+ AUDIT_ARG(euid, euid);
+ AUDIT_ARG(ruid, ruid);
+
+ my_cred = kauth_cred_proc_ref(p);
+ my_pcred = posix_cred_get(my_cred);
+
+ for (;;) {
+ if (((ruid != KAUTH_UID_NONE && /* allow no change of ruid */
+ ruid != my_pcred->cr_ruid && /* allow ruid = ruid */
+ ruid != my_pcred->cr_uid && /* allow ruid = euid */
+ ruid != my_pcred->cr_svuid) || /* allow ruid = svuid */
+ (euid != KAUTH_UID_NONE && /* allow no change of euid */
+ euid != my_pcred->cr_uid && /* allow euid = euid */
+ euid != my_pcred->cr_ruid && /* allow euid = ruid */
+ euid != my_pcred->cr_svuid)) && /* allow euid = svuid */
+ (error = suser(my_cred, &p->p_acflag))) { /* allow root user any */
+ kauth_cred_unref(&my_cred);
+ return error;
+ }
+
+ uid_t new_euid;
+ uid_t svuid = KAUTH_UID_NONE;
+
+ new_euid = my_pcred->cr_uid;
+ /*
+ * Set the credential with new info. If there is no change,
+ * we get back the same credential we passed in; if there is
+ * a change, we drop the reference on the credential we
+ * passed in. The subsequent compare is safe, because it is
+ * a pointer compare rather than a contents compare.
+ */
+ if (euid != KAUTH_UID_NONE && my_pcred->cr_uid != euid) {
+ /* changing the effective UID */
+ new_euid = euid;
+ OSBitOrAtomic(P_SUGID, &p->p_flag);
+ }
+ /*
+ * If the newly requested real uid or effective uid does
+ * not match the saved uid, then set the saved uid to the
+ * new effective uid. We are protected from escalation
+ * by the prechecking.
+ */
+ if (my_pcred->cr_svuid != uap->ruid &&
+ my_pcred->cr_svuid != uap->euid) {
+ svuid = new_euid;
+ OSBitOrAtomic(P_SUGID, &p->p_flag);
+ }
+
+ my_new_cred = kauth_cred_setresuid(my_cred, ruid, euid, svuid, my_pcred->cr_gmuid);
+
+ if (my_cred != my_new_cred) {
+ DEBUG_CRED_CHANGE("setreuid CH(%d): %p/0x%08x -> %p/0x%08x\n", p->p_pid, my_cred, my_pcred->cr_flags, my_new_cred, posix_cred_get(my_new_cred)->cr_flags);
+
+ /*
+ * If we're changing the ruid from A to B, we might race with another thread that's setting ruid from B to A.
+ * The current locking mechanisms don't allow us to make the entire credential switch operation atomic,
+ * thus we may be able to change the process credentials from ruid A to B, but get preempted before incrementing the proc
+ * count of B. If a second thread sees the new process credentials and switches back to ruid A, that other thread
+ * may be able to decrement the proc count of B before we can increment it. This results in a panic.
+ * Incrementing the proc count of the target ruid, B, before setting the process credentials prevents this race.
+ */
+ if (ruid != KAUTH_UID_NONE && !proc_has_persona(p)) {
+ (void)chgproccnt(ruid, 1);
+ }
+
+ proc_ucred_lock(p);
+ /*
+ * We need to protect for a race where another thread
+ * also changed the credential after we took our
+ * reference. If p_ucred has changed then we should
+ * restart this again with the new cred.
+ *
+ * Note: the kauth_cred_setresuid has consumed a reference to my_cred, it p_ucred != my_cred, then my_cred must not be dereferenced!
+ */
+ if (p->p_ucred != my_cred) {
+ proc_ucred_unlock(p);
+ if (ruid != KAUTH_UID_NONE && !proc_has_persona(p)) {
+ /*
+ * We didn't successfully switch to the new ruid, so decrement
+ * the procs/uid count that we incremented above.
+ */
+ (void)chgproccnt(ruid, -1);
+ }
+ kauth_cred_unref(&my_new_cred);
+ my_cred = kauth_cred_proc_ref(p);
+ my_pcred = posix_cred_get(my_cred);
+ /* try again */
+ continue;
+ }
+
+ p->p_ucred = my_new_cred;
+ /* update cred on proc */
+ PROC_UPDATE_CREDS_ONPROC(p);
+ OSBitOrAtomic(P_SUGID, &p->p_flag);
+ proc_ucred_unlock(p);
+
+ if (ruid != KAUTH_UID_NONE && !proc_has_persona(p)) {
+ /*
+ * We switched to a new ruid, so decrement the count of procs running
+ * under the previous ruid
+ */
+ (void)chgproccnt(my_pcred->cr_ruid, -1);
+ }
+ }
+ break;
+ }
+ /* drop old proc reference or our extra reference */
+ kauth_cred_unref(&my_cred);
+
+ set_security_token(p);
+ return 0;