to its normalized result
+ * and the combining classes for each resulting char, or indicate it is invalid.
+ *
+ * The normalized and case-folded result might be up to 4 UTF32 characters (current
+ * max, could change in the future).
+ *
+ * u32char - input UTF32 code point
+ * case_sens - false for case insensiive => casefold, true for case sensitive => NFD only
+ * u32NormFoldBuf - output buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
+ *          to receive the normalize result.
+ * combClass - output buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
+ *          to receive the combining classes for the characters in u32NormFoldBuf. If
+ *          the first entry has non-zero combining class, the remaining entries do too.
+ *
+ * returns -1 if input code point is invalid, 0 if the buffer length kNFCSingleCharDecompMax
+ * is insufficient (though it is assumed to be at least 3), else the length of the
+ * normalized and case-folded result (currently in the range 1..4).
+ *
+ * This has been validated against ICU behavior.
+ *
+ * This function is highly dependent on the structure of the data trie; for details on
+ * that structure, see comments in normalizeCaseFoldData.h
+ */
+STATIC_UNLESS_TEST
+int32_t
+normalizeOptCaseFoldU32Char(int32_t u32char, bool case_sens,
+    int32_t u32NormFoldBuf[kNFCSingleCharDecompMax],
+    uint8_t combClass[kNFCSingleCharDecompMax])
+{
+       combClass[0] = 0;
+       /*  return hi-range PUA as self, except non-characters */
+       if (u32char >= kU32HiPUAStart) {
+               if ((u32char & 0xFFFE) == 0xFFFE) {
+                       return -1;
+               }
+               u32NormFoldBuf[0] = u32char;
+               return 1;
+       }
+       /*  for trie lookup, shift the range 0xE0000-0xE01FF down to be just after the range */
+       /*  0 - 0x313FF; everything in between in currently invalid. */
+       int32_t u32charLookup = u32char;
+       if (u32charLookup >= kU32LowRangeLimit) {
+               u32charLookup -= (kU32HiRangeStart - kU32LowRangeLimit);
+               if (u32charLookup < kU32LowRangeLimit || u32charLookup >= (kU32LowRangeLimit + kU32HiRangeLen)) {
+                       return -1; /* in the large range of currently-unassigned code points */
+               }
+       }
+       /* Now we have u32charLookup either in 0..0x313FF representing u32char itself,
+        *  or in 0x31400..0x315FF representing u32char 0xE0000..0xE01FF; look it up in
+        *  the trie that identifies unassigneds in this range, or maps others to
+        *  decomps or combining class or just self. */
+       uint16_t trieValue;
+       /*  TrieHi */
+       trieValue = nfTrieHi[u32charLookup >> kNFTrieHiShift];
+       if (trieValue == kInvalidCodeFlag) {
+               return -1;
+       }
+       if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) { /*  return self; */
+               u32NormFoldBuf[0] = u32char;
+               combClass[0] = trieValue & kFlagValueMask;
+               return 1;
+       }
+       if (trieValue == kHangulMask) {
+               combClass[1] = combClass[2] = 0;
+               return decomposeHangul(u32char, u32NormFoldBuf);
+       }
+       /*  TrieMid */
+       trieValue = nfTrieMid[trieValue & kNextIndexValueMask][(u32charLookup >> kNFTrieMidShift) & kNFTrieMidMask];
+       if (trieValue == kInvalidCodeFlag) {
+               return -1;
+       }
+       if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) {
+               u32NormFoldBuf[0] = u32char;
+               combClass[0] = trieValue & kFlagValueMask;
+               return adjustCase(case_sens, 1, u32NormFoldBuf);
+       }
+       if ((trieValue & kFlagTestMask) == kInvMaskFlag) {
+               uint16_t invalidMask = nfU16InvMasks[trieValue & kFlagValueMask];
+               uint16_t testBit = (uint16_t)(1 << (u32charLookup & kNFTrieLoMask));
+               if (testBit & invalidMask) {
+                       /* invalid */
+                       return -1;
+               } else {
+                       /* treat like trieValue == 0 above */
+                       u32NormFoldBuf[0] = u32char;
+                       return adjustCase(case_sens, 1, u32NormFoldBuf);;
+               }
+       }
+       if (trieValue == kHangulMask) {
+               combClass[1] = combClass[2] = 0;
+               return decomposeHangul(u32char, u32NormFoldBuf);
+       }
+       /*  TrieLo */
+       trieValue = nfTrieLo[trieValue & kNextIndexValueMask][u32charLookup & kNFTrieLoMask];
+       if (trieValue == kInvalidCodeFlag) {
+               return -1;
+       }
+       if (trieValue == kHangulMask) {
+               combClass[1] = combClass[2] = 0;
+               return decomposeHangul(u32char, u32NormFoldBuf);
+       }
+       if (trieValue < kToU16Seq2Mask || trieValue > kSpecialsEnd) {
+               if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) {
+                       u32NormFoldBuf[0] = u32char;
+                       combClass[0] = trieValue & kFlagValueMask;
+               } else {
+                       u32NormFoldBuf[0] = trieValue;
+               }
+               return adjustCase(case_sens, 1, u32NormFoldBuf);;
+       }
+       const uint16_t* u16SeqPtr = NULL;
+       const int32_t*  u32SeqPtr = NULL;
+       int32_t         uSeqLen = 0;
+       switch (trieValue & kSpecialsMask) {
+       case kToU16Seq2Mask:
+               if (case_sens && (trieValue & kToSeqCaseFoldMask)) {
+                       /* don't use the mapping, it is only for case folding */
+                       u32NormFoldBuf[0] = u32char;
+                       /* already have combClass[0] = 0 */
+                       return 1;
+               }
+               u16SeqPtr = nfU16Seq2[trieValue & kToSeqIndexMask];
+               uSeqLen = 2;
+               break;
+       case kToU16Seq3Mask:
+               if (case_sens && (trieValue & kToSeqCaseFoldMask)) {
+                       /* don't use the mapping, it is only for case folding */
+                       u32NormFoldBuf[0] = u32char;
+                       /* already have combClass[0] = 0 */
+                       return 1;
+               }
+               u16SeqPtr = nfU16Seq3[trieValue & kToSeqIndexMask];
+               uSeqLen = 3;
+               break;
+       case kToU16SeqMiscMask:
+               u16SeqPtr = &nfU16SeqMisc[trieValue & kToSeqMiscIndexMask];
+               uSeqLen = *u16SeqPtr & kToSeqMiscLenMask;
+               combClass[0] = (uint8_t)(*u16SeqPtr++ >> kToSeqMiscCCShift);
+               break;
+       case kToU32CharMask:
+               if (case_sens && (trieValue & kToSeqCaseFoldMask)) {
+                       /* don't use the mapping, it is only for case folding */
+                       u32NormFoldBuf[0] = u32char;
+                       /* already have combClass[0] = 0 */
+                       return 1;
+               }
+               u32SeqPtr = &nfU32Char[trieValue & kToSeqIndexMask];
+               uSeqLen = 1;
+               break;
+       case kToU32SeqMiscMask:
+               u32SeqPtr = &nfU32SeqMisc[trieValue & kToSeqMiscIndexMask];
+               uSeqLen = *u32SeqPtr & kToSeqMiscLenMask;
+               combClass[0] = (uint8_t)(*u32SeqPtr++ >> kToSeqMiscCCShift);
+               break;
+       default:
+               return -1;
+       }
+       if (kNFCSingleCharDecompMax < uSeqLen) {
+               return 0;
+       }
+       int32_t idx;
+       for (idx = 0; idx < uSeqLen; idx++) {
+               u32NormFoldBuf[idx] = (u16SeqPtr)? *u16SeqPtr++: *u32SeqPtr++;
+               if (idx > 0) {
+                       combClass[idx] = getCombClassU32Char(u32NormFoldBuf[idx]);
+               }
+       }
+       return adjustCase(case_sens, uSeqLen, u32NormFoldBuf);
+}
+
+/*
+ * adjustCase, final adjustments to normalizeOptCaseFoldU32Char for case folding
+ *
+ * case_sens - false for case insensiive => casefold, true for case sensitive => NFD only
+ * uSeqLen - length of the sequence specified in the u32NormFoldBuf
+ * u32NormFoldBuf - buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
+ *          with normalized result.
+ *
+ * returns uSeqLen if input code point is invalid, 0 if the buffer length kNFCSingleCharDecompMax
+ * is insufficient (though it is assumed to be at least 3), else the length of the
+ * normalized and case-folded result (currently in the range 1..4).
+ *
+ * This function is a reduced version of normalizeOptCaseFoldU32Char above.
+ */
+
+static int32_t
+adjustCase(bool case_sens, int32_t uSeqLen,
+    int32_t u32NormFoldBuf[kNFCSingleCharDecompMax])
+{
+       if (!case_sens && uSeqLen > 0) {
+               if (u32NormFoldBuf[0] < kSimpleCaseFoldLimit) {
+                       u32NormFoldBuf[0] = nfBasicCF[u32NormFoldBuf[0]];
+                       /* There is one case in which this maps to a character with different combining
+                        * class: U+0345 (cc 240) casefolds to U+03B9 (cc 0). However when this is the
+                        * first or only character in the sequence, we want to keep the original
+                        * combining class, so nothing special to do here.
+                        */
+               }
+               /* The following is the only case where we have a casefolding after the first
+                * character in the sequence. Don't worry about combining class here. that gets
+                * set later for characters after the first.
+                */
+               if (uSeqLen > 1 && u32NormFoldBuf[uSeqLen - 1] == 0x0345) {
+                       u32NormFoldBuf[uSeqLen - 1] = 0x03B9;
+               }
+       }
+       return uSeqLen;
+}
+
+/*
+ * getCombClassU32Char, map a single character (in UTF32 form) to its combining class.
+ *
+ * u32char - input UTF32 code point. This is assumed to be a valid character that does
+ * not have a decomposition.
+ *
+ * returns combining class of the character.
+ *
+ * This is only called for characters after the first is a decomposition expansion. In
+ * this situation, if we encounter U+03B9 (combining class 0), it is only there as the
+ * case-folding of U+0345 (combining class 240). In this case it is the combining class
+ * for U+0345 that we want. In the non-casefold case we won't see U+03B9 here at all.
+ *
+ * This function is a reduced version of normalizeOptCaseFoldU32Char above.
+ */
+static uint8_t
+getCombClassU32Char(int32_t u32char)
+{
+       if (u32char >= kU32HiPUAStart) {
+               return 0;
+       }
+       if (u32char == 0x03B9) {
+               return 240;
+       }
+       /*  for trie lookup, shift the range 0xE0000-0xE01FF down to be just after the range */
+       /*  0 - 0x313FF; everything in between in currently invalid. */
+       int32_t u32charLookup = u32char;
+       if (u32charLookup >= kU32LowRangeLimit) {
+               u32charLookup -= (kU32HiRangeStart - kU32LowRangeLimit);
+       }
+       /* Now we have u32charLookup either in 0..0x313FF representing u32char itself,
+        *  or in 0x31400..0x315FF representing u32char 0xE0000..0xE01FF; look it up in
+        *  the trie that identifies unassigneds in this range, or maps others to
+        *  decomps or combining class or just self. */
+       uint16_t trieValue;
+       /*  TrieHi */
+       trieValue = nfTrieHi[u32charLookup >> kNFTrieHiShift];
+       if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) {
+               return trieValue & kFlagValueMask;
+       }
+       /*  TrieMid */
+       trieValue = nfTrieMid[trieValue & kNextIndexValueMask][(u32charLookup >> kNFTrieMidShift) & kNFTrieMidMask];
+       if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) { /*  return self; */
+               return trieValue & kFlagValueMask;
+       }
+       if ((trieValue & kFlagTestMask) == kInvMaskFlag) {
+               return 0;
+       }
+       /*  TrieLo */
+       trieValue = nfTrieLo[trieValue & kNextIndexValueMask][u32charLookup & kNFTrieMidMask];
+       return ((trieValue & kFlagTestMask) == kCombClassFlag)? (trieValue & kFlagValueMask): 0;
+}
+
+/*
+ * decomposeHangul, map a single UTF32 code point for a composed Hangul
+ * in the range AC00-D7A3, using algorithmic decomp
+ *
+ * The normalized result will be 2 or 3 UTF32 characters.
+ *
+ * u32char - input UTF32 code point
+ * u32NormFoldBuf - output buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
+ *          to receive the normalize result.
+ *
+ * returns the length of the normalized result (2..3).
+ *
+ * Adapted from ICU Hangul:decompose in normalizer2impl.h
+ *
+ */
+
+enum {
+       HANGUL_BASE=0xAC00,
+       JAMO_L_BASE=0x1100,     /* "lead" jamo */
+       JAMO_V_BASE=0x1161,     /* "vowel" jamo */
+       JAMO_T_BASE=0x11A7,     /* "trail" jamo */
+       JAMO_L_COUNT=19,
+       JAMO_V_COUNT=21,
+       JAMO_T_COUNT=28,
+};
+
+static int32_t
+decomposeHangul(int32_t u32char, int32_t u32NormFoldBuf[kNFCSingleCharDecompMax])
+{
+       u32char -= HANGUL_BASE;
+       int32_t tIndex = u32char % JAMO_T_COUNT;
+       u32char /= JAMO_T_COUNT;
+       u32NormFoldBuf[0] = (uint16_t)(JAMO_L_BASE + u32char / JAMO_V_COUNT);
+       u32NormFoldBuf[1] = (uint16_t)(JAMO_V_BASE + u32char % JAMO_V_COUNT);
+       if (tIndex == 0) {
+               return 2;
+       }
+       u32NormFoldBuf[2] = (uint16_t)(JAMO_T_BASE + tIndex);
+       return 3;
+}