/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- *
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*
*
* @(#)kern_time.c 8.4 (Berkeley) 5/26/95
*/
+/*
+ * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
+ * support for mandatory and extensible security protections. This notice
+ * is included in support of clause 2.2 (b) of the Apple Public License,
+ * Version 2.0.
+ */
#include <sys/param.h>
#include <sys/resourcevar.h>
#include <sys/kernel.h>
#include <sys/systm.h>
-#include <sys/proc.h>
+#include <sys/proc_internal.h>
+#include <sys/kauth.h>
#include <sys/vnode.h>
+#include <sys/time.h>
+#include <sys/priv.h>
-#include <sys/mount.h>
+#include <sys/mount_internal.h>
+#include <sys/sysproto.h>
+#include <sys/signalvar.h>
+#include <sys/protosw.h> /* for net_uptime2timeval() */
#include <kern/clock.h>
+#include <kern/task.h>
+#include <kern/thread_call.h>
+#if CONFIG_MACF
+#include <security/mac_framework.h>
+#endif
+#include <IOKit/IOBSD.h>
+#include <sys/time.h>
+#include <kern/remote_time.h>
-#define HZ 100 /* XXX */
+#define HZ 100 /* XXX */
-volatile struct timeval time;
/* simple lock used to access timezone, tz structure */
-decl_simple_lock_data(, tz_slock);
-/*
+lck_spin_t * tz_slock;
+lck_grp_t * tz_slock_grp;
+lck_attr_t * tz_slock_attr;
+lck_grp_attr_t *tz_slock_grp_attr;
+
+static void setthetime(
+ struct timeval *tv);
+
+void time_zone_slock_init(void);
+static boolean_t timeval_fixusec(struct timeval *t1);
+
+/*
* Time of day and interval timer support.
*
* These routines provide the kernel entry points to get and set
* and decrementing interval timers, optionally reloading the interval
* timers when they expire.
*/
-struct gettimeofday_args{
- struct timeval *tp;
- struct timezone *tzp;
-};
/* ARGSUSED */
int
-gettimeofday(p, uap, retval)
- struct proc *p;
- register struct gettimeofday_args *uap;
- register_t *retval;
+gettimeofday(
+ struct proc *p,
+ struct gettimeofday_args *uap,
+ __unused int32_t *retval)
{
- struct timeval atv;
int error = 0;
- extern simple_lock_data_t tz_slock;
struct timezone ltz; /* local copy */
+ clock_sec_t secs;
+ clock_usec_t usecs;
+ uint64_t mach_time;
-/* NOTE THIS implementation is for non ppc architectures only */
+ if (uap->tp || uap->mach_absolute_time) {
+ clock_gettimeofday_and_absolute_time(&secs, &usecs, &mach_time);
+ }
if (uap->tp) {
- clock_get_calendar_microtime(&atv.tv_sec, &atv.tv_usec);
- if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
- sizeof (atv)))
- return(error);
+ /* Casting secs through a uint32_t to match arm64 commpage */
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_timeval user_atv = {};
+ user_atv.tv_sec = (uint32_t)secs;
+ user_atv.tv_usec = usecs;
+ error = copyout(&user_atv, uap->tp, sizeof(user_atv));
+ } else {
+ struct user32_timeval user_atv = {};
+ user_atv.tv_sec = (uint32_t)secs;
+ user_atv.tv_usec = usecs;
+ error = copyout(&user_atv, uap->tp, sizeof(user_atv));
+ }
+ if (error) {
+ return error;
+ }
}
-
+
if (uap->tzp) {
- usimple_lock(&tz_slock);
+ lck_spin_lock(tz_slock);
ltz = tz;
- usimple_unlock(&tz_slock);
- error = copyout((caddr_t)<z, (caddr_t)uap->tzp,
- sizeof (tz));
+ lck_spin_unlock(tz_slock);
+
+ error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), sizeof(tz));
}
- return(error);
+ if (error == 0 && uap->mach_absolute_time) {
+ error = copyout(&mach_time, uap->mach_absolute_time, sizeof(mach_time));
+ }
+
+ return error;
}
-struct settimeofday_args {
- struct timeval *tv;
- struct timezone *tzp;
-};
+/*
+ * XXX Y2038 bug because of setthetime() argument
+ */
/* ARGSUSED */
int
-settimeofday(p, uap, retval)
- struct proc *p;
- struct settimeofday_args *uap;
- register_t *retval;
+settimeofday(__unused struct proc *p, struct settimeofday_args *uap, __unused int32_t *retval)
{
struct timeval atv;
struct timezone atz;
- int error, s;
- extern simple_lock_data_t tz_slock;
-
- if (error = suser(p->p_ucred, &p->p_acflag))
- return (error);
- /* Verify all parameters before changing time. */
- if (uap->tv && (error = copyin((caddr_t)uap->tv,
- (caddr_t)&atv, sizeof(atv))))
- return (error);
- if (uap->tzp && (error = copyin((caddr_t)uap->tzp,
- (caddr_t)&atz, sizeof(atz))))
- return (error);
- if (uap->tv)
+ int error;
+
+ bzero(&atv, sizeof(atv));
+
+ /* Check that this task is entitled to set the time or it is root */
+ if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) {
+#if CONFIG_MACF
+ error = mac_system_check_settime(kauth_cred_get());
+ if (error) {
+ return error;
+ }
+#endif
+#ifndef CONFIG_EMBEDDED
+ if ((error = suser(kauth_cred_get(), &p->p_acflag))) {
+ return error;
+ }
+#endif
+ }
+
+ /* Verify all parameters before changing time */
+ if (uap->tv) {
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_timeval user_atv;
+ error = copyin(uap->tv, &user_atv, sizeof(user_atv));
+ atv.tv_sec = user_atv.tv_sec;
+ atv.tv_usec = user_atv.tv_usec;
+ } else {
+ struct user32_timeval user_atv;
+ error = copyin(uap->tv, &user_atv, sizeof(user_atv));
+ atv.tv_sec = user_atv.tv_sec;
+ atv.tv_usec = user_atv.tv_usec;
+ }
+ if (error) {
+ return error;
+ }
+ }
+ if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz)))) {
+ return error;
+ }
+ if (uap->tv) {
+ /* only positive values of sec/usec are accepted */
+ if (atv.tv_sec < 0 || atv.tv_usec < 0) {
+ return EPERM;
+ }
+ if (!timeval_fixusec(&atv)) {
+ return EPERM;
+ }
setthetime(&atv);
+ }
if (uap->tzp) {
- usimple_lock(&tz_slock);
+ lck_spin_lock(tz_slock);
tz = atz;
- usimple_unlock(&tz_slock);
+ lck_spin_unlock(tz_slock);
}
- return (0);
+ return 0;
}
-setthetime(tv)
- struct timeval *tv;
+static void
+setthetime(
+ struct timeval *tv)
{
- long delta = tv->tv_sec - time.tv_sec;
-
clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec);
- boottime.tv_sec += delta;
-#if NFSCLIENT || NFSSERVER
- lease_updatetime(delta);
-#endif
-}
-
-struct adjtime_args {
- struct timeval *delta;
- struct timeval *olddelta;
-};
-/* ARGSUSED */
-int
-adjtime(p, uap, retval)
- struct proc *p;
- register struct adjtime_args *uap;
- register_t *retval;
-{
- struct timeval atv;
- int error;
-
- if (error = suser(p->p_ucred, &p->p_acflag))
- return (error);
- if (error = copyin((caddr_t)uap->delta,
- (caddr_t)&atv, sizeof (struct timeval)))
- return (error);
-
- /*
- * Compute the total correction and the rate at which to apply it.
- */
- clock_adjtime(&atv.tv_sec, &atv.tv_usec);
-
- if (uap->olddelta) {
- (void) copyout((caddr_t)&atv,
- (caddr_t)uap->olddelta, sizeof (struct timeval));
- }
-
- return (0);
}
/*
- * Initialze the time of day register.
- * Trust the RTC except for the case where it is set before
- * the UNIX epoch. In that case use the the UNIX epoch.
- * The argument passed in is ignored.
+ * Verify the calendar value. If negative,
+ * reset to zero (the epoch).
*/
void
-inittodr(base)
- time_t base;
+inittodr(
+ __unused time_t base)
{
- struct timeval tv;
+ struct timeval tv;
/*
* Assertion:
* The calendar has already been
- * set up from the battery clock.
+ * set up from the platform clock.
*
* The value returned by microtime()
* is gotten from the calendar.
*/
microtime(&tv);
- time = tv;
- boottime.tv_sec = tv.tv_sec;
- boottime.tv_usec = 0;
-
- /*
- * If the RTC does not have acceptable value, i.e. time before
- * the UNIX epoch, set it to the UNIX epoch
- */
- if (tv.tv_sec < 0) {
- printf ("WARNING: preposterous time in Real Time Clock");
- time.tv_sec = 0; /* the UNIX epoch */
- time.tv_usec = 0;
- setthetime(&time);
- boottime = time;
+ if (tv.tv_sec < 0 || tv.tv_usec < 0) {
+ printf("WARNING: preposterous time in Real Time Clock");
+ tv.tv_sec = 0; /* the UNIX epoch */
+ tv.tv_usec = 0;
+ setthetime(&tv);
printf(" -- CHECK AND RESET THE DATE!\n");
}
+}
- return;
+time_t
+boottime_sec(void)
+{
+ clock_sec_t secs;
+ clock_nsec_t nanosecs;
+
+ clock_get_boottime_nanotime(&secs, &nanosecs);
+ return secs;
}
-void timevaladd(
- struct timeval *t1,
- struct timeval *t2);
-void timevalsub(
- struct timeval *t1,
- struct timeval *t2);
-void timevalfix(
- struct timeval *t1);
+void
+boottime_timeval(struct timeval *tv)
+{
+ clock_sec_t secs;
+ clock_usec_t microsecs;
-uint64_t
- tvtoabstime(
- struct timeval *tvp);
+ clock_get_boottime_microtime(&secs, µsecs);
+
+ tv->tv_sec = secs;
+ tv->tv_usec = microsecs;
+}
/*
* Get value of an interval timer. The process virtual and
* is kept as an absolute time rather than as a delta, so that
* it is easy to keep periodic real-time signals from drifting.
*
- * Virtual time timers are processed in the hardclock() routine of
- * kern_clock.c. The real time timer is processed by a callout
- * routine. Since a callout may be delayed in real time due to
+ * The real time timer is processed by a callout routine.
+ * Since a callout may be delayed in real time due to
* other processing in the system, it is possible for the real
* time callout routine (realitexpire, given below), to be delayed
* in real time past when it is supposed to occur. It does not
* suffice, therefore, to reload the real time .it_value from the
* real time .it_interval. Rather, we compute the next time in
* absolute time when the timer should go off.
+ *
+ * Returns: 0 Success
+ * EINVAL Invalid argument
+ * copyout:EFAULT Bad address
*/
-
-struct getitimer_args {
- u_int which;
- struct itimerval *itv;
-};
/* ARGSUSED */
int
-getitimer(p, uap, retval)
- struct proc *p;
- register struct getitimer_args *uap;
- register_t *retval;
+getitimer(struct proc *p, struct getitimer_args *uap, __unused int32_t *retval)
{
struct itimerval aitv;
- if (uap->which > ITIMER_PROF)
- return(EINVAL);
- if (uap->which == ITIMER_REAL) {
+ if (uap->which > ITIMER_PROF) {
+ return EINVAL;
+ }
+
+ bzero(&aitv, sizeof(aitv));
+
+ proc_spinlock(p);
+ switch (uap->which) {
+ case ITIMER_REAL:
/*
* If time for real time timer has passed return 0,
* else return difference between current time and
*/
aitv = p->p_realtimer;
if (timerisset(&p->p_rtime)) {
- struct timeval now;
+ struct timeval now;
microuptime(&now);
- if (timercmp(&p->p_rtime, &now, <))
+ if (timercmp(&p->p_rtime, &now, <)) {
timerclear(&aitv.it_value);
- else {
+ } else {
aitv.it_value = p->p_rtime;
timevalsub(&aitv.it_value, &now);
}
- }
- else
+ } else {
timerclear(&aitv.it_value);
+ }
+ break;
+
+ case ITIMER_VIRTUAL:
+ aitv = p->p_vtimer_user;
+ break;
+
+ case ITIMER_PROF:
+ aitv = p->p_vtimer_prof;
+ break;
}
- else
- aitv = p->p_stats->p_timer[uap->which];
- return (copyout((caddr_t)&aitv,
- (caddr_t)uap->itv, sizeof (struct itimerval)));
+ proc_spinunlock(p);
+
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_itimerval user_itv;
+ bzero(&user_itv, sizeof(user_itv));
+ user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
+ user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
+ user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
+ user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
+ return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv));
+ } else {
+ struct user32_itimerval user_itv;
+ bzero(&user_itv, sizeof(user_itv));
+ user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
+ user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
+ user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
+ user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
+ return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv));
+ }
}
-struct setitimer_args {
- u_int which;
- struct itimerval *itv;
- struct itimerval *oitv;
-};
+/*
+ * Returns: 0 Success
+ * EINVAL Invalid argument
+ * copyin:EFAULT Bad address
+ * getitimer:EINVAL Invalid argument
+ * getitimer:EFAULT Bad address
+ */
/* ARGSUSED */
int
-setitimer(p, uap, retval)
- struct proc *p;
- register struct setitimer_args *uap;
- register_t *retval;
+setitimer(struct proc *p, struct setitimer_args *uap, int32_t *retval)
{
struct itimerval aitv;
- register struct itimerval *itvp;
+ user_addr_t itvp;
int error;
- if (uap->which > ITIMER_PROF)
- return (EINVAL);
- if ((itvp = uap->itv) &&
- (error = copyin((caddr_t)itvp,
- (caddr_t)&aitv, sizeof (struct itimerval))))
- return (error);
- if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
- return (error);
- if (itvp == 0)
- return (0);
- if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
- return (EINVAL);
- if (uap->which == ITIMER_REAL) {
- thread_call_func_cancel(realitexpire, (void *)p->p_pid, FALSE);
+ bzero(&aitv, sizeof(aitv));
+
+ if (uap->which > ITIMER_PROF) {
+ return EINVAL;
+ }
+ if ((itvp = uap->itv)) {
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_itimerval user_itv;
+ if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) {
+ return error;
+ }
+ aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
+ aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
+ aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
+ aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
+ } else {
+ struct user32_itimerval user_itv;
+ if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) {
+ return error;
+ }
+ aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
+ aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
+ aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
+ aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
+ }
+ }
+ if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval))) {
+ return error;
+ }
+ if (itvp == 0) {
+ return 0;
+ }
+ if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) {
+ return EINVAL;
+ }
+
+ switch (uap->which) {
+ case ITIMER_REAL:
+ proc_spinlock(p);
if (timerisset(&aitv.it_value)) {
microuptime(&p->p_rtime);
timevaladd(&p->p_rtime, &aitv.it_value);
- thread_call_func_delayed(
- realitexpire, (void *)p->p_pid,
- tvtoabstime(&p->p_rtime));
- }
- else
+ p->p_realtimer = aitv;
+ if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL,
+ tvtoabstime(&p->p_rtime), 0, THREAD_CALL_DELAY_USER_NORMAL)) {
+ p->p_ractive++;
+ }
+ } else {
timerclear(&p->p_rtime);
+ p->p_realtimer = aitv;
+ if (thread_call_cancel(p->p_rcall)) {
+ p->p_ractive--;
+ }
+ }
+ proc_spinunlock(p);
+
+ break;
+
+
+ case ITIMER_VIRTUAL:
+ if (timerisset(&aitv.it_value)) {
+ task_vtimer_set(p->task, TASK_VTIMER_USER);
+ } else {
+ task_vtimer_clear(p->task, TASK_VTIMER_USER);
+ }
+
+ proc_spinlock(p);
+ p->p_vtimer_user = aitv;
+ proc_spinunlock(p);
+ break;
+
+ case ITIMER_PROF:
+ if (timerisset(&aitv.it_value)) {
+ task_vtimer_set(p->task, TASK_VTIMER_PROF);
+ } else {
+ task_vtimer_clear(p->task, TASK_VTIMER_PROF);
+ }
- p->p_realtimer = aitv;
+ proc_spinlock(p);
+ p->p_vtimer_prof = aitv;
+ proc_spinunlock(p);
+ break;
}
- else
- p->p_stats->p_timer[uap->which] = aitv;
- return (0);
+ return 0;
}
/*
*/
void
realitexpire(
- void *pid)
+ struct proc *p)
{
- register struct proc *p;
- struct timeval now;
- boolean_t funnel_state = thread_funnel_set(kernel_flock, TRUE);
+ struct proc *r;
+ struct timeval t;
- p = pfind((pid_t)pid);
- if (p == NULL) {
- (void) thread_funnel_set(kernel_flock, FALSE);
+ r = proc_find(p->p_pid);
+
+ proc_spinlock(p);
+
+ assert(p->p_ractive > 0);
+
+ if (--p->p_ractive > 0 || r != p) {
+ /*
+ * bail, because either proc is exiting
+ * or there's another active thread call
+ */
+ proc_spinunlock(p);
+
+ if (r != NULL) {
+ proc_rele(r);
+ }
return;
}
if (!timerisset(&p->p_realtimer.it_interval)) {
+ /*
+ * p_realtimer was cleared while this call was pending,
+ * send one last SIGALRM, but don't re-arm
+ */
timerclear(&p->p_rtime);
+ proc_spinunlock(p);
+
psignal(p, SIGALRM);
+ proc_rele(p);
+ return;
+ }
+
+ proc_spinunlock(p);
- (void) thread_funnel_set(kernel_flock, FALSE);
+ /*
+ * Send the signal before re-arming the next thread call,
+ * so in case psignal blocks, we won't create yet another thread call.
+ */
+
+ psignal(p, SIGALRM);
+
+ proc_spinlock(p);
+
+ /* Should we still re-arm the next thread call? */
+ if (!timerisset(&p->p_realtimer.it_interval)) {
+ timerclear(&p->p_rtime);
+ proc_spinunlock(p);
+
+ proc_rele(p);
return;
}
- microuptime(&now);
+ microuptime(&t);
timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
- if (timercmp(&p->p_rtime, &now, <=)) {
- if ((p->p_rtime.tv_sec + 2) >= now.tv_sec) {
+
+ if (timercmp(&p->p_rtime, &t, <=)) {
+ if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) {
for (;;) {
timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
- if (timercmp(&p->p_rtime, &now, >))
+ if (timercmp(&p->p_rtime, &t, >)) {
break;
+ }
}
- }
- else {
+ } else {
p->p_rtime = p->p_realtimer.it_interval;
- timevaladd(&p->p_rtime, &now);
+ timevaladd(&p->p_rtime, &t);
}
}
- psignal(p, SIGALRM);
+ assert(p->p_rcall != NULL);
+
+ if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL, tvtoabstime(&p->p_rtime), 0,
+ THREAD_CALL_DELAY_USER_NORMAL)) {
+ p->p_ractive++;
+ }
+
+ proc_spinunlock(p);
+
+ proc_rele(p);
+}
+
+/*
+ * Called once in proc_exit to clean up after an armed or pending realitexpire
+ *
+ * This will only be called after the proc refcount is drained,
+ * so realitexpire cannot be currently holding a proc ref.
+ * i.e. it will/has gotten PROC_NULL from proc_find.
+ */
+void
+proc_free_realitimer(proc_t p)
+{
+ proc_spinlock(p);
+
+ assert(p->p_rcall != NULL);
+ assert(p->p_refcount == 0);
+
+ timerclear(&p->p_realtimer.it_interval);
+
+ if (thread_call_cancel(p->p_rcall)) {
+ assert(p->p_ractive > 0);
+ p->p_ractive--;
+ }
- thread_call_func_delayed(realitexpire, pid, tvtoabstime(&p->p_rtime));
+ while (p->p_ractive > 0) {
+ proc_spinunlock(p);
- (void) thread_funnel_set(kernel_flock, FALSE);
+ delay(1);
+
+ proc_spinlock(p);
+ }
+
+ thread_call_t call = p->p_rcall;
+ p->p_rcall = NULL;
+
+ proc_spinunlock(p);
+
+ thread_call_free(call);
}
/*
* Check that a proposed value to load into the .it_value or
- * .it_interval part of an interval timer is acceptable, and
- * fix it to have at least minimal value (i.e. if it is less
- * than the resolution of the clock, round it up.)
+ * .it_interval part of an interval timer is acceptable.
*/
int
-itimerfix(tv)
- struct timeval *tv;
+itimerfix(
+ struct timeval *tv)
{
-
if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
- tv->tv_usec < 0 || tv->tv_usec >= 1000000)
- return (EINVAL);
- if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
- tv->tv_usec = tick;
- return (0);
+ tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
+ return EINVAL;
+ }
+ return 0;
+}
+
+int
+timespec_is_valid(const struct timespec *ts)
+{
+ /* The INT32_MAX limit ensures the timespec is safe for clock_*() functions
+ * which accept 32-bit ints. */
+ if (ts->tv_sec < 0 || ts->tv_sec > INT32_MAX ||
+ ts->tv_nsec < 0 || (unsigned long long)ts->tv_nsec > NSEC_PER_SEC) {
+ return 0;
+ }
+ return 1;
}
/*
* of microseconds, which must be less than a second,
* i.e. < 1000000. If the timer expires, then reload
* it. In this case, carry over (usec - old value) to
- * reducint the value reloaded into the timer so that
+ * reduce the value reloaded into the timer so that
* the timer does not drift. This routine assumes
* that it is called in a context where the timers
* on which it is operating cannot change in value.
*/
int
-itimerdecr(itp, usec)
- register struct itimerval *itp;
- int usec;
+itimerdecr(proc_t p,
+ struct itimerval *itp, int usec)
{
+ proc_spinlock(p);
if (itp->it_value.tv_usec < usec) {
if (itp->it_value.tv_sec == 0) {
}
itp->it_value.tv_usec -= usec;
usec = 0;
- if (timerisset(&itp->it_value))
- return (1);
+ if (timerisset(&itp->it_value)) {
+ proc_spinunlock(p);
+ return 1;
+ }
/* expired, exactly at end of interval */
expire:
if (timerisset(&itp->it_interval)) {
itp->it_value = itp->it_interval;
- itp->it_value.tv_usec -= usec;
- if (itp->it_value.tv_usec < 0) {
- itp->it_value.tv_usec += 1000000;
- itp->it_value.tv_sec--;
+ if (itp->it_value.tv_sec > 0) {
+ itp->it_value.tv_usec -= usec;
+ if (itp->it_value.tv_usec < 0) {
+ itp->it_value.tv_usec += 1000000;
+ itp->it_value.tv_sec--;
+ }
}
- } else
- itp->it_value.tv_usec = 0; /* sec is already 0 */
- return (0);
+ } else {
+ itp->it_value.tv_usec = 0; /* sec is already 0 */
+ }
+ proc_spinunlock(p);
+ return 0;
}
/*
struct timeval *t1,
struct timeval *t2)
{
-
t1->tv_sec += t2->tv_sec;
t1->tv_usec += t2->tv_usec;
timevalfix(t1);
struct timeval *t1,
struct timeval *t2)
{
-
t1->tv_sec -= t2->tv_sec;
t1->tv_usec -= t2->tv_usec;
timevalfix(t1);
timevalfix(
struct timeval *t1)
{
-
if (t1->tv_usec < 0) {
t1->tv_sec--;
t1->tv_usec += 1000000;
}
}
+static boolean_t
+timeval_fixusec(
+ struct timeval *t1)
+{
+ assert(t1->tv_usec >= 0);
+ assert(t1->tv_sec >= 0);
+
+ if (t1->tv_usec >= 1000000) {
+ if (os_add_overflow(t1->tv_sec, t1->tv_usec / 1000000, &t1->tv_sec)) {
+ return FALSE;
+ }
+ t1->tv_usec = t1->tv_usec % 1000000;
+ }
+
+ return TRUE;
+}
+
/*
* Return the best possible estimate of the time in the timeval
* to which tvp points.
*/
void
microtime(
- struct timeval *tvp)
+ struct timeval *tvp)
{
- clock_get_calendar_microtime(&tvp->tv_sec, &tvp->tv_usec);
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ clock_get_calendar_microtime(&tv_sec, &tv_usec);
+
+ tvp->tv_sec = tv_sec;
+ tvp->tv_usec = tv_usec;
+}
+
+void
+microtime_with_abstime(
+ struct timeval *tvp, uint64_t *abstime)
+{
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ clock_get_calendar_absolute_and_microtime(&tv_sec, &tv_usec, abstime);
+
+ tvp->tv_sec = tv_sec;
+ tvp->tv_usec = tv_usec;
}
void
microuptime(
- struct timeval *tvp)
+ struct timeval *tvp)
{
- clock_get_system_microtime(&tvp->tv_sec, &tvp->tv_usec);
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ clock_get_system_microtime(&tv_sec, &tv_usec);
+
+ tvp->tv_sec = tv_sec;
+ tvp->tv_usec = tv_usec;
}
/*
nanotime(
struct timespec *tsp)
{
- clock_get_calendar_nanotime((uint32_t *)&tsp->tv_sec, &tsp->tv_nsec);
+ clock_sec_t tv_sec;
+ clock_nsec_t tv_nsec;
+
+ clock_get_calendar_nanotime(&tv_sec, &tv_nsec);
+
+ tsp->tv_sec = tv_sec;
+ tsp->tv_nsec = tv_nsec;
}
void
nanouptime(
struct timespec *tsp)
{
- clock_get_system_nanotime((uint32_t *)&tsp->tv_sec, &tsp->tv_nsec);
+ clock_sec_t tv_sec;
+ clock_nsec_t tv_nsec;
+
+ clock_get_system_nanotime(&tv_sec, &tv_nsec);
+
+ tsp->tv_sec = tv_sec;
+ tsp->tv_nsec = tv_nsec;
}
uint64_t
tvtoabstime(
- struct timeval *tvp)
+ struct timeval *tvp)
{
- uint64_t result, usresult;
+ uint64_t result, usresult;
clock_interval_to_absolutetime_interval(
- tvp->tv_sec, NSEC_PER_SEC, &result);
+ tvp->tv_sec, NSEC_PER_SEC, &result);
clock_interval_to_absolutetime_interval(
- tvp->tv_usec, NSEC_PER_USEC, &usresult);
+ tvp->tv_usec, NSEC_PER_USEC, &usresult);
+
+ return result + usresult;
+}
+
+uint64_t
+tstoabstime(struct timespec *ts)
+{
+ uint64_t abstime_s, abstime_ns;
+ clock_interval_to_absolutetime_interval(ts->tv_sec, NSEC_PER_SEC, &abstime_s);
+ clock_interval_to_absolutetime_interval(ts->tv_nsec, 1, &abstime_ns);
+ return abstime_s + abstime_ns;
+}
+
+#if NETWORKING
+/*
+ * ratecheck(): simple time-based rate-limit checking.
+ */
+int
+ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
+{
+ struct timeval tv, delta;
+ int rv = 0;
+
+ net_uptime2timeval(&tv);
+ delta = tv;
+ timevalsub(&delta, lasttime);
+
+ /*
+ * check for 0,0 is so that the message will be seen at least once,
+ * even if interval is huge.
+ */
+ if (timevalcmp(&delta, mininterval, >=) ||
+ (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
+ *lasttime = tv;
+ rv = 1;
+ }
- return (result + usresult);
+ return rv;
}
+
+/*
+ * ppsratecheck(): packets (or events) per second limitation.
+ */
+int
+ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
+{
+ struct timeval tv, delta;
+ int rv;
+
+ net_uptime2timeval(&tv);
+
+ timersub(&tv, lasttime, &delta);
+
+ /*
+ * Check for 0,0 so that the message will be seen at least once.
+ * If more than one second has passed since the last update of
+ * lasttime, reset the counter.
+ *
+ * we do increment *curpps even in *curpps < maxpps case, as some may
+ * try to use *curpps for stat purposes as well.
+ */
+ if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
+ delta.tv_sec >= 1) {
+ *lasttime = tv;
+ *curpps = 0;
+ rv = 1;
+ } else if (maxpps < 0) {
+ rv = 1;
+ } else if (*curpps < maxpps) {
+ rv = 1;
+ } else {
+ rv = 0;
+ }
+
+#if 1 /* DIAGNOSTIC? */
+ /* be careful about wrap-around */
+ if (*curpps + 1 > 0) {
+ *curpps = *curpps + 1;
+ }
+#else
+ /*
+ * assume that there's not too many calls to this function.
+ * not sure if the assumption holds, as it depends on *caller's*
+ * behavior, not the behavior of this function.
+ * IMHO it is wrong to make assumption on the caller's behavior,
+ * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
+ */
+ *curpps = *curpps + 1;
+#endif
+
+ return rv;
+}
+#endif /* NETWORKING */
+
void
time_zone_slock_init(void)
{
- extern simple_lock_data_t tz_slock;
+ /* allocate lock group attribute and group */
+ tz_slock_grp_attr = lck_grp_attr_alloc_init();
+
+ tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr);
- simple_lock_init(&tz_slock);
+ /* Allocate lock attribute */
+ tz_slock_attr = lck_attr_alloc_init();
+ /* Allocate the spin lock */
+ tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr);
+}
+int
+__mach_bridge_remote_time(__unused struct proc *p, struct __mach_bridge_remote_time_args *mbrt_args, uint64_t *retval)
+{
+ *retval = mach_bridge_remote_time(mbrt_args->local_timestamp);
+ return 0;
}