+ assert(m_object == object);
+ assert(VM_PAGE_OBJECT(m) == m_object);
+
+ if (m->busy) {
+ /*
+ * Somebody is already playing with this page.
+ * Put it back on the appropriate queue
+ *
+ */
+ vm_pageout_inactive_busy++;
+
+ if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q)
+ vm_pageout_cleaned_busy++;
+requeue_page:
+ if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q)
+ vm_page_enqueue_inactive(m, FALSE);
+ else
+ vm_page_activate(m);
+#if CONFIG_BACKGROUND_QUEUE
+ if (page_from_bg_q == TRUE) {
+ if (m_object->internal)
+ vm_pageout_rejected_bq_internal++;
+ else
+ vm_pageout_rejected_bq_external++;
+ }
+#endif
+ goto done_with_inactivepage;
+ }
+
+
+ /*
+ * If it's absent, in error or the object is no longer alive,
+ * we can reclaim the page... in the no longer alive case,
+ * there are 2 states the page can be in that preclude us
+ * from reclaiming it - busy or cleaning - that we've already
+ * dealt with
+ */
+ if (m->absent || m->error || !object->alive) {
+
+ if (m->absent)
+ vm_pageout_inactive_absent++;
+ else if (!object->alive)
+ vm_pageout_inactive_notalive++;
+ else
+ vm_pageout_inactive_error++;
+reclaim_page:
+ if (vm_pageout_deadlock_target) {
+ vm_pageout_scan_inactive_throttle_success++;
+ vm_pageout_deadlock_target--;
+ }
+
+ DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL);
+
+ if (object->internal) {
+ DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL);
+ } else {
+ DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL);
+ }
+ assert(!m->cleaning);
+ assert(!m->laundry);
+
+ m->busy = TRUE;
+
+ /*
+ * remove page from object here since we're already
+ * behind the object lock... defer the rest of the work
+ * we'd normally do in vm_page_free_prepare_object
+ * until 'vm_page_free_list' is called
+ */
+ if (m->tabled)
+ vm_page_remove(m, TRUE);
+
+ assert(m->pageq.next == 0 && m->pageq.prev == 0);
+ m->snext = local_freeq;
+ local_freeq = m;
+ local_freed++;
+
+ if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q)
+ vm_pageout_freed_from_speculative++;
+ else if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q)
+ vm_pageout_freed_from_cleaned++;
+ else
+ vm_pageout_freed_from_inactive_clean++;
+
+ vm_pageout_stats[vm_pageout_stat_now].reclaimed_clean++;
+
+ inactive_burst_count = 0;
+ goto done_with_inactivepage;
+ }
+ /*
+ * If the object is empty, the page must be reclaimed even
+ * if dirty or used.
+ * If the page belongs to a volatile object, we stick it back
+ * on.
+ */
+ if (object->copy == VM_OBJECT_NULL) {
+ if (object->purgable == VM_PURGABLE_EMPTY) {
+ if (m->pmapped == TRUE) {
+ /* unmap the page */
+ refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ if (refmod_state & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(m, FALSE);
+ }
+ }
+ if (m->dirty || m->precious) {
+ /* we saved the cost of cleaning this page ! */
+ vm_page_purged_count++;
+ }
+ goto reclaim_page;
+ }
+
+ if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
+ /*
+ * With the VM compressor, the cost of
+ * reclaiming a page is much lower (no I/O),
+ * so if we find a "volatile" page, it's better
+ * to let it get compressed rather than letting
+ * it occupy a full page until it gets purged.
+ * So no need to check for "volatile" here.
+ */
+ } else if (object->purgable == VM_PURGABLE_VOLATILE) {
+ /*
+ * Avoid cleaning a "volatile" page which might
+ * be purged soon.
+ */
+
+ /* if it's wired, we can't put it on our queue */
+ assert(!VM_PAGE_WIRED(m));
+
+ /* just stick it back on! */
+ reactivated_this_call++;
+
+ if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q)
+ vm_pageout_cleaned_volatile_reactivated++;
+
+ goto reactivate_page;
+ }
+ }
+ /*
+ * If it's being used, reactivate.
+ * (Fictitious pages are either busy or absent.)
+ * First, update the reference and dirty bits
+ * to make sure the page is unreferenced.
+ */
+ refmod_state = -1;
+
+ if (m->reference == FALSE && m->pmapped == TRUE) {
+ refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
+
+ if (refmod_state & VM_MEM_REFERENCED)
+ m->reference = TRUE;
+ if (refmod_state & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(m, FALSE);
+ }
+ }
+
+ /*
+ * if (m->cleaning && !m->free_when_done)
+ * If already cleaning this page in place and it hasn't
+ * been recently referenced, just pull off the queue.
+ * We can leave the page mapped, and upl_commit_range
+ * will put it on the clean queue.
+ *
+ * if (m->free_when_done && !m->cleaning)
+ * an msync INVALIDATE is in progress...
+ * this page has been marked for destruction
+ * after it has been cleaned,
+ * but not yet gathered into a UPL
+ * where 'cleaning' will be set...
+ * just leave it off the paging queues
+ *
+ * if (m->free_when_done && m->clenaing)
+ * an msync INVALIDATE is in progress
+ * and the UPL has already gathered this page...
+ * just leave it off the paging queues
+ */
+
+ /*
+ * page with m->free_when_done and still on the queues means that an
+ * MS_INVALIDATE is in progress on this page... leave it alone
+ */
+ if (m->free_when_done) {
+ goto done_with_inactivepage;
+ }
+
+ /* if cleaning, reactivate if referenced. otherwise, just pull off queue */
+ if (m->cleaning) {
+ if (m->reference == TRUE) {
+ reactivated_this_call++;
+ goto reactivate_page;
+ } else {
+ goto done_with_inactivepage;
+ }
+ }
+
+ if (m->reference || m->dirty) {
+ /* deal with a rogue "reusable" page */
+ VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m, m_object);
+ }
+
+ if (!m->no_cache &&
+#if CONFIG_BACKGROUND_QUEUE
+ page_from_bg_q == FALSE &&
+#endif
+ (m->reference ||
+ (m->xpmapped && !object->internal && (vm_page_xpmapped_external_count < (vm_page_external_count / 4))))) {
+ /*
+ * The page we pulled off the inactive list has
+ * been referenced. It is possible for other
+ * processors to be touching pages faster than we
+ * can clear the referenced bit and traverse the
+ * inactive queue, so we limit the number of
+ * reactivations.
+ */
+ if (++reactivated_this_call >= reactivate_limit) {
+ vm_pageout_reactivation_limit_exceeded++;
+ } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) {
+ vm_pageout_inactive_force_reclaim++;
+ } else {
+ uint32_t isinuse;
+
+ if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q)
+ vm_pageout_cleaned_reference_reactivated++;
+reactivate_page:
+ if ( !object->internal && object->pager != MEMORY_OBJECT_NULL &&
+ vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) {
+ /*
+ * no explict mappings of this object exist
+ * and it's not open via the filesystem
+ */
+ vm_page_deactivate(m);
+ vm_pageout_inactive_deactivated++;
+ } else {
+must_activate_page:
+ /*
+ * The page was/is being used, so put back on active list.
+ */
+ vm_page_activate(m);
+ VM_STAT_INCR(reactivations);
+ inactive_burst_count = 0;
+ }
+#if CONFIG_BACKGROUND_QUEUE
+ if (page_from_bg_q == TRUE) {
+ if (m_object->internal)
+ vm_pageout_rejected_bq_internal++;
+ else
+ vm_pageout_rejected_bq_external++;
+ }
+#endif
+ if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q)
+ vm_pageout_cleaned_reactivated++;
+ vm_pageout_inactive_used++;
+
+ goto done_with_inactivepage;
+ }
+ /*
+ * Make sure we call pmap_get_refmod() if it
+ * wasn't already called just above, to update
+ * the dirty bit.
+ */
+ if ((refmod_state == -1) && !m->dirty && m->pmapped) {
+ refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
+ if (refmod_state & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(m, FALSE);
+ }
+ }
+ }
+
+ XPR(XPR_VM_PAGEOUT,
+ "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n",
+ object, m->offset, m, 0,0);
+
+ /*
+ * we've got a candidate page to steal...
+ *
+ * m->dirty is up to date courtesy of the
+ * preceding check for m->reference... if
+ * we get here, then m->reference had to be
+ * FALSE (or possibly "reactivate_limit" was
+ * exceeded), but in either case we called
+ * pmap_get_refmod() and updated both
+ * m->reference and m->dirty
+ *
+ * if it's dirty or precious we need to
+ * see if the target queue is throtttled
+ * it if is, we need to skip over it by moving it back
+ * to the end of the inactive queue
+ */
+
+ inactive_throttled = FALSE;
+
+ if (m->dirty || m->precious) {
+ if (object->internal) {
+ if (VM_PAGE_Q_THROTTLED(iq))
+ inactive_throttled = TRUE;
+ } else if (VM_PAGE_Q_THROTTLED(eq)) {
+ inactive_throttled = TRUE;
+ }
+ }
+throttle_inactive:
+ if (!VM_DYNAMIC_PAGING_ENABLED() &&
+ object->internal && m->dirty &&
+ (object->purgable == VM_PURGABLE_DENY ||
+ object->purgable == VM_PURGABLE_NONVOLATILE ||
+ object->purgable == VM_PURGABLE_VOLATILE)) {
+ vm_page_check_pageable_safe(m);
+ assert(m->vm_page_q_state == VM_PAGE_NOT_ON_Q);
+ vm_page_queue_enter(&vm_page_queue_throttled, m,
+ vm_page_t, pageq);
+ m->vm_page_q_state = VM_PAGE_ON_THROTTLED_Q;
+ vm_page_throttled_count++;
+
+ vm_pageout_scan_reclaimed_throttled++;
+
+ inactive_burst_count = 0;
+ goto done_with_inactivepage;
+ }
+ if (inactive_throttled == TRUE) {
+
+ if (object->internal == FALSE) {
+ /*
+ * we need to break up the following potential deadlock case...
+ * a) The external pageout thread is stuck on the truncate lock for a file that is being extended i.e. written.
+ * b) The thread doing the writing is waiting for pages while holding the truncate lock
+ * c) Most of the pages in the inactive queue belong to this file.
+ *
+ * we are potentially in this deadlock because...
+ * a) the external pageout queue is throttled
+ * b) we're done with the active queue and moved on to the inactive queue
+ * c) we've got a dirty external page
+ *
+ * since we don't know the reason for the external pageout queue being throttled we
+ * must suspect that we are deadlocked, so move the current page onto the active queue
+ * in an effort to cause a page from the active queue to 'age' to the inactive queue
+ *
+ * if we don't have jetsam configured (i.e. we have a dynamic pager), set
+ * 'force_anonymous' to TRUE to cause us to grab a page from the cleaned/anonymous
+ * pool the next time we select a victim page... if we can make enough new free pages,
+ * the deadlock will break, the external pageout queue will empty and it will no longer
+ * be throttled
+ *
+ * if we have jetsam configured, keep a count of the pages reactivated this way so
+ * that we can try to find clean pages in the active/inactive queues before
+ * deciding to jetsam a process
+ */
+ vm_pageout_scan_inactive_throttled_external++;
+
+ vm_page_check_pageable_safe(m);
+ assert(m->vm_page_q_state == VM_PAGE_NOT_ON_Q);
+ vm_page_queue_enter(&vm_page_queue_active, m, vm_page_t, pageq);
+ m->vm_page_q_state = VM_PAGE_ON_ACTIVE_Q;
+ vm_page_active_count++;
+ vm_page_pageable_external_count++;
+
+ vm_pageout_adjust_eq_iothrottle(eq, FALSE);
+
+#if CONFIG_MEMORYSTATUS && CONFIG_JETSAM
+ vm_pageout_inactive_external_forced_reactivate_limit--;
+
+ if (vm_pageout_inactive_external_forced_reactivate_limit <= 0) {
+ vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count;
+ /*
+ * Possible deadlock scenario so request jetsam action
+ */
+ assert(object);
+ vm_object_unlock(object);
+ object = VM_OBJECT_NULL;
+ vm_page_unlock_queues();
+
+ VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_START,
+ vm_page_active_count, vm_page_inactive_count, vm_page_free_count, vm_page_free_count);
+
+ /* Kill first suitable process. If this call returned FALSE, we might have simply purged a process instead. */
+ if (memorystatus_kill_on_VM_page_shortage(FALSE) == TRUE) {
+ vm_pageout_inactive_external_forced_jetsam_count++;
+ }
+
+ VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_END,
+ vm_page_active_count, vm_page_inactive_count, vm_page_free_count, vm_page_free_count);
+
+ vm_page_lock_queues();
+ delayed_unlock = 1;
+ }
+#else /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */
+ force_anonymous = TRUE;
+#endif
+ inactive_burst_count = 0;
+ goto done_with_inactivepage;
+ } else {
+ vm_pageout_scan_inactive_throttled_internal++;
+ goto must_activate_page;
+ }
+ }
+
+ /*
+ * we've got a page that we can steal...
+ * eliminate all mappings and make sure
+ * we have the up-to-date modified state
+ *
+ * if we need to do a pmap_disconnect then we
+ * need to re-evaluate m->dirty since the pmap_disconnect
+ * provides the true state atomically... the
+ * page was still mapped up to the pmap_disconnect
+ * and may have been dirtied at the last microsecond
+ *
+ * Note that if 'pmapped' is FALSE then the page is not
+ * and has not been in any map, so there is no point calling
+ * pmap_disconnect(). m->dirty could have been set in anticipation
+ * of likely usage of the page.
+ */
+ if (m->pmapped == TRUE) {
+ int pmap_options;
+
+ /*
+ * Don't count this page as going into the compressor
+ * if any of these are true:
+ * 1) compressed pager isn't enabled
+ * 2) Freezer enabled device with compressed pager
+ * backend (exclusive use) i.e. most of the VM system
+ * (including vm_pageout_scan) has no knowledge of
+ * the compressor
+ * 3) This page belongs to a file and hence will not be
+ * sent into the compressor
+ */
+ if ( !VM_CONFIG_COMPRESSOR_IS_ACTIVE ||
+ object->internal == FALSE) {
+ pmap_options = 0;
+ } else if (m->dirty || m->precious) {
+ /*
+ * VM knows that this page is dirty (or
+ * precious) and needs to be compressed
+ * rather than freed.
+ * Tell the pmap layer to count this page
+ * as "compressed".
+ */
+ pmap_options = PMAP_OPTIONS_COMPRESSOR;
+ } else {
+ /*
+ * VM does not know if the page needs to
+ * be preserved but the pmap layer might tell
+ * us if any mapping has "modified" it.
+ * Let's the pmap layer to count this page
+ * as compressed if and only if it has been
+ * modified.
+ */
+ pmap_options =
+ PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED;
+ }
+ refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(m),
+ pmap_options,
+ NULL);
+ if (refmod_state & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(m, FALSE);
+ }
+ }
+ /*
+ * reset our count of pages that have been reclaimed
+ * since the last page was 'stolen'
+ */
+ inactive_reclaim_run = 0;
+
+ /*
+ * If it's clean and not precious, we can free the page.
+ */
+ if (!m->dirty && !m->precious) {
+
+ if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q)
+ vm_pageout_speculative_clean++;
+ else {
+ if (page_prev_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q)
+ vm_pageout_inactive_anonymous++;
+ else if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q)
+ vm_pageout_cleaned_reclaimed++;
+
+ vm_pageout_inactive_clean++;
+ }
+ /*
+ * OK, at this point we have found a page we are going to free.
+ */
+#if CONFIG_PHANTOM_CACHE
+ if (!object->internal)
+ vm_phantom_cache_add_ghost(m);
+#endif
+ goto reclaim_page;
+ }
+
+ /*
+ * The page may have been dirtied since the last check
+ * for a throttled target queue (which may have been skipped
+ * if the page was clean then). With the dirty page
+ * disconnected here, we can make one final check.
+ */
+ if (object->internal) {
+ if (VM_PAGE_Q_THROTTLED(iq))
+ inactive_throttled = TRUE;
+ } else if (VM_PAGE_Q_THROTTLED(eq)) {
+ inactive_throttled = TRUE;
+ }
+
+ if (inactive_throttled == TRUE)
+ goto throttle_inactive;
+
+#if VM_PRESSURE_EVENTS
+#if CONFIG_JETSAM
+
+ /*
+ * If Jetsam is enabled, then the sending
+ * of memory pressure notifications is handled
+ * from the same thread that takes care of high-water
+ * and other jetsams i.e. the memorystatus_thread.
+ */
+
+#else /* CONFIG_JETSAM */
+
+ vm_pressure_response();
+
+#endif /* CONFIG_JETSAM */
+#endif /* VM_PRESSURE_EVENTS */
+
+ if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q)
+ vm_pageout_speculative_dirty++;
+ else if (page_prev_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q)
+ vm_pageout_inactive_anonymous++;
+
+ if (object->internal)
+ vm_pageout_inactive_dirty_internal++;
+ else
+ vm_pageout_inactive_dirty_external++;
+
+ /*
+ * do NOT set the pageout bit!
+ * sure, we might need free pages, but this page is going to take time to become free
+ * anyway, so we may as well put it on the clean queue first and take it from there later
+ * if necessary. that way, we'll ensure we don't free up too much. -mj
+ */
+ vm_pageout_cluster(m);
+
+done_with_inactivepage:
+
+ if (delayed_unlock++ > delayed_unlock_limit || try_failed == TRUE) {
+
+ vm_pageout_prepare_to_block(&object, &delayed_unlock, &local_freeq, &local_freed,
+ VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER);
+ if (try_failed == TRUE)
+ lck_mtx_yield(&vm_page_queue_lock);
+ }
+
+ /*
+ * back to top of pageout scan loop
+ */
+ }
+}
+
+
+int vm_page_free_count_init;
+
+void
+vm_page_free_reserve(
+ int pages)
+{
+ int free_after_reserve;
+
+ if (VM_CONFIG_COMPRESSOR_IS_PRESENT) {
+
+ if ((vm_page_free_reserved + pages + COMPRESSOR_FREE_RESERVED_LIMIT) >= (VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT))
+ vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT;
+ else
+ vm_page_free_reserved += (pages + COMPRESSOR_FREE_RESERVED_LIMIT);
+
+ } else {
+ if ((vm_page_free_reserved + pages) >= VM_PAGE_FREE_RESERVED_LIMIT)
+ vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT;
+ else
+ vm_page_free_reserved += pages;
+ }
+ free_after_reserve = vm_page_free_count_init - vm_page_free_reserved;
+
+ vm_page_free_min = vm_page_free_reserved +
+ VM_PAGE_FREE_MIN(free_after_reserve);
+
+ if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT)
+ vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT;
+
+ vm_page_free_target = vm_page_free_reserved +
+ VM_PAGE_FREE_TARGET(free_after_reserve);
+
+ if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT)
+ vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT;
+
+ if (vm_page_free_target < vm_page_free_min + 5)
+ vm_page_free_target = vm_page_free_min + 5;
+
+ vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 2);
+}
+
+/*
+ * vm_pageout is the high level pageout daemon.
+ */
+
+void
+vm_pageout_continue(void)
+{
+ DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL);
+ vm_pageout_scan_event_counter++;
+
+#if !CONFIG_EMBEDDED
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ vm_pageout_running = TRUE;
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+#endif /* CONFIG_EMBEDDED */
+
+ vm_pageout_scan();
+ /*
+ * we hold both the vm_page_queue_free_lock
+ * and the vm_page_queues_lock at this point
+ */
+ assert(vm_page_free_wanted == 0);
+ assert(vm_page_free_wanted_privileged == 0);
+ assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT);
+
+#if !CONFIG_EMBEDDED
+ vm_pageout_running = FALSE;
+ if (vm_pageout_waiter) {
+ vm_pageout_waiter = FALSE;
+ thread_wakeup((event_t)&vm_pageout_waiter);
+ }
+#endif /* !CONFIG_EMBEDDED */
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_unlock_queues();
+
+ counter(c_vm_pageout_block++);
+ thread_block((thread_continue_t)vm_pageout_continue);
+ /*NOTREACHED*/
+}
+
+#if !CONFIG_EMBEDDED
+kern_return_t
+vm_pageout_wait(uint64_t deadline)
+{
+ kern_return_t kr;
+
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ for (kr = KERN_SUCCESS; vm_pageout_running && (KERN_SUCCESS == kr); ) {
+ vm_pageout_waiter = TRUE;
+ if (THREAD_AWAKENED != lck_mtx_sleep_deadline(
+ &vm_page_queue_free_lock, LCK_SLEEP_DEFAULT,
+ (event_t) &vm_pageout_waiter, THREAD_UNINT, deadline)) {
+ kr = KERN_OPERATION_TIMED_OUT;
+ }
+ }
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ return (kr);
+}
+#endif /* !CONFIG_EMBEDDED */
+
+
+static void
+vm_pageout_iothread_external_continue(struct vm_pageout_queue *q)
+{
+ vm_page_t m = NULL;
+ vm_object_t object;
+ vm_object_offset_t offset;
+ memory_object_t pager;
+
+ /* On systems without a compressor, the external IO thread clears its
+ * VM privileged bit to accommodate large allocations (e.g. bulk UPL
+ * creation)
+ */
+ if (vm_pageout_internal_iothread != THREAD_NULL)
+ current_thread()->options &= ~TH_OPT_VMPRIV;
+
+ vm_page_lockspin_queues();
+
+ while ( !vm_page_queue_empty(&q->pgo_pending) ) {
+
+ q->pgo_busy = TRUE;
+ vm_page_queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq);
+
+ assert(m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q);
+ VM_PAGE_CHECK(m);
+ /*
+ * grab a snapshot of the object and offset this
+ * page is tabled in so that we can relookup this
+ * page after we've taken the object lock - these
+ * fields are stable while we hold the page queues lock
+ * but as soon as we drop it, there is nothing to keep
+ * this page in this object... we hold an activity_in_progress
+ * on this object which will keep it from terminating
+ */
+ object = VM_PAGE_OBJECT(m);
+ offset = m->offset;
+
+ if (object->object_slid) {
+ panic("slid page %p not allowed on this path\n", m);
+ }
+ m->vm_page_q_state = VM_PAGE_NOT_ON_Q;
+ VM_PAGE_ZERO_PAGEQ_ENTRY(m);
+
+ vm_page_unlock_queues();
+
+ vm_object_lock(object);
+
+ m = vm_page_lookup(object, offset);
+
+ if (m == NULL ||
+ m->busy || m->cleaning || !m->laundry || (m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ /*
+ * it's either the same page that someone else has
+ * started cleaning (or it's finished cleaning or
+ * been put back on the pageout queue), or
+ * the page has been freed or we have found a
+ * new page at this offset... in all of these cases
+ * we merely need to release the activity_in_progress
+ * we took when we put the page on the pageout queue
+ */
+ vm_object_activity_end(object);
+ vm_object_unlock(object);
+
+ vm_page_lockspin_queues();
+ continue;
+ }
+ pager = object->pager;
+
+ if (pager == MEMORY_OBJECT_NULL) {
+ /*
+ * This pager has been destroyed by either
+ * memory_object_destroy or vm_object_destroy, and
+ * so there is nowhere for the page to go.
+ */
+ if (m->free_when_done) {
+ /*
+ * Just free the page... VM_PAGE_FREE takes
+ * care of cleaning up all the state...
+ * including doing the vm_pageout_throttle_up
+ */
+ VM_PAGE_FREE(m);
+ } else {
+ vm_page_lockspin_queues();
+
+ vm_pageout_throttle_up(m);
+ vm_page_activate(m);
+
+ vm_page_unlock_queues();
+
+ /*
+ * And we are done with it.
+ */
+ }
+ vm_object_activity_end(object);
+ vm_object_unlock(object);
+
+ vm_page_lockspin_queues();
+ continue;
+ }
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(m);
+#endif
+ /*
+ * give back the activity_in_progress reference we
+ * took when we queued up this page and replace it
+ * it with a paging_in_progress reference that will
+ * also hold the paging offset from changing and
+ * prevent the object from terminating
+ */
+ vm_object_activity_end(object);
+ vm_object_paging_begin(object);
+ vm_object_unlock(object);
+
+ /*
+ * Send the data to the pager.
+ * any pageout clustering happens there
+ */
+ memory_object_data_return(pager,
+ m->offset + object->paging_offset,
+ PAGE_SIZE,
+ NULL,
+ NULL,
+ FALSE,
+ FALSE,
+ 0);
+
+ vm_object_lock(object);
+ vm_object_paging_end(object);
+ vm_object_unlock(object);
+
+ vm_pageout_io_throttle();
+
+ vm_page_lockspin_queues();
+ }
+ q->pgo_busy = FALSE;
+ q->pgo_idle = TRUE;
+
+ assert_wait((event_t) &q->pgo_pending, THREAD_UNINT);
+ vm_page_unlock_queues();
+
+ thread_block_parameter((thread_continue_t)vm_pageout_iothread_external_continue, (void *) q);
+ /*NOTREACHED*/
+}
+
+
+#define MAX_FREE_BATCH 32
+uint32_t vm_compressor_time_thread; /* Set via sysctl to record time accrued by
+ * this thread.
+ */
+
+
+#if DEVELOPMENT || DEBUG
+uint64_t compressor_epoch_start, compressor_epoch_stop, compressor_threads_runtime;
+#endif
+
+void
+vm_pageout_iothread_internal_continue(struct cq *);
+void
+vm_pageout_iothread_internal_continue(struct cq *cq)
+{
+ struct vm_pageout_queue *q;
+ vm_page_t m = NULL;
+ boolean_t pgo_draining;
+ vm_page_t local_q;
+ int local_cnt;
+ vm_page_t local_freeq = NULL;
+ int local_freed = 0;
+ int local_batch_size;
+ int ncomps = 0;
+#if DEVELOPMENT || DEBUG
+ boolean_t marked_active = FALSE;
+#endif
+ KERNEL_DEBUG(0xe040000c | DBG_FUNC_END, 0, 0, 0, 0, 0);
+
+ q = cq->q;
+ local_batch_size = q->pgo_maxlaundry / (vm_compressor_thread_count * 2);
+
+#if RECORD_THE_COMPRESSED_DATA
+ if (q->pgo_laundry)
+ c_compressed_record_init();
+#endif
+ while (TRUE) {
+ int pages_left_on_q = 0;
+
+ local_cnt = 0;
+ local_q = NULL;
+
+ KERNEL_DEBUG(0xe0400014 | DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+ vm_page_lock_queues();
+#if DEVELOPMENT || DEBUG
+ if (marked_active == FALSE) {
+ vmct_active++;
+ vmct_state[cq->id] = VMCT_ACTIVE;
+ marked_active = TRUE;
+ if (vmct_active == 1) {
+ compressor_epoch_start = mach_absolute_time();
+ }
+ }
+#endif
+ KERNEL_DEBUG(0xe0400014 | DBG_FUNC_END, 0, 0, 0, 0, 0);
+
+ KERNEL_DEBUG(0xe0400018 | DBG_FUNC_START, q->pgo_laundry, 0, 0, 0, 0);
+
+ while ( !vm_page_queue_empty(&q->pgo_pending) && local_cnt < local_batch_size) {
+
+ vm_page_queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq);
+ assert(m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q);
+ VM_PAGE_CHECK(m);
+
+ m->vm_page_q_state = VM_PAGE_NOT_ON_Q;
+ VM_PAGE_ZERO_PAGEQ_ENTRY(m);
+ m->laundry = FALSE;
+
+ m->snext = local_q;
+ local_q = m;
+ local_cnt++;
+ }
+ if (local_q == NULL)
+ break;
+
+ q->pgo_busy = TRUE;
+
+ if ((pgo_draining = q->pgo_draining) == FALSE) {
+ vm_pageout_throttle_up_batch(q, local_cnt);
+ pages_left_on_q = q->pgo_laundry;
+ } else
+ pages_left_on_q = q->pgo_laundry - local_cnt;
+
+ vm_page_unlock_queues();
+
+#if !RECORD_THE_COMPRESSED_DATA
+ if (pages_left_on_q >= local_batch_size && cq->id < (vm_compressor_thread_count - 1)) {
+ thread_wakeup((event_t) ((uintptr_t)&q->pgo_pending + cq->id + 1));
+ }
+#endif
+ KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, q->pgo_laundry, 0, 0, 0, 0);
+
+ while (local_q) {
+
+ KERNEL_DEBUG(0xe0400024 | DBG_FUNC_START, local_cnt, 0, 0, 0, 0);
+
+ m = local_q;
+ local_q = m->snext;
+ m->snext = NULL;
+
+ if (vm_pageout_compress_page(&cq->current_chead, cq->scratch_buf, m, FALSE) == KERN_SUCCESS) {
+ ncomps++;
+ m->snext = local_freeq;
+ local_freeq = m;
+ local_freed++;
+
+ if (local_freed >= MAX_FREE_BATCH) {
+ vm_pageout_freed_after_compression += local_freed;
+
+ vm_page_free_list(local_freeq, TRUE);
+ local_freeq = NULL;
+ local_freed = 0;
+ }
+ }
+#if !CONFIG_JETSAM
+ while (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) {
+ kern_return_t wait_result;
+ int need_wakeup = 0;
+
+ if (local_freeq) {
+ vm_pageout_freed_after_compression += local_freed;
+
+ vm_page_free_list(local_freeq, TRUE);
+ local_freeq = NULL;
+ local_freed = 0;
+
+ continue;
+ }
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ if (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) {
+
+ if (vm_page_free_wanted_privileged++ == 0)
+ need_wakeup = 1;
+ wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, THREAD_UNINT);
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ if (need_wakeup)
+ thread_wakeup((event_t)&vm_page_free_wanted);
+
+ if (wait_result == THREAD_WAITING)
+
+ thread_block(THREAD_CONTINUE_NULL);
+ } else
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ }
+#endif
+ }
+ if (local_freeq) {
+ vm_pageout_freed_after_compression += local_freed;
+
+ vm_page_free_list(local_freeq, TRUE);
+ local_freeq = NULL;
+ local_freed = 0;
+ }
+ if (pgo_draining == TRUE) {
+ vm_page_lockspin_queues();
+ vm_pageout_throttle_up_batch(q, local_cnt);
+ vm_page_unlock_queues();
+ }
+ }
+ KERNEL_DEBUG(0xe040000c | DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+ /*
+ * queue lock is held and our q is empty
+ */
+ q->pgo_busy = FALSE;
+ q->pgo_idle = TRUE;
+
+ assert_wait((event_t) ((uintptr_t)&q->pgo_pending + cq->id), THREAD_UNINT);
+#if DEVELOPMENT || DEBUG
+ if (marked_active == TRUE) {
+ vmct_active--;
+ vmct_state[cq->id] = VMCT_IDLE;
+
+ if (vmct_active == 0) {
+ compressor_epoch_stop = mach_absolute_time();
+ assert(compressor_epoch_stop > compressor_epoch_start);
+ /* This interval includes intervals where one or more
+ * compressor threads were pre-empted
+ */
+ vmct_stats.vmct_cthreads_total += compressor_epoch_stop - compressor_epoch_start;
+ }
+
+ }
+#endif
+ vm_page_unlock_queues();
+#if DEVELOPMENT || DEBUG
+ if (__improbable(vm_compressor_time_thread)) {
+ vmct_stats.vmct_runtimes[cq->id] = thread_get_runtime_self();
+ vmct_stats.vmct_pages[cq->id] += ncomps;
+ vmct_stats.vmct_iterations[cq->id]++;
+ if (ncomps > vmct_stats.vmct_maxpages[cq->id]) {
+ vmct_stats.vmct_maxpages[cq->id] = ncomps;
+ }
+ if (ncomps < vmct_stats.vmct_minpages[cq->id]) {
+ vmct_stats.vmct_minpages[cq->id] = ncomps;
+ }
+ }
+#endif
+
+ KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, 0, 0, 0, 0, 0);
+
+ thread_block_parameter((thread_continue_t)vm_pageout_iothread_internal_continue, (void *) cq);
+ /*NOTREACHED*/
+}
+
+
+kern_return_t
+vm_pageout_compress_page(void **current_chead, char *scratch_buf, vm_page_t m, boolean_t object_locked_by_caller)
+{
+ vm_object_t object;
+ memory_object_t pager;
+ int compressed_count_delta;
+ kern_return_t retval;
+
+ object = VM_PAGE_OBJECT(m);
+
+ if (object->object_slid) {
+ panic("slid page %p not allowed on this path\n", m);
+ }
+ assert(!m->free_when_done);
+ assert(!m->laundry);
+
+ pager = object->pager;
+
+ if (object_locked_by_caller == FALSE && (!object->pager_initialized || pager == MEMORY_OBJECT_NULL)) {
+
+ KERNEL_DEBUG(0xe0400010 | DBG_FUNC_START, object, pager, 0, 0, 0);
+
+ vm_object_lock(object);
+
+ /*
+ * If there is no memory object for the page, create
+ * one and hand it to the compression pager.
+ */
+
+ if (!object->pager_initialized)
+ vm_object_collapse(object, (vm_object_offset_t) 0, TRUE);
+ if (!object->pager_initialized)
+ vm_object_compressor_pager_create(object);
+
+ pager = object->pager;
+
+ if (!object->pager_initialized || pager == MEMORY_OBJECT_NULL) {
+ /*
+ * Still no pager for the object,
+ * or the pager has been destroyed.
+ * Reactivate the page.
+ *
+ * Should only happen if there is no
+ * compression pager
+ */
+ PAGE_WAKEUP_DONE(m);
+
+ vm_page_lockspin_queues();
+ vm_page_activate(m);
+ vm_pageout_dirty_no_pager++;
+ vm_page_unlock_queues();
+
+ /*
+ * And we are done with it.
+ */
+ vm_object_activity_end(object);
+ vm_object_unlock(object);
+
+ return KERN_FAILURE;
+ }
+ vm_object_unlock(object);
+
+ KERNEL_DEBUG(0xe0400010 | DBG_FUNC_END, object, pager, 0, 0, 0);
+ }
+ assert(object->pager_initialized && pager != MEMORY_OBJECT_NULL);
+
+ if (object_locked_by_caller == FALSE)
+ assert(object->activity_in_progress > 0);
+
+ retval = vm_compressor_pager_put(
+ pager,
+ m->offset + object->paging_offset,
+ VM_PAGE_GET_PHYS_PAGE(m),
+ current_chead,
+ scratch_buf,
+ &compressed_count_delta);
+
+ if (object_locked_by_caller == FALSE) {
+ vm_object_lock(object);
+
+ assert(object->activity_in_progress > 0);
+ assert(VM_PAGE_OBJECT(m) == object);
+ }
+
+ vm_compressor_pager_count(pager,
+ compressed_count_delta,
+ FALSE, /* shared_lock */
+ object);
+
+ assert( !VM_PAGE_WIRED(m));
+
+ if (retval == KERN_SUCCESS) {
+ /*
+ * If the object is purgeable, its owner's
+ * purgeable ledgers will be updated in
+ * vm_page_remove() but the page still
+ * contributes to the owner's memory footprint,
+ * so account for it as such.
+ */
+ if (object->purgable != VM_PURGABLE_DENY &&
+ object->vo_purgeable_owner != NULL) {
+ /* one more compressed purgeable page */
+ vm_purgeable_compressed_update(object,
+ +1);
+ }
+ VM_STAT_INCR(compressions);
+
+ if (m->tabled)
+ vm_page_remove(m, TRUE);
+
+ } else {
+ PAGE_WAKEUP_DONE(m);
+
+ vm_page_lockspin_queues();
+
+ vm_page_activate(m);
+ vm_compressor_failed++;
+
+ vm_page_unlock_queues();
+ }
+ if (object_locked_by_caller == FALSE) {
+ vm_object_activity_end(object);
+ vm_object_unlock(object);
+ }
+ return retval;
+}
+
+
+static void
+vm_pageout_adjust_eq_iothrottle(struct vm_pageout_queue *eq, boolean_t req_lowpriority)
+{
+ uint32_t policy;
+
+ if (hibernate_cleaning_in_progress == TRUE)
+ req_lowpriority = FALSE;
+
+ if (eq->pgo_inited == TRUE && eq->pgo_lowpriority != req_lowpriority) {
+
+ vm_page_unlock_queues();
+
+ if (req_lowpriority == TRUE) {
+ policy = THROTTLE_LEVEL_PAGEOUT_THROTTLED;
+ DTRACE_VM(laundrythrottle);
+ } else {
+ policy = THROTTLE_LEVEL_PAGEOUT_UNTHROTTLED;
+ DTRACE_VM(laundryunthrottle);
+ }
+ proc_set_thread_policy_with_tid(kernel_task, eq->pgo_tid,
+ TASK_POLICY_EXTERNAL, TASK_POLICY_IO, policy);
+
+ eq->pgo_lowpriority = req_lowpriority;
+
+ vm_page_lock_queues();
+ }
+}
+
+
+static void
+vm_pageout_iothread_external(void)
+{
+ thread_t self = current_thread();
+
+ self->options |= TH_OPT_VMPRIV;
+
+ DTRACE_VM2(laundrythrottle, int, 1, (uint64_t *), NULL);
+
+ proc_set_thread_policy(self, TASK_POLICY_EXTERNAL,
+ TASK_POLICY_IO, THROTTLE_LEVEL_PAGEOUT_THROTTLED);
+
+ vm_page_lock_queues();
+
+ vm_pageout_queue_external.pgo_tid = self->thread_id;
+ vm_pageout_queue_external.pgo_lowpriority = TRUE;
+ vm_pageout_queue_external.pgo_inited = TRUE;
+
+ vm_page_unlock_queues();
+
+ vm_pageout_iothread_external_continue(&vm_pageout_queue_external);
+
+ /*NOTREACHED*/
+}
+
+
+static void
+vm_pageout_iothread_internal(struct cq *cq)
+{
+ thread_t self = current_thread();
+
+ self->options |= TH_OPT_VMPRIV;
+
+ vm_page_lock_queues();
+
+ vm_pageout_queue_internal.pgo_tid = self->thread_id;
+ vm_pageout_queue_internal.pgo_lowpriority = TRUE;
+ vm_pageout_queue_internal.pgo_inited = TRUE;
+
+ vm_page_unlock_queues();
+
+ if (vm_restricted_to_single_processor == TRUE)
+ thread_vm_bind_group_add();
+
+
+ thread_set_thread_name(current_thread(), "VM_compressor");
+#if DEVELOPMENT || DEBUG
+ vmct_stats.vmct_minpages[cq->id] = INT32_MAX;
+#endif
+ vm_pageout_iothread_internal_continue(cq);
+
+ /*NOTREACHED*/
+}
+
+kern_return_t
+vm_set_buffer_cleanup_callout(boolean_t (*func)(int))
+{
+ if (OSCompareAndSwapPtr(NULL, func, (void * volatile *) &consider_buffer_cache_collect)) {
+ return KERN_SUCCESS;
+ } else {
+ return KERN_FAILURE; /* Already set */
+ }
+}
+
+extern boolean_t memorystatus_manual_testing_on;
+extern unsigned int memorystatus_level;
+
+
+#if VM_PRESSURE_EVENTS
+
+boolean_t vm_pressure_events_enabled = FALSE;
+
+void
+vm_pressure_response(void)
+{
+
+ vm_pressure_level_t old_level = kVMPressureNormal;
+ int new_level = -1;
+ unsigned int total_pages;
+ uint64_t available_memory = 0;
+
+ if (vm_pressure_events_enabled == FALSE)
+ return;
+
+#if CONFIG_EMBEDDED
+
+ available_memory = (uint64_t) memorystatus_available_pages;
+
+#else /* CONFIG_EMBEDDED */
+
+ available_memory = (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY;
+ memorystatus_available_pages = (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY;
+
+#endif /* CONFIG_EMBEDDED */
+
+ total_pages = (unsigned int) atop_64(max_mem);
+#if CONFIG_SECLUDED_MEMORY
+ total_pages -= vm_page_secluded_count;
+#endif /* CONFIG_SECLUDED_MEMORY */
+ memorystatus_level = (unsigned int) ((available_memory * 100) / total_pages);
+
+ if (memorystatus_manual_testing_on) {
+ return;
+ }
+
+ old_level = memorystatus_vm_pressure_level;
+
+ switch (memorystatus_vm_pressure_level) {
+
+ case kVMPressureNormal:
+ {
+ if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
+ new_level = kVMPressureCritical;
+ } else if (VM_PRESSURE_NORMAL_TO_WARNING()) {
+ new_level = kVMPressureWarning;
+ }
+ break;
+ }
+
+ case kVMPressureWarning:
+ case kVMPressureUrgent:
+ {
+ if (VM_PRESSURE_WARNING_TO_NORMAL()) {
+ new_level = kVMPressureNormal;
+ } else if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
+ new_level = kVMPressureCritical;
+ }
+ break;
+ }
+
+ case kVMPressureCritical:
+ {
+ if (VM_PRESSURE_WARNING_TO_NORMAL()) {
+ new_level = kVMPressureNormal;
+ } else if (VM_PRESSURE_CRITICAL_TO_WARNING()) {
+ new_level = kVMPressureWarning;
+ }
+ break;
+ }
+
+ default:
+ return;
+ }
+
+ if (new_level != -1) {
+ memorystatus_vm_pressure_level = (vm_pressure_level_t) new_level;
+
+ if ((memorystatus_vm_pressure_level != kVMPressureNormal) || (old_level != new_level)) {
+ if (vm_pressure_thread_running == FALSE) {
+ thread_wakeup(&vm_pressure_thread);
+ }
+
+ if (old_level != new_level) {
+ thread_wakeup(&vm_pressure_changed);
+ }
+ }
+ }
+
+}
+#endif /* VM_PRESSURE_EVENTS */
+
+kern_return_t
+mach_vm_pressure_level_monitor(__unused boolean_t wait_for_pressure, __unused unsigned int *pressure_level) {
+
+#if CONFIG_EMBEDDED
+
+ return KERN_FAILURE;
+
+#elif !VM_PRESSURE_EVENTS
+
+ return KERN_FAILURE;
+
+#else /* VM_PRESSURE_EVENTS */
+
+ kern_return_t kr = KERN_SUCCESS;
+
+ if (pressure_level != NULL) {
+
+ vm_pressure_level_t old_level = memorystatus_vm_pressure_level;
+
+ if (wait_for_pressure == TRUE) {
+ wait_result_t wr = 0;
+
+ while (old_level == *pressure_level) {
+ wr = assert_wait((event_t) &vm_pressure_changed,
+ THREAD_INTERRUPTIBLE);
+ if (wr == THREAD_WAITING) {
+ wr = thread_block(THREAD_CONTINUE_NULL);
+ }
+ if (wr == THREAD_INTERRUPTED) {
+ return KERN_ABORTED;
+ }
+ if (wr == THREAD_AWAKENED) {
+
+ old_level = memorystatus_vm_pressure_level;
+
+ if (old_level != *pressure_level) {
+ break;
+ }
+ }
+ }
+ }
+
+ *pressure_level = old_level;
+ kr = KERN_SUCCESS;
+ } else {
+ kr = KERN_INVALID_ARGUMENT;
+ }
+
+ return kr;
+#endif /* VM_PRESSURE_EVENTS */
+}
+
+#if VM_PRESSURE_EVENTS
+void
+vm_pressure_thread(void) {
+ static boolean_t thread_initialized = FALSE;
+
+ if (thread_initialized == TRUE) {
+ vm_pressure_thread_running = TRUE;
+ consider_vm_pressure_events();
+ vm_pressure_thread_running = FALSE;
+ }
+
+ thread_initialized = TRUE;
+ assert_wait((event_t) &vm_pressure_thread, THREAD_UNINT);
+ thread_block((thread_continue_t)vm_pressure_thread);
+}
+#endif /* VM_PRESSURE_EVENTS */
+
+
+uint32_t vm_pageout_considered_page_last = 0;
+
+/*
+ * called once per-second via "compute_averages"
+ */
+void
+compute_pageout_gc_throttle(__unused void *arg)
+{
+ if (vm_pageout_considered_page != vm_pageout_considered_page_last) {
+
+ vm_pageout_considered_page_last = vm_pageout_considered_page;
+
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+}
+
+/*
+ * vm_pageout_garbage_collect can also be called when the zone allocator needs
+ * to call zone_gc on a different thread in order to trigger zone-map-exhaustion
+ * jetsams. We need to check if the zone map size is above its jetsam limit to
+ * decide if this was indeed the case.
+ *
+ * We need to do this on a different thread because of the following reasons:
+ *
+ * 1. In the case of synchronous jetsams, the leaking process can try to jetsam
+ * itself causing the system to hang. We perform synchronous jetsams if we're
+ * leaking in the VM map entries zone, so the leaking process could be doing a
+ * zalloc for a VM map entry while holding its vm_map lock, when it decides to
+ * jetsam itself. We also need the vm_map lock on the process termination path,
+ * which would now lead the dying process to deadlock against itself.
+ *
+ * 2. The jetsam path might need to allocate zone memory itself. We could try
+ * using the non-blocking variant of zalloc for this path, but we can still
+ * end up trying to do a kernel_memory_allocate when the zone_map is almost
+ * full.
+ */
+
+extern boolean_t is_zone_map_nearing_exhaustion(void);
+
+void
+vm_pageout_garbage_collect(int collect)
+{
+ if (collect) {
+ if (is_zone_map_nearing_exhaustion()) {
+ /*
+ * Woken up by the zone allocator for zone-map-exhaustion jetsams.
+ *
+ * Bail out after calling zone_gc (which triggers the
+ * zone-map-exhaustion jetsams). If we fall through, the subsequent
+ * operations that clear out a bunch of caches might allocate zone
+ * memory themselves (for eg. vm_map operations would need VM map
+ * entries). Since the zone map is almost full at this point, we
+ * could end up with a panic. We just need to quickly jetsam a
+ * process and exit here.
+ *
+ * It could so happen that we were woken up to relieve memory
+ * pressure and the zone map also happened to be near its limit at
+ * the time, in which case we'll skip out early. But that should be
+ * ok; if memory pressure persists, the thread will simply be woken
+ * up again.
+ */
+ consider_zone_gc(TRUE);
+
+ } else {
+ /* Woken up by vm_pageout_scan or compute_pageout_gc_throttle. */
+ boolean_t buf_large_zfree = FALSE;
+ boolean_t first_try = TRUE;
+
+ stack_collect();
+
+ consider_machine_collect();
+ m_drain();
+
+ do {
+ if (consider_buffer_cache_collect != NULL) {
+ buf_large_zfree = (*consider_buffer_cache_collect)(0);
+ }
+ if (first_try == TRUE || buf_large_zfree == TRUE) {
+ /*
+ * consider_zone_gc should be last, because the other operations
+ * might return memory to zones.
+ */
+ consider_zone_gc(FALSE);
+ }
+ first_try = FALSE;
+
+ } while (buf_large_zfree == TRUE && vm_page_free_count < vm_page_free_target);
+
+ consider_machine_adjust();
+ }
+ }
+
+ assert_wait((event_t) &vm_pageout_garbage_collect, THREAD_UNINT);
+
+ thread_block_parameter((thread_continue_t) vm_pageout_garbage_collect, (void *)1);
+ /*NOTREACHED*/
+}
+
+
+#if VM_PAGE_BUCKETS_CHECK
+#if VM_PAGE_FAKE_BUCKETS
+extern vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end;
+#endif /* VM_PAGE_FAKE_BUCKETS */
+#endif /* VM_PAGE_BUCKETS_CHECK */
+
+
+
+void
+vm_set_restrictions()
+{
+ host_basic_info_data_t hinfo;
+ mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
+
+#define BSD_HOST 1
+ host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
+
+ assert(hinfo.max_cpus > 0);
+
+ if (hinfo.max_cpus <= 3) {
+ /*
+ * on systems with a limited number of CPUS, bind the
+ * 4 major threads that can free memory and that tend to use
+ * a fair bit of CPU under pressured conditions to a single processor.
+ * This insures that these threads don't hog all of the available CPUs
+ * (important for camera launch), while allowing them to run independently
+ * w/r to locks... the 4 threads are
+ * vm_pageout_scan, vm_pageout_iothread_internal (compressor),
+ * vm_compressor_swap_trigger_thread (minor and major compactions),
+ * memorystatus_thread (jetsams).
+ *
+ * the first time the thread is run, it is responsible for checking the
+ * state of vm_restricted_to_single_processor, and if TRUE it calls
+ * thread_bind_master... someday this should be replaced with a group
+ * scheduling mechanism and KPI.
+ */
+ vm_restricted_to_single_processor = TRUE;
+ }
+}
+
+void
+vm_pageout(void)
+{
+ thread_t self = current_thread();
+ thread_t thread;
+ kern_return_t result;
+ spl_t s;
+
+ /*
+ * Set thread privileges.
+ */
+ s = splsched();
+
+ thread_lock(self);
+ self->options |= TH_OPT_VMPRIV;
+ sched_set_thread_base_priority(self, BASEPRI_VM);
+ thread_unlock(self);
+
+ if (!self->reserved_stack)
+ self->reserved_stack = self->kernel_stack;
+
+ if (vm_restricted_to_single_processor == TRUE)
+ thread_vm_bind_group_add();
+
+ splx(s);
+
+ thread_set_thread_name(current_thread(), "VM_pageout_scan");
+
+ /*
+ * Initialize some paging parameters.
+ */
+
+ if (vm_pageout_swap_wait == 0)
+ vm_pageout_swap_wait = VM_PAGEOUT_SWAP_WAIT;
+
+ if (vm_pageout_idle_wait == 0)
+ vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT;
+
+ if (vm_pageout_burst_wait == 0)
+ vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT;
+
+ if (vm_pageout_empty_wait == 0)
+ vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT;
+
+ if (vm_pageout_deadlock_wait == 0)
+ vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT;
+
+ if (vm_pageout_deadlock_relief == 0)
+ vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF;
+
+ if (vm_pageout_inactive_relief == 0)
+ vm_pageout_inactive_relief = VM_PAGEOUT_INACTIVE_RELIEF;
+
+ if (vm_pageout_burst_active_throttle == 0)
+ vm_pageout_burst_active_throttle = VM_PAGEOUT_BURST_ACTIVE_THROTTLE;
+
+ if (vm_pageout_burst_inactive_throttle == 0)
+ vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE;
+
+ /*
+ * Set kernel task to low backing store privileged
+ * status
+ */
+ task_lock(kernel_task);
+ kernel_task->priv_flags |= VM_BACKING_STORE_PRIV;
+ task_unlock(kernel_task);
+
+ vm_page_free_count_init = vm_page_free_count;
+
+ /*
+ * even if we've already called vm_page_free_reserve
+ * call it again here to insure that the targets are
+ * accurately calculated (it uses vm_page_free_count_init)
+ * calling it with an arg of 0 will not change the reserve
+ * but will re-calculate free_min and free_target
+ */
+ if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) {
+ vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved);
+ } else
+ vm_page_free_reserve(0);
+
+
+ vm_page_queue_init(&vm_pageout_queue_external.pgo_pending);
+ vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX;
+ vm_pageout_queue_external.pgo_laundry = 0;
+ vm_pageout_queue_external.pgo_idle = FALSE;
+ vm_pageout_queue_external.pgo_busy = FALSE;
+ vm_pageout_queue_external.pgo_throttled = FALSE;
+ vm_pageout_queue_external.pgo_draining = FALSE;
+ vm_pageout_queue_external.pgo_lowpriority = FALSE;
+ vm_pageout_queue_external.pgo_tid = -1;
+ vm_pageout_queue_external.pgo_inited = FALSE;
+
+ vm_page_queue_init(&vm_pageout_queue_internal.pgo_pending);
+ vm_pageout_queue_internal.pgo_maxlaundry = 0;
+ vm_pageout_queue_internal.pgo_laundry = 0;
+ vm_pageout_queue_internal.pgo_idle = FALSE;
+ vm_pageout_queue_internal.pgo_busy = FALSE;
+ vm_pageout_queue_internal.pgo_throttled = FALSE;
+ vm_pageout_queue_internal.pgo_draining = FALSE;
+ vm_pageout_queue_internal.pgo_lowpriority = FALSE;
+ vm_pageout_queue_internal.pgo_tid = -1;
+ vm_pageout_queue_internal.pgo_inited = FALSE;
+
+ /* internal pageout thread started when default pager registered first time */
+ /* external pageout and garbage collection threads started here */
+
+ result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_external, NULL,
+ BASEPRI_VM,
+ &vm_pageout_external_iothread);
+ if (result != KERN_SUCCESS)
+ panic("vm_pageout_iothread_external: create failed");
+
+ thread_deallocate(vm_pageout_external_iothread);
+
+ result = kernel_thread_start_priority((thread_continue_t)vm_pageout_garbage_collect, NULL,
+ BASEPRI_DEFAULT,
+ &thread);
+ if (result != KERN_SUCCESS)
+ panic("vm_pageout_garbage_collect: create failed");
+
+ thread_deallocate(thread);
+
+#if VM_PRESSURE_EVENTS
+ result = kernel_thread_start_priority((thread_continue_t)vm_pressure_thread, NULL,
+ BASEPRI_DEFAULT,
+ &thread);
+
+ if (result != KERN_SUCCESS)
+ panic("vm_pressure_thread: create failed");
+
+ thread_deallocate(thread);
+#endif
+
+ vm_object_reaper_init();
+
+
+ bzero(&vm_config, sizeof(vm_config));
+
+ switch(vm_compressor_mode) {
+
+ case VM_PAGER_DEFAULT:
+ printf("mapping deprecated VM_PAGER_DEFAULT to VM_PAGER_COMPRESSOR_WITH_SWAP\n");
+
+ case VM_PAGER_COMPRESSOR_WITH_SWAP:
+ vm_config.compressor_is_present = TRUE;
+ vm_config.swap_is_present = TRUE;
+ vm_config.compressor_is_active = TRUE;
+ vm_config.swap_is_active = TRUE;
+ break;
+
+ case VM_PAGER_COMPRESSOR_NO_SWAP:
+ vm_config.compressor_is_present = TRUE;
+ vm_config.swap_is_present = TRUE;
+ vm_config.compressor_is_active = TRUE;
+ break;
+
+ case VM_PAGER_FREEZER_DEFAULT:
+ printf("mapping deprecated VM_PAGER_FREEZER_DEFAULT to VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP\n");
+
+ case VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP:
+ vm_config.compressor_is_present = TRUE;
+ vm_config.swap_is_present = TRUE;
+ break;
+
+ case VM_PAGER_COMPRESSOR_NO_SWAP_PLUS_FREEZER_COMPRESSOR_WITH_SWAP:
+ vm_config.compressor_is_present = TRUE;
+ vm_config.swap_is_present = TRUE;
+ vm_config.compressor_is_active = TRUE;
+ vm_config.freezer_swap_is_active = TRUE;
+ break;
+
+ case VM_PAGER_NOT_CONFIGURED:
+ break;
+
+ default:
+ printf("unknown compressor mode - %x\n", vm_compressor_mode);
+ break;
+ }
+ if (VM_CONFIG_COMPRESSOR_IS_PRESENT)
+ vm_compressor_pager_init();
+
+#if VM_PRESSURE_EVENTS
+ vm_pressure_events_enabled = TRUE;
+#endif /* VM_PRESSURE_EVENTS */
+
+#if CONFIG_PHANTOM_CACHE
+ vm_phantom_cache_init();
+#endif
+#if VM_PAGE_BUCKETS_CHECK
+#if VM_PAGE_FAKE_BUCKETS
+ printf("**** DEBUG: protecting fake buckets [0x%llx:0x%llx]\n",
+ (uint64_t) vm_page_fake_buckets_start,
+ (uint64_t) vm_page_fake_buckets_end);
+ pmap_protect(kernel_pmap,
+ vm_page_fake_buckets_start,
+ vm_page_fake_buckets_end,
+ VM_PROT_READ);
+// *(char *) vm_page_fake_buckets_start = 'x'; /* panic! */
+#endif /* VM_PAGE_FAKE_BUCKETS */
+#endif /* VM_PAGE_BUCKETS_CHECK */
+
+#if VM_OBJECT_TRACKING
+ vm_object_tracking_init();
+#endif /* VM_OBJECT_TRACKING */
+
+ vm_tests();
+
+ vm_pageout_continue();
+
+ /*
+ * Unreached code!
+ *
+ * The vm_pageout_continue() call above never returns, so the code below is never
+ * executed. We take advantage of this to declare several DTrace VM related probe
+ * points that our kernel doesn't have an analog for. These are probe points that
+ * exist in Solaris and are in the DTrace documentation, so people may have written
+ * scripts that use them. Declaring the probe points here means their scripts will
+ * compile and execute which we want for portability of the scripts, but since this
+ * section of code is never reached, the probe points will simply never fire. Yes,
+ * this is basically a hack. The problem is the DTrace probe points were chosen with
+ * Solaris specific VM events in mind, not portability to different VM implementations.
+ */
+
+ DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL);
+ DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL);
+ DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL);
+ DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL);
+ DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL);
+ DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL);
+ DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL);
+ /*NOTREACHED*/
+}
+
+
+
+#if CONFIG_EMBEDDED
+int vm_compressor_thread_count = 1;
+#else
+int vm_compressor_thread_count = 2;
+#endif
+
+kern_return_t
+vm_pageout_internal_start(void)
+{
+ kern_return_t result;
+ int i;
+ host_basic_info_data_t hinfo;
+
+ assert (VM_CONFIG_COMPRESSOR_IS_PRESENT);
+
+ mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
+#define BSD_HOST 1
+ host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
+
+ assert(hinfo.max_cpus > 0);
+
+ PE_parse_boot_argn("vmcomp_threads", &vm_compressor_thread_count, sizeof(vm_compressor_thread_count));
+ if (vm_compressor_thread_count >= hinfo.max_cpus)
+ vm_compressor_thread_count = hinfo.max_cpus - 1;
+ if (vm_compressor_thread_count <= 0)
+ vm_compressor_thread_count = 1;
+ else if (vm_compressor_thread_count > MAX_COMPRESSOR_THREAD_COUNT)
+ vm_compressor_thread_count = MAX_COMPRESSOR_THREAD_COUNT;
+
+ vm_pageout_queue_internal.pgo_maxlaundry = (vm_compressor_thread_count * 4) * VM_PAGE_LAUNDRY_MAX;
+
+ PE_parse_boot_argn("vmpgoi_maxlaundry", &vm_pageout_queue_internal.pgo_maxlaundry, sizeof(vm_pageout_queue_internal.pgo_maxlaundry));
+
+ for (i = 0; i < vm_compressor_thread_count; i++) {
+ ciq[i].id = i;
+ ciq[i].q = &vm_pageout_queue_internal;
+ ciq[i].current_chead = NULL;
+ ciq[i].scratch_buf = kalloc(COMPRESSOR_SCRATCH_BUF_SIZE);
+
+ result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_internal, (void *)&ciq[i], BASEPRI_VM, &vm_pageout_internal_iothread);
+
+ if (result == KERN_SUCCESS)
+ thread_deallocate(vm_pageout_internal_iothread);
+ else
+ break;
+ }
+ return result;
+}
+
+#if CONFIG_IOSCHED
+/*
+ * To support I/O Expedite for compressed files we mark the upls with special flags.
+ * The way decmpfs works is that we create a big upl which marks all the pages needed to
+ * represent the compressed file as busy. We tag this upl with the flag UPL_DECMP_REQ. Decmpfs
+ * then issues smaller I/Os for compressed I/Os, deflates them and puts the data into the pages
+ * being held in the big original UPL. We mark each of these smaller UPLs with the flag
+ * UPL_DECMP_REAL_IO. Any outstanding real I/O UPL is tracked by the big req upl using the
+ * decmp_io_upl field (in the upl structure). This link is protected in the forward direction
+ * by the req upl lock (the reverse link doesnt need synch. since we never inspect this link
+ * unless the real I/O upl is being destroyed).
+ */
+
+
+static void
+upl_set_decmp_info(upl_t upl, upl_t src_upl)
+{
+ assert((src_upl->flags & UPL_DECMP_REQ) != 0);
+
+ upl_lock(src_upl);
+ if (src_upl->decmp_io_upl) {
+ /*
+ * If there is already an alive real I/O UPL, ignore this new UPL.
+ * This case should rarely happen and even if it does, it just means
+ * that we might issue a spurious expedite which the driver is expected
+ * to handle.
+ */
+ upl_unlock(src_upl);
+ return;
+ }
+ src_upl->decmp_io_upl = (void *)upl;
+ src_upl->ref_count++;
+
+ upl->flags |= UPL_DECMP_REAL_IO;
+ upl->decmp_io_upl = (void *)src_upl;
+ upl_unlock(src_upl);
+}
+#endif /* CONFIG_IOSCHED */
+
+#if UPL_DEBUG
+int upl_debug_enabled = 1;
+#else
+int upl_debug_enabled = 0;
+#endif
+
+static upl_t
+upl_create(int type, int flags, upl_size_t size)
+{
+ upl_t upl;
+ vm_size_t page_field_size = 0;
+ int upl_flags = 0;
+ vm_size_t upl_size = sizeof(struct upl);
+
+ size = round_page_32(size);
+
+ if (type & UPL_CREATE_LITE) {
+ page_field_size = (atop(size) + 7) >> 3;
+ page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
+
+ upl_flags |= UPL_LITE;
+ }
+ if (type & UPL_CREATE_INTERNAL) {
+ upl_size += sizeof(struct upl_page_info) * atop(size);
+
+ upl_flags |= UPL_INTERNAL;
+ }
+ upl = (upl_t)kalloc(upl_size + page_field_size);
+
+ if (page_field_size)
+ bzero((char *)upl + upl_size, page_field_size);
+
+ upl->flags = upl_flags | flags;
+ upl->kaddr = (vm_offset_t)0;
+ upl->size = 0;
+ upl->map_object = NULL;
+ upl->ref_count = 1;
+ upl->ext_ref_count = 0;
+ upl->highest_page = 0;
+ upl_lock_init(upl);
+ upl->vector_upl = NULL;
+ upl->associated_upl = NULL;
+#if CONFIG_IOSCHED
+ if (type & UPL_CREATE_IO_TRACKING) {
+ upl->upl_priority = proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO);
+ }
+
+ upl->upl_reprio_info = 0;
+ upl->decmp_io_upl = 0;
+ if ((type & UPL_CREATE_INTERNAL) && (type & UPL_CREATE_EXPEDITE_SUP)) {
+ /* Only support expedite on internal UPLs */
+ thread_t curthread = current_thread();
+ upl->upl_reprio_info = (uint64_t *)kalloc(sizeof(uint64_t) * atop(size));
+ bzero(upl->upl_reprio_info, (sizeof(uint64_t) * atop(size)));
+ upl->flags |= UPL_EXPEDITE_SUPPORTED;
+ if (curthread->decmp_upl != NULL)
+ upl_set_decmp_info(upl, curthread->decmp_upl);
+ }
+#endif
+#if CONFIG_IOSCHED || UPL_DEBUG
+ if ((type & UPL_CREATE_IO_TRACKING) || upl_debug_enabled) {
+ upl->upl_creator = current_thread();
+ upl->uplq.next = 0;
+ upl->uplq.prev = 0;
+ upl->flags |= UPL_TRACKED_BY_OBJECT;
+ }
+#endif
+
+#if UPL_DEBUG
+ upl->ubc_alias1 = 0;
+ upl->ubc_alias2 = 0;
+
+ upl->upl_state = 0;
+ upl->upl_commit_index = 0;
+ bzero(&upl->upl_commit_records[0], sizeof(upl->upl_commit_records));
+
+ (void) OSBacktrace(&upl->upl_create_retaddr[0], UPL_DEBUG_STACK_FRAMES);
+#endif /* UPL_DEBUG */
+
+ return(upl);
+}
+
+static void
+upl_destroy(upl_t upl)
+{
+ int page_field_size; /* bit field in word size buf */
+ int size;
+
+ if (upl->ext_ref_count) {
+ panic("upl(%p) ext_ref_count", upl);
+ }
+
+#if CONFIG_IOSCHED
+ if ((upl->flags & UPL_DECMP_REAL_IO) && upl->decmp_io_upl) {
+ upl_t src_upl;
+ src_upl = upl->decmp_io_upl;
+ assert((src_upl->flags & UPL_DECMP_REQ) != 0);
+ upl_lock(src_upl);
+ src_upl->decmp_io_upl = NULL;
+ upl_unlock(src_upl);
+ upl_deallocate(src_upl);
+ }
+#endif /* CONFIG_IOSCHED */
+
+#if CONFIG_IOSCHED || UPL_DEBUG
+ if ((upl->flags & UPL_TRACKED_BY_OBJECT) && !(upl->flags & UPL_VECTOR)) {
+ vm_object_t object;
+
+ if (upl->flags & UPL_SHADOWED) {
+ object = upl->map_object->shadow;
+ } else {
+ object = upl->map_object;
+ }
+
+ vm_object_lock(object);
+ queue_remove(&object->uplq, upl, upl_t, uplq);
+ vm_object_activity_end(object);
+ vm_object_collapse(object, 0, TRUE);
+ vm_object_unlock(object);
+ }
+#endif
+ /*
+ * drop a reference on the map_object whether or
+ * not a pageout object is inserted
+ */
+ if (upl->flags & UPL_SHADOWED)
+ vm_object_deallocate(upl->map_object);
+
+ if (upl->flags & UPL_DEVICE_MEMORY)
+ size = PAGE_SIZE;
+ else
+ size = upl->size;
+ page_field_size = 0;
+
+ if (upl->flags & UPL_LITE) {
+ page_field_size = ((size/PAGE_SIZE) + 7) >> 3;
+ page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
+ }
+ upl_lock_destroy(upl);
+ upl->vector_upl = (vector_upl_t) 0xfeedbeef;
+
+#if CONFIG_IOSCHED
+ if (upl->flags & UPL_EXPEDITE_SUPPORTED)
+ kfree(upl->upl_reprio_info, sizeof(uint64_t) * (size/PAGE_SIZE));
+#endif
+
+ if (upl->flags & UPL_INTERNAL) {
+ kfree(upl,
+ sizeof(struct upl) +
+ (sizeof(struct upl_page_info) * (size/PAGE_SIZE))
+ + page_field_size);
+ } else {
+ kfree(upl, sizeof(struct upl) + page_field_size);
+ }
+}
+
+void
+upl_deallocate(upl_t upl)
+{
+ upl_lock(upl);
+ if (--upl->ref_count == 0) {
+ if(vector_upl_is_valid(upl))
+ vector_upl_deallocate(upl);
+ upl_unlock(upl);
+ upl_destroy(upl);
+ }
+ else
+ upl_unlock(upl);
+}
+
+#if CONFIG_IOSCHED
+void
+upl_mark_decmp(upl_t upl)
+{
+ if (upl->flags & UPL_TRACKED_BY_OBJECT) {
+ upl->flags |= UPL_DECMP_REQ;
+ upl->upl_creator->decmp_upl = (void *)upl;
+ }
+}
+
+void
+upl_unmark_decmp(upl_t upl)
+{
+ if(upl && (upl->flags & UPL_DECMP_REQ)) {
+ upl->upl_creator->decmp_upl = NULL;
+ }
+}
+
+#endif /* CONFIG_IOSCHED */
+
+#define VM_PAGE_Q_BACKING_UP(q) \
+ ((q)->pgo_laundry >= (((q)->pgo_maxlaundry * 8) / 10))
+
+boolean_t must_throttle_writes(void);
+
+boolean_t
+must_throttle_writes()
+{
+ if (VM_PAGE_Q_BACKING_UP(&vm_pageout_queue_external) &&
+ vm_page_pageable_external_count > (AVAILABLE_NON_COMPRESSED_MEMORY * 6) / 10)
+ return (TRUE);
+
+ return (FALSE);
+}
+
+
+#if DEVELOPMENT || DEBUG
+/*/*
+ * Statistics about UPL enforcement of copy-on-write obligations.
+ */
+unsigned long upl_cow = 0;
+unsigned long upl_cow_again = 0;
+unsigned long upl_cow_pages = 0;
+unsigned long upl_cow_again_pages = 0;
+
+unsigned long iopl_cow = 0;
+unsigned long iopl_cow_pages = 0;
+#endif
+
+/*
+ * Routine: vm_object_upl_request
+ * Purpose:
+ * Cause the population of a portion of a vm_object.
+ * Depending on the nature of the request, the pages
+ * returned may be contain valid data or be uninitialized.
+ * A page list structure, listing the physical pages
+ * will be returned upon request.
+ * This function is called by the file system or any other
+ * supplier of backing store to a pager.
+ * IMPORTANT NOTE: The caller must still respect the relationship
+ * between the vm_object and its backing memory object. The
+ * caller MUST NOT substitute changes in the backing file
+ * without first doing a memory_object_lock_request on the
+ * target range unless it is know that the pages are not
+ * shared with another entity at the pager level.
+ * Copy_in_to:
+ * if a page list structure is present
+ * return the mapped physical pages, where a
+ * page is not present, return a non-initialized
+ * one. If the no_sync bit is turned on, don't
+ * call the pager unlock to synchronize with other
+ * possible copies of the page. Leave pages busy
+ * in the original object, if a page list structure
+ * was specified. When a commit of the page list
+ * pages is done, the dirty bit will be set for each one.
+ * Copy_out_from:
+ * If a page list structure is present, return
+ * all mapped pages. Where a page does not exist
+ * map a zero filled one. Leave pages busy in
+ * the original object. If a page list structure
+ * is not specified, this call is a no-op.
+ *
+ * Note: access of default pager objects has a rather interesting
+ * twist. The caller of this routine, presumably the file system
+ * page cache handling code, will never actually make a request
+ * against a default pager backed object. Only the default
+ * pager will make requests on backing store related vm_objects
+ * In this way the default pager can maintain the relationship
+ * between backing store files (abstract memory objects) and
+ * the vm_objects (cache objects), they support.
+ *
+ */
+
+__private_extern__ kern_return_t
+vm_object_upl_request(
+ vm_object_t object,
+ vm_object_offset_t offset,
+ upl_size_t size,
+ upl_t *upl_ptr,
+ upl_page_info_array_t user_page_list,
+ unsigned int *page_list_count,
+ upl_control_flags_t cntrl_flags,
+ vm_tag_t tag)
+{
+ vm_page_t dst_page = VM_PAGE_NULL;
+ vm_object_offset_t dst_offset;
+ upl_size_t xfer_size;
+ unsigned int size_in_pages;
+ boolean_t dirty;
+ boolean_t hw_dirty;
+ upl_t upl = NULL;
+ unsigned int entry;
+#if MACH_CLUSTER_STATS
+ boolean_t encountered_lrp = FALSE;
+#endif
+ vm_page_t alias_page = NULL;
+ int refmod_state = 0;
+ wpl_array_t lite_list = NULL;
+ vm_object_t last_copy_object;
+ struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
+ struct vm_page_delayed_work *dwp;
+ int dw_count;
+ int dw_limit;
+ int io_tracking_flag = 0;
+ int grab_options;
+ ppnum_t phys_page;
+
+ if (cntrl_flags & ~UPL_VALID_FLAGS) {
+ /*
+ * For forward compatibility's sake,
+ * reject any unknown flag.
+ */
+ return KERN_INVALID_VALUE;
+ }
+ if ( (!object->internal) && (object->paging_offset != 0) )
+ panic("vm_object_upl_request: external object with non-zero paging offset\n");
+ if (object->phys_contiguous)
+ panic("vm_object_upl_request: contiguous object specified\n");
+
+
+ if (size > MAX_UPL_SIZE_BYTES)
+ size = MAX_UPL_SIZE_BYTES;
+
+ if ( (cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL)
+ *page_list_count = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
+
+#if CONFIG_IOSCHED || UPL_DEBUG
+ if (object->io_tracking || upl_debug_enabled)
+ io_tracking_flag |= UPL_CREATE_IO_TRACKING;
+#endif
+#if CONFIG_IOSCHED
+ if (object->io_tracking)
+ io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP;
+#endif
+
+ if (cntrl_flags & UPL_SET_INTERNAL) {
+ if (cntrl_flags & UPL_SET_LITE) {
+
+ upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size);
+
+ user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
+ lite_list = (wpl_array_t)
+ (((uintptr_t)user_page_list) +
+ ((size/PAGE_SIZE) * sizeof(upl_page_info_t)));
+ if (size == 0) {
+ user_page_list = NULL;
+ lite_list = NULL;
+ }
+ } else {
+ upl = upl_create(UPL_CREATE_INTERNAL | io_tracking_flag, 0, size);
+
+ user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
+ if (size == 0) {
+ user_page_list = NULL;
+ }
+ }
+ } else {
+ if (cntrl_flags & UPL_SET_LITE) {
+
+ upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size);
+
+ lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
+ if (size == 0) {
+ lite_list = NULL;
+ }
+ } else {
+ upl = upl_create(UPL_CREATE_EXTERNAL | io_tracking_flag, 0, size);
+ }
+ }
+ *upl_ptr = upl;
+
+ if (user_page_list)
+ user_page_list[0].device = FALSE;
+
+ if (cntrl_flags & UPL_SET_LITE) {
+ upl->map_object = object;
+ } else {
+ upl->map_object = vm_object_allocate(size);
+ /*
+ * No neeed to lock the new object: nobody else knows
+ * about it yet, so it's all ours so far.
+ */
+ upl->map_object->shadow = object;
+ upl->map_object->pageout = TRUE;
+ upl->map_object->can_persist = FALSE;
+ upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
+ upl->map_object->vo_shadow_offset = offset;
+ upl->map_object->wimg_bits = object->wimg_bits;
+
+ VM_PAGE_GRAB_FICTITIOUS(alias_page);
+
+ upl->flags |= UPL_SHADOWED;
+ }
+ if (cntrl_flags & UPL_FOR_PAGEOUT)
+ upl->flags |= UPL_PAGEOUT;
+
+ vm_object_lock(object);
+ vm_object_activity_begin(object);
+
+ grab_options = 0;
+#if CONFIG_SECLUDED_MEMORY
+ if (object->can_grab_secluded) {
+ grab_options |= VM_PAGE_GRAB_SECLUDED;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ /*
+ * we can lock in the paging_offset once paging_in_progress is set
+ */
+ upl->size = size;
+ upl->offset = offset + object->paging_offset;
+
+#if CONFIG_IOSCHED || UPL_DEBUG
+ if (object->io_tracking || upl_debug_enabled) {
+ vm_object_activity_begin(object);
+ queue_enter(&object->uplq, upl, upl_t, uplq);
+ }
+#endif
+ if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != VM_OBJECT_NULL) {
+ /*
+ * Honor copy-on-write obligations
+ *
+ * The caller is gathering these pages and
+ * might modify their contents. We need to
+ * make sure that the copy object has its own
+ * private copies of these pages before we let
+ * the caller modify them.
+ */
+ vm_object_update(object,
+ offset,
+ size,
+ NULL,
+ NULL,
+ FALSE, /* should_return */
+ MEMORY_OBJECT_COPY_SYNC,
+ VM_PROT_NO_CHANGE);
+#if DEVELOPMENT || DEBUG
+ upl_cow++;
+ upl_cow_pages += size >> PAGE_SHIFT;
+#endif
+ }
+ /*
+ * remember which copy object we synchronized with
+ */
+ last_copy_object = object->copy;
+ entry = 0;
+
+ xfer_size = size;
+ dst_offset = offset;
+ size_in_pages = size / PAGE_SIZE;
+
+ dwp = &dw_array[0];
+ dw_count = 0;
+ dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
+
+ if (vm_page_free_count > (vm_page_free_target + size_in_pages) ||
+ object->resident_page_count < ((MAX_UPL_SIZE_BYTES * 2) >> PAGE_SHIFT))
+ object->scan_collisions = 0;
+
+ if ((cntrl_flags & UPL_WILL_MODIFY) && must_throttle_writes() == TRUE) {
+ boolean_t isSSD = FALSE;
+
+#if CONFIG_EMBEDDED
+ isSSD = TRUE;
+#else
+ vnode_pager_get_isSSD(object->pager, &isSSD);
+#endif
+ vm_object_unlock(object);
+
+ OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
+
+ if (isSSD == TRUE)
+ delay(1000 * size_in_pages);
+ else
+ delay(5000 * size_in_pages);
+ OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
+
+ vm_object_lock(object);
+ }
+
+ while (xfer_size) {
+
+ dwp->dw_mask = 0;
+
+ if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) {
+ vm_object_unlock(object);
+ VM_PAGE_GRAB_FICTITIOUS(alias_page);
+ vm_object_lock(object);
+ }
+ if (cntrl_flags & UPL_COPYOUT_FROM) {
+ upl->flags |= UPL_PAGE_SYNC_DONE;
+
+ if ( ((dst_page = vm_page_lookup(object, dst_offset)) == VM_PAGE_NULL) ||
+ dst_page->fictitious ||
+ dst_page->absent ||
+ dst_page->error ||
+ dst_page->cleaning ||
+ (VM_PAGE_WIRED(dst_page))) {
+
+ if (user_page_list)
+ user_page_list[entry].phys_addr = 0;
+
+ goto try_next_page;
+ }
+ phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
+
+ /*
+ * grab this up front...
+ * a high percentange of the time we're going to
+ * need the hardware modification state a bit later
+ * anyway... so we can eliminate an extra call into
+ * the pmap layer by grabbing it here and recording it
+ */
+ if (dst_page->pmapped)
+ refmod_state = pmap_get_refmod(phys_page);
+ else
+ refmod_state = 0;
+
+ if ( (refmod_state & VM_MEM_REFERENCED) && VM_PAGE_INACTIVE(dst_page)) {
+ /*
+ * page is on inactive list and referenced...
+ * reactivate it now... this gets it out of the
+ * way of vm_pageout_scan which would have to
+ * reactivate it upon tripping over it
+ */
+ dwp->dw_mask |= DW_vm_page_activate;
+ }
+ if (cntrl_flags & UPL_RET_ONLY_DIRTY) {
+ /*
+ * we're only asking for DIRTY pages to be returned
+ */
+ if (dst_page->laundry || !(cntrl_flags & UPL_FOR_PAGEOUT)) {
+ /*
+ * if we were the page stolen by vm_pageout_scan to be
+ * cleaned (as opposed to a buddy being clustered in
+ * or this request is not being driven by a PAGEOUT cluster
+ * then we only need to check for the page being dirty or
+ * precious to decide whether to return it
+ */
+ if (dst_page->dirty || dst_page->precious || (refmod_state & VM_MEM_MODIFIED))
+ goto check_busy;
+ goto dont_return;
+ }
+ /*
+ * this is a request for a PAGEOUT cluster and this page
+ * is merely along for the ride as a 'buddy'... not only
+ * does it have to be dirty to be returned, but it also
+ * can't have been referenced recently...
+ */
+ if ( (hibernate_cleaning_in_progress == TRUE ||
+ (!((refmod_state & VM_MEM_REFERENCED) || dst_page->reference) ||
+ (dst_page->vm_page_q_state == VM_PAGE_ON_THROTTLED_Q))) &&
+ ((refmod_state & VM_MEM_MODIFIED) || dst_page->dirty || dst_page->precious) ) {
+ goto check_busy;
+ }
+dont_return:
+ /*
+ * if we reach here, we're not to return
+ * the page... go on to the next one
+ */
+ if (dst_page->laundry == TRUE) {
+ /*
+ * if we get here, the page is not 'cleaning' (filtered out above).
+ * since it has been referenced, remove it from the laundry
+ * so we don't pay the cost of an I/O to clean a page
+ * we're just going to take back
+ */
+ vm_page_lockspin_queues();
+
+ vm_pageout_steal_laundry(dst_page, TRUE);
+ vm_page_activate(dst_page);
+
+ vm_page_unlock_queues();
+ }
+ if (user_page_list)
+ user_page_list[entry].phys_addr = 0;
+
+ goto try_next_page;
+ }
+check_busy:
+ if (dst_page->busy) {
+ if (cntrl_flags & UPL_NOBLOCK) {
+ if (user_page_list)
+ user_page_list[entry].phys_addr = 0;
+ dwp->dw_mask = 0;
+
+ goto try_next_page;
+ }
+ /*
+ * someone else is playing with the
+ * page. We will have to wait.
+ */
+ PAGE_SLEEP(object, dst_page, THREAD_UNINT);
+
+ continue;
+ }
+ if (dst_page->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q) {
+
+ vm_page_lockspin_queues();
+
+ if (dst_page->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q) {
+ /*
+ * we've buddied up a page for a clustered pageout
+ * that has already been moved to the pageout
+ * queue by pageout_scan... we need to remove
+ * it from the queue and drop the laundry count
+ * on that queue
+ */
+ vm_pageout_throttle_up(dst_page);
+ }
+ vm_page_unlock_queues();
+ }
+#if MACH_CLUSTER_STATS
+ /*
+ * pageout statistics gathering. count
+ * all the pages we will page out that
+ * were not counted in the initial
+ * vm_pageout_scan work
+ */
+ if (dst_page->pageout)
+ encountered_lrp = TRUE;
+ if ((dst_page->dirty || (object->internal && dst_page->precious))) {
+ if (encountered_lrp)
+ CLUSTER_STAT(pages_at_higher_offsets++;)
+ else
+ CLUSTER_STAT(pages_at_lower_offsets++;)
+ }
+#endif
+ hw_dirty = refmod_state & VM_MEM_MODIFIED;
+ dirty = hw_dirty ? TRUE : dst_page->dirty;
+
+ if (phys_page > upl->highest_page)
+ upl->highest_page = phys_page;
+
+ assert (!pmap_is_noencrypt(phys_page));
+
+ if (cntrl_flags & UPL_SET_LITE) {
+ unsigned int pg_num;
+
+ pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE);
+ assert(pg_num == (dst_offset-offset)/PAGE_SIZE);
+ lite_list[pg_num>>5] |= 1 << (pg_num & 31);
+
+ if (hw_dirty)
+ pmap_clear_modify(phys_page);
+
+ /*
+ * Mark original page as cleaning
+ * in place.
+ */
+ dst_page->cleaning = TRUE;
+ dst_page->precious = FALSE;
+ } else {
+ /*
+ * use pageclean setup, it is more
+ * convenient even for the pageout
+ * cases here
+ */
+ vm_object_lock(upl->map_object);
+ vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
+ vm_object_unlock(upl->map_object);
+
+ alias_page->absent = FALSE;
+ alias_page = NULL;
+ }
+ if (dirty) {
+ SET_PAGE_DIRTY(dst_page, FALSE);
+ } else {
+ dst_page->dirty = FALSE;
+ }
+
+ if (!dirty)
+ dst_page->precious = TRUE;
+
+ if ( !(cntrl_flags & UPL_CLEAN_IN_PLACE) ) {
+ if ( !VM_PAGE_WIRED(dst_page))
+ dst_page->free_when_done = TRUE;
+ }
+ } else {
+ if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != last_copy_object) {
+ /*
+ * Honor copy-on-write obligations
+ *
+ * The copy object has changed since we
+ * last synchronized for copy-on-write.
+ * Another copy object might have been
+ * inserted while we released the object's
+ * lock. Since someone could have seen the
+ * original contents of the remaining pages
+ * through that new object, we have to
+ * synchronize with it again for the remaining
+ * pages only. The previous pages are "busy"
+ * so they can not be seen through the new
+ * mapping. The new mapping will see our
+ * upcoming changes for those previous pages,
+ * but that's OK since they couldn't see what
+ * was there before. It's just a race anyway
+ * and there's no guarantee of consistency or
+ * atomicity. We just don't want new mappings
+ * to see both the *before* and *after* pages.
+ */
+ if (object->copy != VM_OBJECT_NULL) {
+ vm_object_update(
+ object,
+ dst_offset,/* current offset */
+ xfer_size, /* remaining size */
+ NULL,
+ NULL,
+ FALSE, /* should_return */
+ MEMORY_OBJECT_COPY_SYNC,
+ VM_PROT_NO_CHANGE);
+
+#if DEVELOPMENT || DEBUG
+ upl_cow_again++;
+ upl_cow_again_pages += xfer_size >> PAGE_SHIFT;
+#endif
+ }
+ /*
+ * remember the copy object we synced with
+ */
+ last_copy_object = object->copy;
+ }
+ dst_page = vm_page_lookup(object, dst_offset);
+
+ if (dst_page != VM_PAGE_NULL) {
+
+ if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) {
+ /*
+ * skip over pages already present in the cache
+ */
+ if (user_page_list)
+ user_page_list[entry].phys_addr = 0;
+
+ goto try_next_page;
+ }
+ if (dst_page->fictitious) {
+ panic("need corner case for fictitious page");
+ }
+
+ if (dst_page->busy || dst_page->cleaning) {
+ /*
+ * someone else is playing with the
+ * page. We will have to wait.
+ */
+ PAGE_SLEEP(object, dst_page, THREAD_UNINT);
+
+ continue;
+ }
+ if (dst_page->laundry)
+ vm_pageout_steal_laundry(dst_page, FALSE);
+ } else {
+ if (object->private) {
+ /*
+ * This is a nasty wrinkle for users
+ * of upl who encounter device or
+ * private memory however, it is
+ * unavoidable, only a fault can
+ * resolve the actual backing
+ * physical page by asking the
+ * backing device.
+ */
+ if (user_page_list)
+ user_page_list[entry].phys_addr = 0;
+
+ goto try_next_page;
+ }
+ if (object->scan_collisions) {
+ /*
+ * the pageout_scan thread is trying to steal
+ * pages from this object, but has run into our
+ * lock... grab 2 pages from the head of the object...
+ * the first is freed on behalf of pageout_scan, the
+ * 2nd is for our own use... we use vm_object_page_grab
+ * in both cases to avoid taking pages from the free
+ * list since we are under memory pressure and our
+ * lock on this object is getting in the way of
+ * relieving it
+ */
+ dst_page = vm_object_page_grab(object);
+
+ if (dst_page != VM_PAGE_NULL)
+ vm_page_release(dst_page,
+ FALSE);
+
+ dst_page = vm_object_page_grab(object);
+ }
+ if (dst_page == VM_PAGE_NULL) {
+ /*
+ * need to allocate a page
+ */
+ dst_page = vm_page_grab_options(grab_options);
+ }
+ if (dst_page == VM_PAGE_NULL) {
+ if ( (cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) {
+ /*
+ * we don't want to stall waiting for pages to come onto the free list
+ * while we're already holding absent pages in this UPL
+ * the caller will deal with the empty slots
+ */
+ if (user_page_list)
+ user_page_list[entry].phys_addr = 0;
+
+ goto try_next_page;
+ }
+ /*
+ * no pages available... wait
+ * then try again for the same
+ * offset...
+ */
+ vm_object_unlock(object);
+
+ OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
+
+ VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
+
+ VM_PAGE_WAIT();
+ OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
+
+ VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
+
+ vm_object_lock(object);
+
+ continue;
+ }
+ vm_page_insert(dst_page, object, dst_offset);
+
+ dst_page->absent = TRUE;
+ dst_page->busy = FALSE;
+
+ if (cntrl_flags & UPL_RET_ONLY_ABSENT) {
+ /*
+ * if UPL_RET_ONLY_ABSENT was specified,
+ * than we're definitely setting up a
+ * upl for a clustered read/pagein
+ * operation... mark the pages as clustered
+ * so upl_commit_range can put them on the
+ * speculative list
+ */
+ dst_page->clustered = TRUE;
+
+ if ( !(cntrl_flags & UPL_FILE_IO))
+ VM_STAT_INCR(pageins);
+ }
+ }
+ phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
+
+ dst_page->overwriting = TRUE;
+
+ if (dst_page->pmapped) {
+ if ( !(cntrl_flags & UPL_FILE_IO))
+ /*
+ * eliminate all mappings from the
+ * original object and its prodigy
+ */
+ refmod_state = pmap_disconnect(phys_page);
+ else
+ refmod_state = pmap_get_refmod(phys_page);
+ } else
+ refmod_state = 0;
+
+ hw_dirty = refmod_state & VM_MEM_MODIFIED;
+ dirty = hw_dirty ? TRUE : dst_page->dirty;
+
+ if (cntrl_flags & UPL_SET_LITE) {
+ unsigned int pg_num;
+
+ pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE);
+ assert(pg_num == (dst_offset-offset)/PAGE_SIZE);
+ lite_list[pg_num>>5] |= 1 << (pg_num & 31);
+
+ if (hw_dirty)
+ pmap_clear_modify(phys_page);
+
+ /*
+ * Mark original page as cleaning
+ * in place.
+ */
+ dst_page->cleaning = TRUE;
+ dst_page->precious = FALSE;
+ } else {
+ /*
+ * use pageclean setup, it is more
+ * convenient even for the pageout
+ * cases here
+ */
+ vm_object_lock(upl->map_object);
+ vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
+ vm_object_unlock(upl->map_object);
+
+ alias_page->absent = FALSE;
+ alias_page = NULL;
+ }
+
+ if (cntrl_flags & UPL_REQUEST_SET_DIRTY) {
+ upl->flags &= ~UPL_CLEAR_DIRTY;
+ upl->flags |= UPL_SET_DIRTY;
+ dirty = TRUE;
+ upl->flags |= UPL_SET_DIRTY;
+ } else if (cntrl_flags & UPL_CLEAN_IN_PLACE) {
+ /*
+ * clean in place for read implies
+ * that a write will be done on all
+ * the pages that are dirty before
+ * a upl commit is done. The caller
+ * is obligated to preserve the
+ * contents of all pages marked dirty
+ */
+ upl->flags |= UPL_CLEAR_DIRTY;
+ }
+ dst_page->dirty = dirty;
+
+ if (!dirty)
+ dst_page->precious = TRUE;
+
+ if ( !VM_PAGE_WIRED(dst_page)) {
+ /*
+ * deny access to the target page while
+ * it is being worked on
+ */
+ dst_page->busy = TRUE;
+ } else
+ dwp->dw_mask |= DW_vm_page_wire;
+
+ /*
+ * We might be about to satisfy a fault which has been
+ * requested. So no need for the "restart" bit.
+ */
+ dst_page->restart = FALSE;
+ if (!dst_page->absent && !(cntrl_flags & UPL_WILL_MODIFY)) {
+ /*
+ * expect the page to be used
+ */
+ dwp->dw_mask |= DW_set_reference;
+ }
+ if (cntrl_flags & UPL_PRECIOUS) {
+ if (object->internal) {
+ SET_PAGE_DIRTY(dst_page, FALSE);
+ dst_page->precious = FALSE;
+ } else {
+ dst_page->precious = TRUE;
+ }
+ } else {
+ dst_page->precious = FALSE;
+ }
+ }
+ if (dst_page->busy)
+ upl->flags |= UPL_HAS_BUSY;
+
+ if (phys_page > upl->highest_page)
+ upl->highest_page = phys_page;
+ assert (!pmap_is_noencrypt(phys_page));
+ if (user_page_list) {
+ user_page_list[entry].phys_addr = phys_page;
+ user_page_list[entry].free_when_done = dst_page->free_when_done;
+ user_page_list[entry].absent = dst_page->absent;
+ user_page_list[entry].dirty = dst_page->dirty;
+ user_page_list[entry].precious = dst_page->precious;
+ user_page_list[entry].device = FALSE;
+ user_page_list[entry].needed = FALSE;
+ if (dst_page->clustered == TRUE)
+ user_page_list[entry].speculative = (dst_page->vm_page_q_state == VM_PAGE_ON_SPECULATIVE_Q) ? TRUE : FALSE;
+ else
+ user_page_list[entry].speculative = FALSE;
+ user_page_list[entry].cs_validated = dst_page->cs_validated;
+ user_page_list[entry].cs_tainted = dst_page->cs_tainted;
+ user_page_list[entry].cs_nx = dst_page->cs_nx;
+ user_page_list[entry].mark = FALSE;
+ }
+ /*
+ * if UPL_RET_ONLY_ABSENT is set, then
+ * we are working with a fresh page and we've
+ * just set the clustered flag on it to
+ * indicate that it was drug in as part of a
+ * speculative cluster... so leave it alone
+ */
+ if ( !(cntrl_flags & UPL_RET_ONLY_ABSENT)) {
+ /*
+ * someone is explicitly grabbing this page...
+ * update clustered and speculative state
+ *
+ */
+ if (dst_page->clustered)
+ VM_PAGE_CONSUME_CLUSTERED(dst_page);
+ }
+try_next_page:
+ if (dwp->dw_mask) {
+ if (dwp->dw_mask & DW_vm_page_activate)
+ VM_STAT_INCR(reactivations);
+
+ VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count);
+
+ if (dw_count >= dw_limit) {
+ vm_page_do_delayed_work(object, tag, &dw_array[0], dw_count);
+
+ dwp = &dw_array[0];
+ dw_count = 0;
+ }
+ }
+ entry++;
+ dst_offset += PAGE_SIZE_64;
+ xfer_size -= PAGE_SIZE;
+ }
+ if (dw_count)
+ vm_page_do_delayed_work(object, tag, &dw_array[0], dw_count);
+
+ if (alias_page != NULL) {
+ VM_PAGE_FREE(alias_page);
+ }
+
+ if (page_list_count != NULL) {
+ if (upl->flags & UPL_INTERNAL)
+ *page_list_count = 0;
+ else if (*page_list_count > entry)
+ *page_list_count = entry;
+ }
+#if UPL_DEBUG
+ upl->upl_state = 1;
+#endif
+ vm_object_unlock(object);
+
+ return KERN_SUCCESS;
+}
+
+/*
+ * Routine: vm_object_super_upl_request
+ * Purpose:
+ * Cause the population of a portion of a vm_object
+ * in much the same way as memory_object_upl_request.
+ * Depending on the nature of the request, the pages
+ * returned may be contain valid data or be uninitialized.
+ * However, the region may be expanded up to the super
+ * cluster size provided.
+ */
+
+__private_extern__ kern_return_t
+vm_object_super_upl_request(
+ vm_object_t object,
+ vm_object_offset_t offset,
+ upl_size_t size,
+ upl_size_t super_cluster,
+ upl_t *upl,
+ upl_page_info_t *user_page_list,
+ unsigned int *page_list_count,
+ upl_control_flags_t cntrl_flags,
+ vm_tag_t tag)
+{
+ if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR)==UPL_VECTOR))
+ return KERN_FAILURE;
+
+ assert(object->paging_in_progress);
+ offset = offset - object->paging_offset;
+
+ if (super_cluster > size) {
+
+ vm_object_offset_t base_offset;
+ upl_size_t super_size;
+ vm_object_size_t super_size_64;
+
+ base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1));
+ super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster<<1 : super_cluster;
+ super_size_64 = ((base_offset + super_size) > object->vo_size) ? (object->vo_size - base_offset) : super_size;
+ super_size = (upl_size_t) super_size_64;
+ assert(super_size == super_size_64);
+
+ if (offset > (base_offset + super_size)) {
+ panic("vm_object_super_upl_request: Missed target pageout"
+ " %#llx,%#llx, %#x, %#x, %#x, %#llx\n",
+ offset, base_offset, super_size, super_cluster,
+ size, object->paging_offset);
+ }
+ /*
+ * apparently there is a case where the vm requests a
+ * page to be written out who's offset is beyond the
+ * object size
+ */
+ if ((offset + size) > (base_offset + super_size)) {
+ super_size_64 = (offset + size) - base_offset;
+ super_size = (upl_size_t) super_size_64;
+ assert(super_size == super_size_64);
+ }
+
+ offset = base_offset;
+ size = super_size;
+ }
+ return vm_object_upl_request(object, offset, size, upl, user_page_list, page_list_count, cntrl_flags, tag);
+}
+
+#if CONFIG_EMBEDDED
+int cs_executable_create_upl = 0;
+extern int proc_selfpid(void);
+extern char *proc_name_address(void *p);
+#endif /* CONFIG_EMBEDDED */
+
+kern_return_t
+vm_map_create_upl(
+ vm_map_t map,
+ vm_map_address_t offset,
+ upl_size_t *upl_size,
+ upl_t *upl,
+ upl_page_info_array_t page_list,
+ unsigned int *count,
+ upl_control_flags_t *flags,
+ vm_tag_t tag)
+{
+ vm_map_entry_t entry;
+ upl_control_flags_t caller_flags;
+ int force_data_sync;
+ int sync_cow_data;
+ vm_object_t local_object;
+ vm_map_offset_t local_offset;
+ vm_map_offset_t local_start;
+ kern_return_t ret;
+
+ assert(page_aligned(offset));
+
+ caller_flags = *flags;
+
+ if (caller_flags & ~UPL_VALID_FLAGS) {
+ /*
+ * For forward compatibility's sake,
+ * reject any unknown flag.
+ */
+ return KERN_INVALID_VALUE;
+ }
+ force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC);
+ sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM);
+
+ if (upl == NULL)
+ return KERN_INVALID_ARGUMENT;
+
+REDISCOVER_ENTRY:
+ vm_map_lock_read(map);
+
+ if (!vm_map_lookup_entry(map, offset, &entry)) {
+ vm_map_unlock_read(map);
+ return KERN_FAILURE;
+ }
+
+ if ((entry->vme_end - offset) < *upl_size) {
+ *upl_size = (upl_size_t) (entry->vme_end - offset);
+ assert(*upl_size == entry->vme_end - offset);
+ }
+
+ if (caller_flags & UPL_QUERY_OBJECT_TYPE) {
+ *flags = 0;
+
+ if (!entry->is_sub_map &&
+ VME_OBJECT(entry) != VM_OBJECT_NULL) {
+ if (VME_OBJECT(entry)->private)
+ *flags = UPL_DEV_MEMORY;
+
+ if (VME_OBJECT(entry)->phys_contiguous)
+ *flags |= UPL_PHYS_CONTIG;
+ }
+ vm_map_unlock_read(map);
+ return KERN_SUCCESS;
+ }
+
+ if (VME_OBJECT(entry) == VM_OBJECT_NULL ||
+ !VME_OBJECT(entry)->phys_contiguous) {
+ if (*upl_size > MAX_UPL_SIZE_BYTES)
+ *upl_size = MAX_UPL_SIZE_BYTES;
+ }
+
+ /*
+ * Create an object if necessary.
+ */
+ if (VME_OBJECT(entry) == VM_OBJECT_NULL) {
+
+ if (vm_map_lock_read_to_write(map))
+ goto REDISCOVER_ENTRY;
+
+ VME_OBJECT_SET(entry,
+ vm_object_allocate((vm_size_t)
+ (entry->vme_end -
+ entry->vme_start)));
+ VME_OFFSET_SET(entry, 0);
+ assert(entry->use_pmap);
+
+ vm_map_lock_write_to_read(map);
+ }
+
+ if (!(caller_flags & UPL_COPYOUT_FROM) &&
+ !(entry->protection & VM_PROT_WRITE)) {
+ vm_map_unlock_read(map);
+ return KERN_PROTECTION_FAILURE;
+ }
+
+#if CONFIG_EMBEDDED
+ if (map->pmap != kernel_pmap &&
+ (caller_flags & UPL_COPYOUT_FROM) &&
+ (entry->protection & VM_PROT_EXECUTE) &&
+ !(entry->protection & VM_PROT_WRITE)) {
+ vm_offset_t kaddr;
+ vm_size_t ksize;
+
+ /*
+ * We're about to create a read-only UPL backed by
+ * memory from an executable mapping.
+ * Wiring the pages would result in the pages being copied
+ * (due to the "MAP_PRIVATE" mapping) and no longer
+ * code-signed, so no longer eligible for execution.
+ * Instead, let's copy the data into a kernel buffer and
+ * create the UPL from this kernel buffer.
+ * The kernel buffer is then freed, leaving the UPL holding
+ * the last reference on the VM object, so the memory will
+ * be released when the UPL is committed.
+ */
+
+ vm_map_unlock_read(map);
+ /* allocate kernel buffer */
+ ksize = round_page(*upl_size);
+ kaddr = 0;
+ ret = kmem_alloc_pageable(kernel_map,
+ &kaddr,
+ ksize,
+ tag);
+ if (ret == KERN_SUCCESS) {
+ /* copyin the user data */
+ assert(page_aligned(offset));
+ ret = copyinmap(map, offset, (void *)kaddr, *upl_size);
+ }
+ if (ret == KERN_SUCCESS) {
+ if (ksize > *upl_size) {
+ /* zero out the extra space in kernel buffer */
+ memset((void *)(kaddr + *upl_size),
+ 0,
+ ksize - *upl_size);
+ }
+ /* create the UPL from the kernel buffer */
+ ret = vm_map_create_upl(kernel_map, kaddr, upl_size,
+ upl, page_list, count, flags, tag);
+ }
+ if (kaddr != 0) {
+ /* free the kernel buffer */
+ kmem_free(kernel_map, kaddr, ksize);
+ kaddr = 0;
+ ksize = 0;
+ }
+#if DEVELOPMENT || DEBUG
+ DTRACE_VM4(create_upl_from_executable,
+ vm_map_t, map,
+ vm_map_address_t, offset,
+ upl_size_t, *upl_size,
+ kern_return_t, ret);
+#endif /* DEVELOPMENT || DEBUG */
+ return ret;
+ }
+#endif /* CONFIG_EMBEDDED */
+
+ local_object = VME_OBJECT(entry);
+ assert(local_object != VM_OBJECT_NULL);
+
+ if (!entry->is_sub_map &&
+ !entry->needs_copy &&
+ *upl_size != 0 &&
+ local_object->vo_size > *upl_size && /* partial UPL */
+ entry->wired_count == 0 && /* No COW for entries that are wired */
+ (map->pmap != kernel_pmap) && /* alias checks */
+ (vm_map_entry_should_cow_for_true_share(entry) /* case 1 */
+ ||
+ (/* case 2 */
+ local_object->internal &&
+ (local_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) &&
+ local_object->ref_count > 1))) {
+ vm_prot_t prot;
+
+ /*
+ * Case 1:
+ * Set up the targeted range for copy-on-write to avoid
+ * applying true_share/copy_delay to the entire object.
+ *
+ * Case 2:
+ * This map entry covers only part of an internal
+ * object. There could be other map entries covering
+ * other areas of this object and some of these map
+ * entries could be marked as "needs_copy", which
+ * assumes that the object is COPY_SYMMETRIC.
+ * To avoid marking this object as COPY_DELAY and
+ * "true_share", let's shadow it and mark the new
+ * (smaller) object as "true_share" and COPY_DELAY.
+ */
+
+ if (vm_map_lock_read_to_write(map)) {
+ goto REDISCOVER_ENTRY;
+ }
+ vm_map_lock_assert_exclusive(map);
+ assert(VME_OBJECT(entry) == local_object);
+
+ vm_map_clip_start(map,
+ entry,
+ vm_map_trunc_page(offset,
+ VM_MAP_PAGE_MASK(map)));
+ vm_map_clip_end(map,
+ entry,
+ vm_map_round_page(offset + *upl_size,
+ VM_MAP_PAGE_MASK(map)));
+ if ((entry->vme_end - offset) < *upl_size) {
+ *upl_size = (upl_size_t) (entry->vme_end - offset);
+ assert(*upl_size == entry->vme_end - offset);
+ }
+
+ prot = entry->protection & ~VM_PROT_WRITE;
+ if (override_nx(map, VME_ALIAS(entry)) && prot)
+ prot |= VM_PROT_EXECUTE;
+ vm_object_pmap_protect(local_object,
+ VME_OFFSET(entry),
+ entry->vme_end - entry->vme_start,
+ ((entry->is_shared ||
+ map->mapped_in_other_pmaps)
+ ? PMAP_NULL
+ : map->pmap),
+ entry->vme_start,
+ prot);
+
+ assert(entry->wired_count == 0);
+
+ /*
+ * Lock the VM object and re-check its status: if it's mapped
+ * in another address space, we could still be racing with
+ * another thread holding that other VM map exclusively.
+ */
+ vm_object_lock(local_object);
+ if (local_object->true_share) {
+ /* object is already in proper state: no COW needed */
+ assert(local_object->copy_strategy !=
+ MEMORY_OBJECT_COPY_SYMMETRIC);
+ } else {
+ /* not true_share: ask for copy-on-write below */
+ assert(local_object->copy_strategy ==
+ MEMORY_OBJECT_COPY_SYMMETRIC);
+ entry->needs_copy = TRUE;
+ }
+ vm_object_unlock(local_object);
+
+ vm_map_lock_write_to_read(map);
+ }
+
+ if (entry->needs_copy) {
+ /*
+ * Honor copy-on-write for COPY_SYMMETRIC
+ * strategy.
+ */
+ vm_map_t local_map;
+ vm_object_t object;
+ vm_object_offset_t new_offset;
+ vm_prot_t prot;
+ boolean_t wired;
+ vm_map_version_t version;
+ vm_map_t real_map;
+ vm_prot_t fault_type;
+
+ local_map = map;
+
+ if (caller_flags & UPL_COPYOUT_FROM) {
+ fault_type = VM_PROT_READ | VM_PROT_COPY;
+ vm_counters.create_upl_extra_cow++;
+ vm_counters.create_upl_extra_cow_pages +=
+ (entry->vme_end - entry->vme_start) / PAGE_SIZE;
+ } else {
+ fault_type = VM_PROT_WRITE;
+ }
+ if (vm_map_lookup_locked(&local_map,
+ offset, fault_type,
+ OBJECT_LOCK_EXCLUSIVE,
+ &version, &object,
+ &new_offset, &prot, &wired,
+ NULL,
+ &real_map) != KERN_SUCCESS) {
+ if (fault_type == VM_PROT_WRITE) {
+ vm_counters.create_upl_lookup_failure_write++;
+ } else {
+ vm_counters.create_upl_lookup_failure_copy++;
+ }
+ vm_map_unlock_read(local_map);
+ return KERN_FAILURE;
+ }
+ if (real_map != map)
+ vm_map_unlock(real_map);
+ vm_map_unlock_read(local_map);
+
+ vm_object_unlock(object);
+
+ goto REDISCOVER_ENTRY;
+ }
+
+ if (entry->is_sub_map) {
+ vm_map_t submap;
+
+ submap = VME_SUBMAP(entry);
+ local_start = entry->vme_start;
+ local_offset = VME_OFFSET(entry);
+
+ vm_map_reference(submap);
+ vm_map_unlock_read(map);
+
+ ret = vm_map_create_upl(submap,
+ local_offset + (offset - local_start),
+ upl_size, upl, page_list, count, flags, tag);
+ vm_map_deallocate(submap);
+
+ return ret;
+ }
+
+ if (sync_cow_data &&
+ (VME_OBJECT(entry)->shadow ||
+ VME_OBJECT(entry)->copy)) {
+ local_object = VME_OBJECT(entry);
+ local_start = entry->vme_start;
+ local_offset = VME_OFFSET(entry);
+
+ vm_object_reference(local_object);
+ vm_map_unlock_read(map);
+
+ if (local_object->shadow && local_object->copy) {
+ vm_object_lock_request(local_object->shadow,
+ ((vm_object_offset_t)
+ ((offset - local_start) +
+ local_offset) +
+ local_object->vo_shadow_offset),
+ *upl_size, FALSE,
+ MEMORY_OBJECT_DATA_SYNC,
+ VM_PROT_NO_CHANGE);
+ }
+ sync_cow_data = FALSE;
+ vm_object_deallocate(local_object);
+
+ goto REDISCOVER_ENTRY;
+ }
+ if (force_data_sync) {
+ local_object = VME_OBJECT(entry);
+ local_start = entry->vme_start;
+ local_offset = VME_OFFSET(entry);
+
+ vm_object_reference(local_object);
+ vm_map_unlock_read(map);
+
+ vm_object_lock_request(local_object,
+ ((vm_object_offset_t)
+ ((offset - local_start) +
+ local_offset)),
+ (vm_object_size_t)*upl_size,
+ FALSE,
+ MEMORY_OBJECT_DATA_SYNC,
+ VM_PROT_NO_CHANGE);
+
+ force_data_sync = FALSE;
+ vm_object_deallocate(local_object);
+
+ goto REDISCOVER_ENTRY;
+ }
+ if (VME_OBJECT(entry)->private)
+ *flags = UPL_DEV_MEMORY;
+ else
+ *flags = 0;
+
+ if (VME_OBJECT(entry)->phys_contiguous)
+ *flags |= UPL_PHYS_CONTIG;
+
+ local_object = VME_OBJECT(entry);
+ local_offset = VME_OFFSET(entry);
+ local_start = entry->vme_start;
+
+#if CONFIG_EMBEDDED
+ /*
+ * Wiring will copy the pages to the shadow object.
+ * The shadow object will not be code-signed so
+ * attempting to execute code from these copied pages
+ * would trigger a code-signing violation.
+ */
+ if (entry->protection & VM_PROT_EXECUTE) {
+#if MACH_ASSERT
+ printf("pid %d[%s] create_upl out of executable range from "
+ "0x%llx to 0x%llx: side effects may include "
+ "code-signing violations later on\n",
+ proc_selfpid(),
+ (current_task()->bsd_info
+ ? proc_name_address(current_task()->bsd_info)
+ : "?"),
+ (uint64_t) entry->vme_start,
+ (uint64_t) entry->vme_end);
+#endif /* MACH_ASSERT */
+ DTRACE_VM2(cs_executable_create_upl,
+ uint64_t, (uint64_t)entry->vme_start,
+ uint64_t, (uint64_t)entry->vme_end);
+ cs_executable_create_upl++;
+ }
+#endif /* CONFIG_EMBEDDED */
+
+ vm_object_lock(local_object);
+
+ /*
+ * Ensure that this object is "true_share" and "copy_delay" now,
+ * while we're still holding the VM map lock. After we unlock the map,
+ * anything could happen to that mapping, including some copy-on-write
+ * activity. We need to make sure that the IOPL will point at the
+ * same memory as the mapping.
+ */
+ if (local_object->true_share) {
+ assert(local_object->copy_strategy !=
+ MEMORY_OBJECT_COPY_SYMMETRIC);
+ } else if (local_object != kernel_object &&
+ local_object != compressor_object &&
+ !local_object->phys_contiguous) {
+#if VM_OBJECT_TRACKING_OP_TRUESHARE
+ if (!local_object->true_share &&
+ vm_object_tracking_inited) {
+ void *bt[VM_OBJECT_TRACKING_BTDEPTH];
+ int num = 0;
+ num = OSBacktrace(bt,
+ VM_OBJECT_TRACKING_BTDEPTH);
+ btlog_add_entry(vm_object_tracking_btlog,
+ local_object,
+ VM_OBJECT_TRACKING_OP_TRUESHARE,
+ bt,
+ num);
+ }
+#endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
+ local_object->true_share = TRUE;
+ if (local_object->copy_strategy ==
+ MEMORY_OBJECT_COPY_SYMMETRIC) {
+ local_object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
+ }
+ }
+
+ vm_object_reference_locked(local_object);
+ vm_object_unlock(local_object);
+
+ vm_map_unlock_read(map);
+
+ ret = vm_object_iopl_request(local_object,
+ ((vm_object_offset_t)
+ ((offset - local_start) + local_offset)),
+ *upl_size,
+ upl,
+ page_list,
+ count,
+ caller_flags,
+ tag);
+ vm_object_deallocate(local_object);
+
+ return ret;
+}
+
+/*
+ * Internal routine to enter a UPL into a VM map.
+ *
+ * JMM - This should just be doable through the standard
+ * vm_map_enter() API.
+ */
+kern_return_t
+vm_map_enter_upl(
+ vm_map_t map,
+ upl_t upl,
+ vm_map_offset_t *dst_addr)
+{
+ vm_map_size_t size;
+ vm_object_offset_t offset;
+ vm_map_offset_t addr;
+ vm_page_t m;
+ kern_return_t kr;
+ int isVectorUPL = 0, curr_upl=0;
+ upl_t vector_upl = NULL;
+ vm_offset_t vector_upl_dst_addr = 0;
+ vm_map_t vector_upl_submap = NULL;
+ upl_offset_t subupl_offset = 0;
+ upl_size_t subupl_size = 0;
+
+ if (upl == UPL_NULL)
+ return KERN_INVALID_ARGUMENT;
+
+ if((isVectorUPL = vector_upl_is_valid(upl))) {
+ int mapped=0,valid_upls=0;
+ vector_upl = upl;
+
+ upl_lock(vector_upl);
+ for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
+ upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
+ if(upl == NULL)
+ continue;
+ valid_upls++;
+ if (UPL_PAGE_LIST_MAPPED & upl->flags)
+ mapped++;
+ }
+
+ if(mapped) {
+ if(mapped != valid_upls)
+ panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped, valid_upls);
+ else {
+ upl_unlock(vector_upl);
+ return KERN_FAILURE;
+ }
+ }
+
+ kr = kmem_suballoc(map, &vector_upl_dst_addr, vector_upl->size, FALSE,
+ VM_FLAGS_ANYWHERE, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_NONE,
+ &vector_upl_submap);
+ if( kr != KERN_SUCCESS )
+ panic("Vector UPL submap allocation failed\n");
+ map = vector_upl_submap;
+ vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr);
+ curr_upl=0;
+ }
+ else
+ upl_lock(upl);
+
+process_upl_to_enter:
+ if(isVectorUPL){
+ if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
+ *dst_addr = vector_upl_dst_addr;
+ upl_unlock(vector_upl);
+ return KERN_SUCCESS;
+ }
+ upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
+ if(upl == NULL)
+ goto process_upl_to_enter;
+
+ vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size);
+ *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset);
+ } else {
+ /*
+ * check to see if already mapped
+ */
+ if (UPL_PAGE_LIST_MAPPED & upl->flags) {
+ upl_unlock(upl);
+ return KERN_FAILURE;
+ }
+ }
+ if ((!(upl->flags & UPL_SHADOWED)) &&
+ ((upl->flags & UPL_HAS_BUSY) ||
+ !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || (upl->map_object->phys_contiguous)))) {
+
+ vm_object_t object;
+ vm_page_t alias_page;
+ vm_object_offset_t new_offset;
+ unsigned int pg_num;
+ wpl_array_t lite_list;
+
+ if (upl->flags & UPL_INTERNAL) {
+ lite_list = (wpl_array_t)
+ ((((uintptr_t)upl) + sizeof(struct upl))
+ + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t)));
+ } else {
+ lite_list = (wpl_array_t)(((uintptr_t)upl) + sizeof(struct upl));
+ }
+ object = upl->map_object;
+ upl->map_object = vm_object_allocate(upl->size);
+
+ vm_object_lock(upl->map_object);
+
+ upl->map_object->shadow = object;
+ upl->map_object->pageout = TRUE;
+ upl->map_object->can_persist = FALSE;
+ upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
+ upl->map_object->vo_shadow_offset = upl->offset - object->paging_offset;
+ upl->map_object->wimg_bits = object->wimg_bits;
+ offset = upl->map_object->vo_shadow_offset;
+ new_offset = 0;
+ size = upl->size;
+
+ upl->flags |= UPL_SHADOWED;
+
+ while (size) {
+ pg_num = (unsigned int) (new_offset / PAGE_SIZE);
+ assert(pg_num == new_offset / PAGE_SIZE);
+
+ if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) {
+
+ VM_PAGE_GRAB_FICTITIOUS(alias_page);
+
+ vm_object_lock(object);
+
+ m = vm_page_lookup(object, offset);
+ if (m == VM_PAGE_NULL) {
+ panic("vm_upl_map: page missing\n");
+ }
+
+ /*
+ * Convert the fictitious page to a private
+ * shadow of the real page.
+ */
+ assert(alias_page->fictitious);
+ alias_page->fictitious = FALSE;
+ alias_page->private = TRUE;
+ alias_page->free_when_done = TRUE;
+ /*
+ * since m is a page in the upl it must
+ * already be wired or BUSY, so it's
+ * safe to assign the underlying physical
+ * page to the alias
+ */
+ VM_PAGE_SET_PHYS_PAGE(alias_page, VM_PAGE_GET_PHYS_PAGE(m));
+
+ vm_object_unlock(object);
+
+ vm_page_lockspin_queues();
+ vm_page_wire(alias_page, VM_KERN_MEMORY_NONE, TRUE);
+ vm_page_unlock_queues();
+
+ vm_page_insert_wired(alias_page, upl->map_object, new_offset, VM_KERN_MEMORY_NONE);
+
+ assert(!alias_page->wanted);
+ alias_page->busy = FALSE;
+ alias_page->absent = FALSE;
+ }
+ size -= PAGE_SIZE;
+ offset += PAGE_SIZE_64;
+ new_offset += PAGE_SIZE_64;
+ }
+ vm_object_unlock(upl->map_object);
+ }
+ if (upl->flags & UPL_SHADOWED)
+ offset = 0;
+ else
+ offset = upl->offset - upl->map_object->paging_offset;
+
+ size = upl->size;
+
+ vm_object_reference(upl->map_object);
+
+ if(!isVectorUPL) {
+ *dst_addr = 0;
+ /*
+ * NEED A UPL_MAP ALIAS
+ */
+ kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
+ VM_FLAGS_ANYWHERE, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_OSFMK,
+ upl->map_object, offset, FALSE,
+ VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
+
+ if (kr != KERN_SUCCESS) {
+ vm_object_deallocate(upl->map_object);
+ upl_unlock(upl);
+ return(kr);
+ }
+ }
+ else {
+ kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
+ VM_FLAGS_FIXED, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_OSFMK,
+ upl->map_object, offset, FALSE,
+ VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
+ if(kr)
+ panic("vm_map_enter failed for a Vector UPL\n");
+ }
+ vm_object_lock(upl->map_object);
+
+ for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) {
+ m = vm_page_lookup(upl->map_object, offset);
+
+ if (m) {
+ m->pmapped = TRUE;
+
+ /* CODE SIGNING ENFORCEMENT: page has been wpmapped,
+ * but only in kernel space. If this was on a user map,
+ * we'd have to set the wpmapped bit. */
+ /* m->wpmapped = TRUE; */
+ assert(map->pmap == kernel_pmap);
+
+ PMAP_ENTER(map->pmap, addr, m, VM_PROT_DEFAULT, VM_PROT_NONE, 0, TRUE, kr);
+
+ assert(kr == KERN_SUCCESS);
+#if KASAN
+ kasan_notify_address(addr, PAGE_SIZE_64);
+#endif
+ }
+ offset += PAGE_SIZE_64;
+ }
+ vm_object_unlock(upl->map_object);
+
+ /*
+ * hold a reference for the mapping
+ */
+ upl->ref_count++;
+ upl->flags |= UPL_PAGE_LIST_MAPPED;
+ upl->kaddr = (vm_offset_t) *dst_addr;
+ assert(upl->kaddr == *dst_addr);
+
+ if(isVectorUPL)
+ goto process_upl_to_enter;
+
+ upl_unlock(upl);
+
+ return KERN_SUCCESS;
+}
+
+/*
+ * Internal routine to remove a UPL mapping from a VM map.
+ *
+ * XXX - This should just be doable through a standard
+ * vm_map_remove() operation. Otherwise, implicit clean-up
+ * of the target map won't be able to correctly remove
+ * these (and release the reference on the UPL). Having
+ * to do this means we can't map these into user-space
+ * maps yet.
+ */
+kern_return_t
+vm_map_remove_upl(
+ vm_map_t map,
+ upl_t upl)
+{
+ vm_address_t addr;
+ upl_size_t size;
+ int isVectorUPL = 0, curr_upl = 0;
+ upl_t vector_upl = NULL;
+
+ if (upl == UPL_NULL)
+ return KERN_INVALID_ARGUMENT;
+
+ if((isVectorUPL = vector_upl_is_valid(upl))) {
+ int unmapped=0, valid_upls=0;
+ vector_upl = upl;
+ upl_lock(vector_upl);
+ for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
+ upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
+ if(upl == NULL)
+ continue;
+ valid_upls++;
+ if (!(UPL_PAGE_LIST_MAPPED & upl->flags))
+ unmapped++;
+ }
+
+ if(unmapped) {
+ if(unmapped != valid_upls)
+ panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped, valid_upls);
+ else {
+ upl_unlock(vector_upl);
+ return KERN_FAILURE;
+ }
+ }
+ curr_upl=0;
+ }
+ else
+ upl_lock(upl);
+
+process_upl_to_remove:
+ if(isVectorUPL) {
+ if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
+ vm_map_t v_upl_submap;
+ vm_offset_t v_upl_submap_dst_addr;
+ vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr);
+
+ vm_map_remove(map, v_upl_submap_dst_addr, v_upl_submap_dst_addr + vector_upl->size, VM_MAP_NO_FLAGS);
+ vm_map_deallocate(v_upl_submap);
+ upl_unlock(vector_upl);
+ return KERN_SUCCESS;
+ }
+
+ upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
+ if(upl == NULL)
+ goto process_upl_to_remove;
+ }
+
+ if (upl->flags & UPL_PAGE_LIST_MAPPED) {
+ addr = upl->kaddr;
+ size = upl->size;
+
+ assert(upl->ref_count > 1);
+ upl->ref_count--; /* removing mapping ref */
+
+ upl->flags &= ~UPL_PAGE_LIST_MAPPED;
+ upl->kaddr = (vm_offset_t) 0;
+
+ if(!isVectorUPL) {
+ upl_unlock(upl);
+
+ vm_map_remove(
+ map,
+ vm_map_trunc_page(addr,
+ VM_MAP_PAGE_MASK(map)),
+ vm_map_round_page(addr + size,
+ VM_MAP_PAGE_MASK(map)),
+ VM_MAP_NO_FLAGS);
+
+ return KERN_SUCCESS;
+ }
+ else {
+ /*
+ * If it's a Vectored UPL, we'll be removing the entire
+ * submap anyways, so no need to remove individual UPL
+ * element mappings from within the submap
+ */
+ goto process_upl_to_remove;
+ }
+ }
+ upl_unlock(upl);
+
+ return KERN_FAILURE;
+}
+
+
+kern_return_t
+upl_commit_range(
+ upl_t upl,
+ upl_offset_t offset,
+ upl_size_t size,
+ int flags,
+ upl_page_info_t *page_list,
+ mach_msg_type_number_t count,
+ boolean_t *empty)
+{
+ upl_size_t xfer_size, subupl_size = size;
+ vm_object_t shadow_object;
+ vm_object_t object;
+ vm_object_t m_object;
+ vm_object_offset_t target_offset;
+ upl_offset_t subupl_offset = offset;
+ int entry;
+ wpl_array_t lite_list;
+ int occupied;
+ int clear_refmod = 0;
+ int pgpgout_count = 0;
+ struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
+ struct vm_page_delayed_work *dwp;
+ int dw_count;
+ int dw_limit;
+ int isVectorUPL = 0;
+ upl_t vector_upl = NULL;
+ boolean_t should_be_throttled = FALSE;
+
+ vm_page_t nxt_page = VM_PAGE_NULL;
+ int fast_path_possible = 0;
+ int fast_path_full_commit = 0;
+ int throttle_page = 0;
+ int unwired_count = 0;
+ int local_queue_count = 0;
+ vm_page_t first_local, last_local;
+
+ *empty = FALSE;
+
+ if (upl == UPL_NULL)
+ return KERN_INVALID_ARGUMENT;
+
+ if (count == 0)
+ page_list = NULL;
+
+ if((isVectorUPL = vector_upl_is_valid(upl))) {
+ vector_upl = upl;
+ upl_lock(vector_upl);
+ }
+ else
+ upl_lock(upl);
+
+process_upl_to_commit:
+
+ if(isVectorUPL) {
+ size = subupl_size;
+ offset = subupl_offset;
+ if(size == 0) {
+ upl_unlock(vector_upl);
+ return KERN_SUCCESS;
+ }
+ upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
+ if(upl == NULL) {
+ upl_unlock(vector_upl);
+ return KERN_FAILURE;
+ }
+ page_list = UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl);
+ subupl_size -= size;
+ subupl_offset += size;
+ }
+
+#if UPL_DEBUG
+ if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
+ (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
+
+ upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
+ upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
+
+ upl->upl_commit_index++;
+ }
+#endif
+ if (upl->flags & UPL_DEVICE_MEMORY)
+ xfer_size = 0;
+ else if ((offset + size) <= upl->size)
+ xfer_size = size;
+ else {
+ if(!isVectorUPL)
+ upl_unlock(upl);
+ else {
+ upl_unlock(vector_upl);
+ }
+ return KERN_FAILURE;
+ }
+ if (upl->flags & UPL_SET_DIRTY)
+ flags |= UPL_COMMIT_SET_DIRTY;
+ if (upl->flags & UPL_CLEAR_DIRTY)
+ flags |= UPL_COMMIT_CLEAR_DIRTY;
+
+ if (upl->flags & UPL_INTERNAL)
+ lite_list = (wpl_array_t) ((((uintptr_t)upl) + sizeof(struct upl))
+ + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t)));
+ else
+ lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
+
+ object = upl->map_object;
+
+ if (upl->flags & UPL_SHADOWED) {
+ vm_object_lock(object);
+ shadow_object = object->shadow;
+ } else {
+ shadow_object = object;
+ }
+ entry = offset/PAGE_SIZE;
+ target_offset = (vm_object_offset_t)offset;
+
+ assert(!(target_offset & PAGE_MASK));
+ assert(!(xfer_size & PAGE_MASK));
+
+ if (upl->flags & UPL_KERNEL_OBJECT)
+ vm_object_lock_shared(shadow_object);
+ else
+ vm_object_lock(shadow_object);
+
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(shadow_object);
+
+ if (upl->flags & UPL_ACCESS_BLOCKED) {
+ assert(shadow_object->blocked_access);
+ shadow_object->blocked_access = FALSE;
+ vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
+ }
+
+ if (shadow_object->code_signed) {
+ /*
+ * CODE SIGNING:
+ * If the object is code-signed, do not let this UPL tell
+ * us if the pages are valid or not. Let the pages be
+ * validated by VM the normal way (when they get mapped or
+ * copied).
+ */
+ flags &= ~UPL_COMMIT_CS_VALIDATED;
+ }
+ if (! page_list) {
+ /*
+ * No page list to get the code-signing info from !?
+ */
+ flags &= ~UPL_COMMIT_CS_VALIDATED;
+ }
+ if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object->internal)
+ should_be_throttled = TRUE;
+
+ dwp = &dw_array[0];
+ dw_count = 0;
+ dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
+
+ if ((upl->flags & UPL_IO_WIRE) &&
+ !(flags & UPL_COMMIT_FREE_ABSENT) &&
+ !isVectorUPL &&
+ shadow_object->purgable != VM_PURGABLE_VOLATILE &&
+ shadow_object->purgable != VM_PURGABLE_EMPTY) {
+
+ if (!vm_page_queue_empty(&shadow_object->memq)) {
+
+ if (size == shadow_object->vo_size) {
+ nxt_page = (vm_page_t)vm_page_queue_first(&shadow_object->memq);
+ fast_path_full_commit = 1;
+ }
+ fast_path_possible = 1;
+
+ if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object->internal &&
+ (shadow_object->purgable == VM_PURGABLE_DENY ||
+ shadow_object->purgable == VM_PURGABLE_NONVOLATILE ||
+ shadow_object->purgable == VM_PURGABLE_VOLATILE)) {
+ throttle_page = 1;
+ }
+ }
+ }
+ first_local = VM_PAGE_NULL;
+ last_local = VM_PAGE_NULL;
+
+ while (xfer_size) {
+ vm_page_t t, m;
+
+ dwp->dw_mask = 0;
+ clear_refmod = 0;
+
+ m = VM_PAGE_NULL;
+
+ if (upl->flags & UPL_LITE) {
+ unsigned int pg_num;
+
+ if (nxt_page != VM_PAGE_NULL) {
+ m = nxt_page;
+ nxt_page = (vm_page_t)vm_page_queue_next(&nxt_page->listq);
+ target_offset = m->offset;
+ }
+ pg_num = (unsigned int) (target_offset/PAGE_SIZE);
+ assert(pg_num == target_offset/PAGE_SIZE);
+
+ if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) {
+ lite_list[pg_num>>5] &= ~(1 << (pg_num & 31));
+
+ if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL)
+ m = vm_page_lookup(shadow_object, target_offset + (upl->offset - shadow_object->paging_offset));
+ } else
+ m = NULL;
+ }
+ if (upl->flags & UPL_SHADOWED) {
+ if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
+
+ t->free_when_done = FALSE;
+
+ VM_PAGE_FREE(t);
+
+ if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL)
+ m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
+ }
+ }
+ if (m == VM_PAGE_NULL)
+ goto commit_next_page;
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ if (m->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ assert(m->busy);
+
+ dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
+ goto commit_next_page;
+ }
+
+ if (flags & UPL_COMMIT_CS_VALIDATED) {
+ /*
+ * CODE SIGNING:
+ * Set the code signing bits according to
+ * what the UPL says they should be.
+ */
+ m->cs_validated = page_list[entry].cs_validated;
+ m->cs_tainted = page_list[entry].cs_tainted;
+ m->cs_nx = page_list[entry].cs_nx;
+ }
+ if (flags & UPL_COMMIT_WRITTEN_BY_KERNEL)
+ m->written_by_kernel = TRUE;
+
+ if (upl->flags & UPL_IO_WIRE) {
+
+ if (page_list)
+ page_list[entry].phys_addr = 0;
+
+ if (flags & UPL_COMMIT_SET_DIRTY) {
+ SET_PAGE_DIRTY(m, FALSE);
+ } else if (flags & UPL_COMMIT_CLEAR_DIRTY) {
+ m->dirty = FALSE;
+
+ if (! (flags & UPL_COMMIT_CS_VALIDATED) &&
+ m->cs_validated && !m->cs_tainted) {
+ /*
+ * CODE SIGNING:
+ * This page is no longer dirty
+ * but could have been modified,
+ * so it will need to be
+ * re-validated.
+ */
+ if (m->slid) {
+ panic("upl_commit_range(%p): page %p was slid\n",
+ upl, m);
+ }
+ assert(!m->slid);
+ m->cs_validated = FALSE;
+#if DEVELOPMENT || DEBUG
+ vm_cs_validated_resets++;
+#endif
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ clear_refmod |= VM_MEM_MODIFIED;
+ }
+ if (upl->flags & UPL_ACCESS_BLOCKED) {
+ /*
+ * We blocked access to the pages in this UPL.
+ * Clear the "busy" bit and wake up any waiter
+ * for this page.
+ */
+ dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
+ }
+ if (fast_path_possible) {
+ assert(m_object->purgable != VM_PURGABLE_EMPTY);
+ assert(m_object->purgable != VM_PURGABLE_VOLATILE);
+ if (m->absent) {
+ assert(m->vm_page_q_state == VM_PAGE_NOT_ON_Q);
+ assert(m->wire_count == 0);
+ assert(m->busy);
+
+ m->absent = FALSE;
+ dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
+ } else {
+ if (m->wire_count == 0)
+ panic("wire_count == 0, m = %p, obj = %p\n", m, shadow_object);
+ assert(m->vm_page_q_state == VM_PAGE_IS_WIRED);
+
+ /*
+ * XXX FBDP need to update some other
+ * counters here (purgeable_wired_count)
+ * (ledgers), ...
+ */
+ assert(m->wire_count > 0);
+ m->wire_count--;
+
+ if (m->wire_count == 0) {
+ m->vm_page_q_state = VM_PAGE_NOT_ON_Q;
+ unwired_count++;
+ }
+ }
+ if (m->wire_count == 0) {
+ assert(m->pageq.next == 0 && m->pageq.prev == 0);
+
+ if (last_local == VM_PAGE_NULL) {
+ assert(first_local == VM_PAGE_NULL);
+
+ last_local = m;
+ first_local = m;
+ } else {
+ assert(first_local != VM_PAGE_NULL);
+
+ m->pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local);
+ first_local->pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(m);
+ first_local = m;
+ }
+ local_queue_count++;
+
+ if (throttle_page) {
+ m->vm_page_q_state = VM_PAGE_ON_THROTTLED_Q;
+ } else {
+ if (flags & UPL_COMMIT_INACTIVATE) {
+ if (shadow_object->internal)
+ m->vm_page_q_state = VM_PAGE_ON_INACTIVE_INTERNAL_Q;
+ else
+ m->vm_page_q_state = VM_PAGE_ON_INACTIVE_EXTERNAL_Q;
+ } else
+ m->vm_page_q_state = VM_PAGE_ON_ACTIVE_Q;
+ }
+ }
+ } else {
+ if (flags & UPL_COMMIT_INACTIVATE) {
+ dwp->dw_mask |= DW_vm_page_deactivate_internal;
+ clear_refmod |= VM_MEM_REFERENCED;
+ }
+ if (m->absent) {
+ if (flags & UPL_COMMIT_FREE_ABSENT)
+ dwp->dw_mask |= DW_vm_page_free;
+ else {
+ m->absent = FALSE;
+ dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
+
+ if ( !(dwp->dw_mask & DW_vm_page_deactivate_internal))
+ dwp->dw_mask |= DW_vm_page_activate;
+ }
+ } else
+ dwp->dw_mask |= DW_vm_page_unwire;
+ }
+ goto commit_next_page;
+ }
+ assert(m->vm_page_q_state != VM_PAGE_USED_BY_COMPRESSOR);
+
+ if (page_list)
+ page_list[entry].phys_addr = 0;
+
+ /*
+ * make sure to clear the hardware
+ * modify or reference bits before
+ * releasing the BUSY bit on this page
+ * otherwise we risk losing a legitimate
+ * change of state
+ */
+ if (flags & UPL_COMMIT_CLEAR_DIRTY) {
+ m->dirty = FALSE;
+
+ clear_refmod |= VM_MEM_MODIFIED;
+ }
+ if (m->laundry)
+ dwp->dw_mask |= DW_vm_pageout_throttle_up;
+
+ if (VM_PAGE_WIRED(m))
+ m->free_when_done = FALSE;
+
+ if (! (flags & UPL_COMMIT_CS_VALIDATED) &&
+ m->cs_validated && !m->cs_tainted) {
+ /*
+ * CODE SIGNING:
+ * This page is no longer dirty
+ * but could have been modified,
+ * so it will need to be
+ * re-validated.
+ */
+ if (m->slid) {
+ panic("upl_commit_range(%p): page %p was slid\n",
+ upl, m);
+ }
+ assert(!m->slid);
+ m->cs_validated = FALSE;
+#if DEVELOPMENT || DEBUG
+ vm_cs_validated_resets++;
+#endif
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (m->overwriting) {
+ /*
+ * the (COPY_OUT_FROM == FALSE) request_page_list case
+ */
+ if (m->busy) {
+#if CONFIG_PHANTOM_CACHE
+ if (m->absent && !m_object->internal)
+ dwp->dw_mask |= DW_vm_phantom_cache_update;
+#endif
+ m->absent = FALSE;
+
+ dwp->dw_mask |= DW_clear_busy;
+ } else {
+ /*
+ * alternate (COPY_OUT_FROM == FALSE) page_list case
+ * Occurs when the original page was wired
+ * at the time of the list request
+ */
+ assert(VM_PAGE_WIRED(m));
+
+ dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */
+ }
+ m->overwriting = FALSE;
+ }
+ m->cleaning = FALSE;
+
+ if (m->free_when_done) {
+ /*
+ * With the clean queue enabled, UPL_PAGEOUT should
+ * no longer set the pageout bit. It's pages now go
+ * to the clean queue.
+ */
+ assert(!(flags & UPL_PAGEOUT));
+ assert(!m_object->internal);
+
+ m->free_when_done = FALSE;
+#if MACH_CLUSTER_STATS
+ if (m->wanted) vm_pageout_target_collisions++;
+#endif
+ if ((flags & UPL_COMMIT_SET_DIRTY) ||
+ (m->pmapped && (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED))) {
+ /*
+ * page was re-dirtied after we started
+ * the pageout... reactivate it since
+ * we don't know whether the on-disk
+ * copy matches what is now in memory
+ */
+ SET_PAGE_DIRTY(m, FALSE);
+
+ dwp->dw_mask |= DW_vm_page_activate | DW_PAGE_WAKEUP;
+
+ if (upl->flags & UPL_PAGEOUT) {
+ CLUSTER_STAT(vm_pageout_target_page_dirtied++;)
+ VM_STAT_INCR(reactivations);
+ DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL);
+ }
+ } else {
+ /*
+ * page has been successfully cleaned
+ * go ahead and free it for other use
+ */
+ if (m_object->internal) {
+ DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL);
+ } else {
+ DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL);
+ }
+ m->dirty = FALSE;
+ m->busy = TRUE;
+
+ dwp->dw_mask |= DW_vm_page_free;
+ }
+ goto commit_next_page;
+ }
+#if MACH_CLUSTER_STATS
+ if (m->wpmapped)
+ m->dirty = pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(m));
+
+ if (m->dirty) vm_pageout_cluster_dirtied++;
+ else vm_pageout_cluster_cleaned++;
+ if (m->wanted) vm_pageout_cluster_collisions++;
+#endif
+ /*
+ * It is a part of the semantic of COPYOUT_FROM
+ * UPLs that a commit implies cache sync
+ * between the vm page and the backing store
+ * this can be used to strip the precious bit
+ * as well as clean
+ */
+ if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS))
+ m->precious = FALSE;
+
+ if (flags & UPL_COMMIT_SET_DIRTY) {
+ SET_PAGE_DIRTY(m, FALSE);
+ } else {
+ m->dirty = FALSE;
+ }
+
+ /* with the clean queue on, move *all* cleaned pages to the clean queue */
+ if (hibernate_cleaning_in_progress == FALSE && !m->dirty && (upl->flags & UPL_PAGEOUT)) {
+ pgpgout_count++;
+
+ VM_STAT_INCR(pageouts);
+ DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL);
+
+ dwp->dw_mask |= DW_enqueue_cleaned;
+ vm_pageout_enqueued_cleaned_from_inactive_dirty++;
+ } else if (should_be_throttled == TRUE && (m->vm_page_q_state == VM_PAGE_NOT_ON_Q)) {
+ /*
+ * page coming back in from being 'frozen'...
+ * it was dirty before it was frozen, so keep it so
+ * the vm_page_activate will notice that it really belongs
+ * on the throttle queue and put it there
+ */
+ SET_PAGE_DIRTY(m, FALSE);
+ dwp->dw_mask |= DW_vm_page_activate;
+
+ } else {
+ if ((flags & UPL_COMMIT_INACTIVATE) && !m->clustered && (m->vm_page_q_state != VM_PAGE_ON_SPECULATIVE_Q)) {
+ dwp->dw_mask |= DW_vm_page_deactivate_internal;
+ clear_refmod |= VM_MEM_REFERENCED;
+ } else if ( !VM_PAGE_PAGEABLE(m)) {
+
+ if (m->clustered || (flags & UPL_COMMIT_SPECULATE))
+ dwp->dw_mask |= DW_vm_page_speculate;
+ else if (m->reference)
+ dwp->dw_mask |= DW_vm_page_activate;
+ else {
+ dwp->dw_mask |= DW_vm_page_deactivate_internal;
+ clear_refmod |= VM_MEM_REFERENCED;
+ }
+ }
+ }
+ if (upl->flags & UPL_ACCESS_BLOCKED) {
+ /*
+ * We blocked access to the pages in this URL.
+ * Clear the "busy" bit on this page before we
+ * wake up any waiter.
+ */
+ dwp->dw_mask |= DW_clear_busy;
+ }
+ /*
+ * Wakeup any thread waiting for the page to be un-cleaning.
+ */
+ dwp->dw_mask |= DW_PAGE_WAKEUP;
+
+commit_next_page:
+ if (clear_refmod)
+ pmap_clear_refmod(VM_PAGE_GET_PHYS_PAGE(m), clear_refmod);
+
+ target_offset += PAGE_SIZE_64;
+ xfer_size -= PAGE_SIZE;
+ entry++;
+
+ if (dwp->dw_mask) {
+ if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
+ VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
+
+ if (dw_count >= dw_limit) {
+ vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count);
+
+ dwp = &dw_array[0];
+ dw_count = 0;
+ }
+ } else {
+ if (dwp->dw_mask & DW_clear_busy)
+ m->busy = FALSE;
+
+ if (dwp->dw_mask & DW_PAGE_WAKEUP)
+ PAGE_WAKEUP(m);
+ }
+ }
+ }
+ if (dw_count)
+ vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count);
+
+ if (fast_path_possible) {
+
+ assert(shadow_object->purgable != VM_PURGABLE_VOLATILE);
+ assert(shadow_object->purgable != VM_PURGABLE_EMPTY);
+
+ if (local_queue_count || unwired_count) {
+
+ if (local_queue_count) {
+ vm_page_t first_target;
+ vm_page_queue_head_t *target_queue;
+
+ if (throttle_page)
+ target_queue = &vm_page_queue_throttled;
+ else {
+ if (flags & UPL_COMMIT_INACTIVATE) {
+ if (shadow_object->internal)
+ target_queue = &vm_page_queue_anonymous;
+ else
+ target_queue = &vm_page_queue_inactive;
+ } else
+ target_queue = &vm_page_queue_active;
+ }
+ /*
+ * Transfer the entire local queue to a regular LRU page queues.
+ */
+ vm_page_lockspin_queues();
+
+ first_target = (vm_page_t) vm_page_queue_first(target_queue);
+
+ if (vm_page_queue_empty(target_queue))
+ target_queue->prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
+ else
+ first_target->pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
+
+ target_queue->next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local);
+ first_local->pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(target_queue);
+ last_local->pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_target);
+
+ /*
+ * Adjust the global page counts.
+ */
+ if (throttle_page) {
+ vm_page_throttled_count += local_queue_count;
+ } else {
+ if (flags & UPL_COMMIT_INACTIVATE) {
+ if (shadow_object->internal)
+ vm_page_anonymous_count += local_queue_count;
+ vm_page_inactive_count += local_queue_count;
+
+ token_new_pagecount += local_queue_count;
+ } else
+ vm_page_active_count += local_queue_count;
+
+ if (shadow_object->internal)
+ vm_page_pageable_internal_count += local_queue_count;
+ else
+ vm_page_pageable_external_count += local_queue_count;
+ }
+ } else {
+ vm_page_lockspin_queues();
+ }
+ if (unwired_count) {
+ vm_page_wire_count -= unwired_count;
+ VM_CHECK_MEMORYSTATUS;
+ }
+ vm_page_unlock_queues();
+
+ VM_OBJECT_WIRED_PAGE_COUNT(shadow_object, -unwired_count);
+ }
+ }
+ occupied = 1;
+
+ if (upl->flags & UPL_DEVICE_MEMORY) {
+ occupied = 0;
+ } else if (upl->flags & UPL_LITE) {
+ int pg_num;
+ int i;
+
+ occupied = 0;
+
+ if (!fast_path_full_commit) {
+ pg_num = upl->size/PAGE_SIZE;
+ pg_num = (pg_num + 31) >> 5;
+
+ for (i = 0; i < pg_num; i++) {
+ if (lite_list[i] != 0) {
+ occupied = 1;
+ break;
+ }
+ }
+ }
+ } else {
+ if (vm_page_queue_empty(&upl->map_object->memq))
+ occupied = 0;
+ }
+ if (occupied == 0) {
+ /*
+ * If this UPL element belongs to a Vector UPL and is
+ * empty, then this is the right function to deallocate
+ * it. So go ahead set the *empty variable. The flag
+ * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
+ * should be considered relevant for the Vector UPL and not
+ * the internal UPLs.
+ */
+ if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL)
+ *empty = TRUE;
+
+ if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
+ /*
+ * this is not a paging object
+ * so we need to drop the paging reference
+ * that was taken when we created the UPL
+ * against this object
+ */
+ vm_object_activity_end(shadow_object);
+ vm_object_collapse(shadow_object, 0, TRUE);
+ } else {
+ /*
+ * we dontated the paging reference to
+ * the map object... vm_pageout_object_terminate
+ * will drop this reference
+ */
+ }
+ }
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(shadow_object, shadow_object->wire_tag);
+ vm_object_unlock(shadow_object);
+ if (object != shadow_object)
+ vm_object_unlock(object);
+
+ if(!isVectorUPL)
+ upl_unlock(upl);
+ else {
+ /*
+ * If we completed our operations on an UPL that is
+ * part of a Vectored UPL and if empty is TRUE, then
+ * we should go ahead and deallocate this UPL element.
+ * Then we check if this was the last of the UPL elements
+ * within that Vectored UPL. If so, set empty to TRUE
+ * so that in ubc_upl_commit_range or ubc_upl_commit, we
+ * can go ahead and deallocate the Vector UPL too.
+ */
+ if(*empty==TRUE) {
+ *empty = vector_upl_set_subupl(vector_upl, upl, 0);
+ upl_deallocate(upl);
+ }
+ goto process_upl_to_commit;
+ }
+ if (pgpgout_count) {
+ DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL);
+ }
+
+ return KERN_SUCCESS;
+}
+
+kern_return_t
+upl_abort_range(
+ upl_t upl,
+ upl_offset_t offset,
+ upl_size_t size,
+ int error,
+ boolean_t *empty)
+{
+ upl_page_info_t *user_page_list = NULL;
+ upl_size_t xfer_size, subupl_size = size;
+ vm_object_t shadow_object;
+ vm_object_t object;
+ vm_object_offset_t target_offset;
+ upl_offset_t subupl_offset = offset;
+ int entry;
+ wpl_array_t lite_list;
+ int occupied;
+ struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
+ struct vm_page_delayed_work *dwp;
+ int dw_count;
+ int dw_limit;
+ int isVectorUPL = 0;
+ upl_t vector_upl = NULL;
+
+ *empty = FALSE;
+
+ if (upl == UPL_NULL)
+ return KERN_INVALID_ARGUMENT;
+
+ if ( (upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES) )
+ return upl_commit_range(upl, offset, size, UPL_COMMIT_FREE_ABSENT, NULL, 0, empty);
+
+ if((isVectorUPL = vector_upl_is_valid(upl))) {
+ vector_upl = upl;
+ upl_lock(vector_upl);
+ }
+ else
+ upl_lock(upl);
+
+process_upl_to_abort:
+ if(isVectorUPL) {
+ size = subupl_size;
+ offset = subupl_offset;
+ if(size == 0) {
+ upl_unlock(vector_upl);
+ return KERN_SUCCESS;
+ }
+ upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
+ if(upl == NULL) {
+ upl_unlock(vector_upl);
+ return KERN_FAILURE;
+ }
+ subupl_size -= size;
+ subupl_offset += size;
+ }
+
+ *empty = FALSE;
+
+#if UPL_DEBUG
+ if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
+ (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
+
+ upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
+ upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
+ upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1;
+
+ upl->upl_commit_index++;
+ }
+#endif
+ if (upl->flags & UPL_DEVICE_MEMORY)
+ xfer_size = 0;
+ else if ((offset + size) <= upl->size)
+ xfer_size = size;
+ else {
+ if(!isVectorUPL)
+ upl_unlock(upl);
+ else {
+ upl_unlock(vector_upl);
+ }
+
+ return KERN_FAILURE;
+ }
+ if (upl->flags & UPL_INTERNAL) {
+ lite_list = (wpl_array_t)
+ ((((uintptr_t)upl) + sizeof(struct upl))
+ + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t)));
+
+ user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
+ } else {
+ lite_list = (wpl_array_t)
+ (((uintptr_t)upl) + sizeof(struct upl));
+ }
+ object = upl->map_object;
+
+ if (upl->flags & UPL_SHADOWED) {
+ vm_object_lock(object);
+ shadow_object = object->shadow;
+ } else
+ shadow_object = object;
+
+ entry = offset/PAGE_SIZE;
+ target_offset = (vm_object_offset_t)offset;
+
+ assert(!(target_offset & PAGE_MASK));
+ assert(!(xfer_size & PAGE_MASK));
+
+ if (upl->flags & UPL_KERNEL_OBJECT)
+ vm_object_lock_shared(shadow_object);
+ else
+ vm_object_lock(shadow_object);
+
+ if (upl->flags & UPL_ACCESS_BLOCKED) {
+ assert(shadow_object->blocked_access);
+ shadow_object->blocked_access = FALSE;
+ vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
+ }
+
+ dwp = &dw_array[0];
+ dw_count = 0;
+ dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
+
+ if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT))
+ panic("upl_abort_range: kernel_object being DUMPED");
+
+ while (xfer_size) {
+ vm_page_t t, m;
+ unsigned int pg_num;
+ boolean_t needed;
+
+ pg_num = (unsigned int) (target_offset/PAGE_SIZE);
+ assert(pg_num == target_offset/PAGE_SIZE);
+
+ needed = FALSE;
+
+ if (user_page_list)
+ needed = user_page_list[pg_num].needed;
+
+ dwp->dw_mask = 0;
+ m = VM_PAGE_NULL;
+
+ if (upl->flags & UPL_LITE) {
+
+ if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) {
+ lite_list[pg_num>>5] &= ~(1 << (pg_num & 31));
+
+ if ( !(upl->flags & UPL_KERNEL_OBJECT))
+ m = vm_page_lookup(shadow_object, target_offset +
+ (upl->offset - shadow_object->paging_offset));
+ }
+ }
+ if (upl->flags & UPL_SHADOWED) {
+ if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
+ t->free_when_done = FALSE;
+
+ VM_PAGE_FREE(t);
+
+ if (m == VM_PAGE_NULL)
+ m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
+ }
+ }
+ if ((upl->flags & UPL_KERNEL_OBJECT))
+ goto abort_next_page;
+
+ if (m != VM_PAGE_NULL) {
+
+ assert(m->vm_page_q_state != VM_PAGE_USED_BY_COMPRESSOR);
+
+ if (m->absent) {
+ boolean_t must_free = TRUE;
+
+ /*
+ * COPYOUT = FALSE case
+ * check for error conditions which must
+ * be passed back to the pages customer
+ */
+ if (error & UPL_ABORT_RESTART) {
+ m->restart = TRUE;
+ m->absent = FALSE;
+ m->unusual = TRUE;
+ must_free = FALSE;
+ } else if (error & UPL_ABORT_UNAVAILABLE) {
+ m->restart = FALSE;
+ m->unusual = TRUE;
+ must_free = FALSE;
+ } else if (error & UPL_ABORT_ERROR) {
+ m->restart = FALSE;
+ m->absent = FALSE;
+ m->error = TRUE;
+ m->unusual = TRUE;
+ must_free = FALSE;
+ }
+ if (m->clustered && needed == FALSE) {
+ /*
+ * This page was a part of a speculative
+ * read-ahead initiated by the kernel
+ * itself. No one is expecting this
+ * page and no one will clean up its
+ * error state if it ever becomes valid
+ * in the future.
+ * We have to free it here.
+ */
+ must_free = TRUE;
+ }
+ m->cleaning = FALSE;
+
+ if (m->overwriting && !m->busy) {
+ /*
+ * this shouldn't happen since
+ * this is an 'absent' page, but
+ * it doesn't hurt to check for
+ * the 'alternate' method of
+ * stabilizing the page...
+ * we will mark 'busy' to be cleared
+ * in the following code which will
+ * take care of the primary stabilzation
+ * method (i.e. setting 'busy' to TRUE)
+ */
+ dwp->dw_mask |= DW_vm_page_unwire;
+ }
+ m->overwriting = FALSE;
+
+ dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
+
+ if (must_free == TRUE)
+ dwp->dw_mask |= DW_vm_page_free;
+ else
+ dwp->dw_mask |= DW_vm_page_activate;
+ } else {
+ /*
+ * Handle the trusted pager throttle.
+ */
+ if (m->laundry)
+ dwp->dw_mask |= DW_vm_pageout_throttle_up;
+
+ if (upl->flags & UPL_ACCESS_BLOCKED) {
+ /*
+ * We blocked access to the pages in this UPL.
+ * Clear the "busy" bit and wake up any waiter
+ * for this page.
+ */
+ dwp->dw_mask |= DW_clear_busy;
+ }
+ if (m->overwriting) {
+ if (m->busy)
+ dwp->dw_mask |= DW_clear_busy;
+ else {
+ /*
+ * deal with the 'alternate' method
+ * of stabilizing the page...
+ * we will either free the page
+ * or mark 'busy' to be cleared
+ * in the following code which will
+ * take care of the primary stabilzation
+ * method (i.e. setting 'busy' to TRUE)
+ */
+ dwp->dw_mask |= DW_vm_page_unwire;
+ }
+ m->overwriting = FALSE;
+ }
+ m->free_when_done = FALSE;
+ m->cleaning = FALSE;
+
+ if (error & UPL_ABORT_DUMP_PAGES) {
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+
+ dwp->dw_mask |= DW_vm_page_free;
+ } else {
+ if (!(dwp->dw_mask & DW_vm_page_unwire)) {
+ if (error & UPL_ABORT_REFERENCE) {
+ /*
+ * we've been told to explictly
+ * reference this page... for
+ * file I/O, this is done by
+ * implementing an LRU on the inactive q
+ */
+ dwp->dw_mask |= DW_vm_page_lru;
+
+ } else if ( !VM_PAGE_PAGEABLE(m))
+ dwp->dw_mask |= DW_vm_page_deactivate_internal;
+ }
+ dwp->dw_mask |= DW_PAGE_WAKEUP;
+ }
+ }
+ }
+abort_next_page:
+ target_offset += PAGE_SIZE_64;
+ xfer_size -= PAGE_SIZE;
+ entry++;
+
+ if (dwp->dw_mask) {
+ if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
+ VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
+
+ if (dw_count >= dw_limit) {
+ vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count);
+
+ dwp = &dw_array[0];
+ dw_count = 0;
+ }
+ } else {
+ if (dwp->dw_mask & DW_clear_busy)
+ m->busy = FALSE;
+
+ if (dwp->dw_mask & DW_PAGE_WAKEUP)
+ PAGE_WAKEUP(m);
+ }
+ }
+ }
+ if (dw_count)
+ vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count);
+
+ occupied = 1;
+
+ if (upl->flags & UPL_DEVICE_MEMORY) {
+ occupied = 0;
+ } else if (upl->flags & UPL_LITE) {
+ int pg_num;
+ int i;
+
+ pg_num = upl->size/PAGE_SIZE;
+ pg_num = (pg_num + 31) >> 5;
+ occupied = 0;
+
+ for (i = 0; i < pg_num; i++) {
+ if (lite_list[i] != 0) {
+ occupied = 1;
+ break;
+ }
+ }
+ } else {
+ if (vm_page_queue_empty(&upl->map_object->memq))
+ occupied = 0;
+ }
+ if (occupied == 0) {
+ /*
+ * If this UPL element belongs to a Vector UPL and is
+ * empty, then this is the right function to deallocate
+ * it. So go ahead set the *empty variable. The flag
+ * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
+ * should be considered relevant for the Vector UPL and
+ * not the internal UPLs.
+ */
+ if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL)
+ *empty = TRUE;
+
+ if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
+ /*
+ * this is not a paging object
+ * so we need to drop the paging reference
+ * that was taken when we created the UPL
+ * against this object
+ */
+ vm_object_activity_end(shadow_object);
+ vm_object_collapse(shadow_object, 0, TRUE);
+ } else {
+ /*
+ * we dontated the paging reference to
+ * the map object... vm_pageout_object_terminate
+ * will drop this reference
+ */
+ }
+ }
+ vm_object_unlock(shadow_object);
+ if (object != shadow_object)
+ vm_object_unlock(object);
+
+ if(!isVectorUPL)
+ upl_unlock(upl);
+ else {
+ /*
+ * If we completed our operations on an UPL that is
+ * part of a Vectored UPL and if empty is TRUE, then
+ * we should go ahead and deallocate this UPL element.
+ * Then we check if this was the last of the UPL elements
+ * within that Vectored UPL. If so, set empty to TRUE
+ * so that in ubc_upl_abort_range or ubc_upl_abort, we
+ * can go ahead and deallocate the Vector UPL too.
+ */
+ if(*empty == TRUE) {
+ *empty = vector_upl_set_subupl(vector_upl, upl,0);
+ upl_deallocate(upl);
+ }
+ goto process_upl_to_abort;
+ }
+
+ return KERN_SUCCESS;
+}
+
+
+kern_return_t
+upl_abort(
+ upl_t upl,
+ int error)
+{
+ boolean_t empty;
+
+ if (upl == UPL_NULL)
+ return KERN_INVALID_ARGUMENT;
+
+ return upl_abort_range(upl, 0, upl->size, error, &empty);
+}
+
+
+/* an option on commit should be wire */
+kern_return_t
+upl_commit(
+ upl_t upl,
+ upl_page_info_t *page_list,
+ mach_msg_type_number_t count)
+{
+ boolean_t empty;
+
+ if (upl == UPL_NULL)
+ return KERN_INVALID_ARGUMENT;
+
+ return upl_commit_range(upl, 0, upl->size, 0, page_list, count, &empty);
+}
+
+
+void
+iopl_valid_data(
+ upl_t upl,
+ vm_tag_t tag)
+{
+ vm_object_t object;
+ vm_offset_t offset;
+ vm_page_t m, nxt_page = VM_PAGE_NULL;
+ upl_size_t size;
+ int wired_count = 0;
+
+ if (upl == NULL)
+ panic("iopl_valid_data: NULL upl");
+ if (vector_upl_is_valid(upl))
+ panic("iopl_valid_data: vector upl");
+ if ((upl->flags & (UPL_DEVICE_MEMORY|UPL_SHADOWED|UPL_ACCESS_BLOCKED|UPL_IO_WIRE|UPL_INTERNAL)) != UPL_IO_WIRE)
+ panic("iopl_valid_data: unsupported upl, flags = %x", upl->flags);
+
+ object = upl->map_object;
+
+ if (object == kernel_object || object == compressor_object)
+ panic("iopl_valid_data: object == kernel or compressor");
+
+ if (object->purgable == VM_PURGABLE_VOLATILE ||
+ object->purgable == VM_PURGABLE_EMPTY)
+ panic("iopl_valid_data: object %p purgable %d",
+ object, object->purgable);
+
+ size = upl->size;
+
+ vm_object_lock(object);
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(object);
+
+ if (object->vo_size == size && object->resident_page_count == (size / PAGE_SIZE))
+ nxt_page = (vm_page_t)vm_page_queue_first(&object->memq);
+ else
+ offset = 0 + upl->offset - object->paging_offset;
+
+ while (size) {
+
+ if (nxt_page != VM_PAGE_NULL) {
+ m = nxt_page;
+ nxt_page = (vm_page_t)vm_page_queue_next(&nxt_page->listq);
+ } else {
+ m = vm_page_lookup(object, offset);
+ offset += PAGE_SIZE;
+
+ if (m == VM_PAGE_NULL)
+ panic("iopl_valid_data: missing expected page at offset %lx", (long)offset);
+ }
+ if (m->busy) {
+ if (!m->absent)
+ panic("iopl_valid_data: busy page w/o absent");
+
+ if (m->pageq.next || m->pageq.prev)
+ panic("iopl_valid_data: busy+absent page on page queue");
+ if (m->reusable) {
+ panic("iopl_valid_data: %p is reusable", m);
+ }
+
+ m->absent = FALSE;
+ m->dirty = TRUE;
+ assert(m->vm_page_q_state == VM_PAGE_NOT_ON_Q);
+ assert(m->wire_count == 0);
+ m->wire_count++;
+ assert(m->wire_count);
+ if (m->wire_count == 1) {
+ m->vm_page_q_state = VM_PAGE_IS_WIRED;
+ wired_count++;
+ } else {
+ panic("iopl_valid_data: %p already wired\n", m);
+ }
+
+ PAGE_WAKEUP_DONE(m);
+ }
+ size -= PAGE_SIZE;
+ }
+ if (wired_count) {
+
+ VM_OBJECT_WIRED_PAGE_COUNT(object, wired_count);
+ assert(object->resident_page_count >= object->wired_page_count);
+
+ /* no need to adjust purgeable accounting for this object: */
+ assert(object->purgable != VM_PURGABLE_VOLATILE);
+ assert(object->purgable != VM_PURGABLE_EMPTY);
+
+ vm_page_lockspin_queues();
+ vm_page_wire_count += wired_count;
+ vm_page_unlock_queues();
+ }
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(object, tag);
+ vm_object_unlock(object);
+}
+
+
+void
+vm_object_set_pmap_cache_attr(
+ vm_object_t object,
+ upl_page_info_array_t user_page_list,
+ unsigned int num_pages,
+ boolean_t batch_pmap_op)
+{
+ unsigned int cache_attr = 0;
+
+ cache_attr = object->wimg_bits & VM_WIMG_MASK;
+ assert(user_page_list);
+ if (cache_attr != VM_WIMG_USE_DEFAULT) {
+ PMAP_BATCH_SET_CACHE_ATTR(object, user_page_list, cache_attr, num_pages, batch_pmap_op);
+ }
+}
+
+
+boolean_t vm_object_iopl_wire_full(vm_object_t, upl_t, upl_page_info_array_t, wpl_array_t, upl_control_flags_t, vm_tag_t);
+kern_return_t vm_object_iopl_wire_empty(vm_object_t, upl_t, upl_page_info_array_t, wpl_array_t, upl_control_flags_t, vm_tag_t, vm_object_offset_t *, int);
+
+
+
+boolean_t
+vm_object_iopl_wire_full(vm_object_t object, upl_t upl, upl_page_info_array_t user_page_list,
+ wpl_array_t lite_list, upl_control_flags_t cntrl_flags, vm_tag_t tag)
+{
+ vm_page_t dst_page;
+ unsigned int entry;
+ int page_count;
+ int delayed_unlock = 0;
+ boolean_t retval = TRUE;
+ ppnum_t phys_page;
+
+ vm_object_lock_assert_exclusive(object);
+ assert(object->purgable != VM_PURGABLE_VOLATILE);
+ assert(object->purgable != VM_PURGABLE_EMPTY);
+ assert(object->pager == NULL);
+ assert(object->copy == NULL);
+ assert(object->shadow == NULL);
+
+ page_count = object->resident_page_count;
+ dst_page = (vm_page_t)vm_page_queue_first(&object->memq);
+
+ vm_page_lock_queues();
+
+ while (page_count--) {
+
+ if (dst_page->busy ||
+ dst_page->fictitious ||
+ dst_page->absent ||
+ dst_page->error ||
+ dst_page->cleaning ||
+ dst_page->restart ||
+ dst_page->laundry) {
+ retval = FALSE;
+ goto done;
+ }
+ if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->written_by_kernel == TRUE) {
+ retval = FALSE;
+ goto done;
+ }
+ dst_page->reference = TRUE;
+
+ vm_page_wire(dst_page, tag, FALSE);
+
+ if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
+ SET_PAGE_DIRTY(dst_page, FALSE);
+ }
+ entry = (unsigned int)(dst_page->offset / PAGE_SIZE);
+ assert(entry >= 0 && entry < object->resident_page_count);
+ lite_list[entry>>5] |= 1 << (entry & 31);
+
+ phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
+
+ if (phys_page > upl->highest_page)
+ upl->highest_page = phys_page;
+
+ if (user_page_list) {
+ user_page_list[entry].phys_addr = phys_page;
+ user_page_list[entry].absent = dst_page->absent;
+ user_page_list[entry].dirty = dst_page->dirty;
+ user_page_list[entry].free_when_done = dst_page->free_when_done;
+ user_page_list[entry].precious = dst_page->precious;
+ user_page_list[entry].device = FALSE;
+ user_page_list[entry].speculative = FALSE;
+ user_page_list[entry].cs_validated = FALSE;
+ user_page_list[entry].cs_tainted = FALSE;
+ user_page_list[entry].cs_nx = FALSE;
+ user_page_list[entry].needed = FALSE;
+ user_page_list[entry].mark = FALSE;
+ }
+ if (delayed_unlock++ > 256) {
+ delayed_unlock = 0;
+ lck_mtx_yield(&vm_page_queue_lock);
+
+ VM_CHECK_MEMORYSTATUS;
+ }
+ dst_page = (vm_page_t)vm_page_queue_next(&dst_page->listq);
+ }
+done:
+ vm_page_unlock_queues();
+
+ VM_CHECK_MEMORYSTATUS;
+
+ return (retval);
+}
+
+
+kern_return_t
+vm_object_iopl_wire_empty(vm_object_t object, upl_t upl, upl_page_info_array_t user_page_list,
+ wpl_array_t lite_list, upl_control_flags_t cntrl_flags, vm_tag_t tag, vm_object_offset_t *dst_offset, int page_count)
+{
+ vm_page_t dst_page;
+ boolean_t no_zero_fill = FALSE;
+ int interruptible;
+ int pages_wired = 0;
+ int pages_inserted = 0;
+ int entry = 0;
+ uint64_t delayed_ledger_update = 0;
+ kern_return_t ret = KERN_SUCCESS;
+ int grab_options;
+ ppnum_t phys_page;
+
+ vm_object_lock_assert_exclusive(object);
+ assert(object->purgable != VM_PURGABLE_VOLATILE);
+ assert(object->purgable != VM_PURGABLE_EMPTY);
+ assert(object->pager == NULL);
+ assert(object->copy == NULL);
+ assert(object->shadow == NULL);
+
+ if (cntrl_flags & UPL_SET_INTERRUPTIBLE)
+ interruptible = THREAD_ABORTSAFE;
+ else
+ interruptible = THREAD_UNINT;
+
+ if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO))
+ no_zero_fill = TRUE;
+
+ grab_options = 0;
+#if CONFIG_SECLUDED_MEMORY
+ if (object->can_grab_secluded) {
+ grab_options |= VM_PAGE_GRAB_SECLUDED;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ while (page_count--) {
+
+ while ((dst_page = vm_page_grab_options(grab_options))
+ == VM_PAGE_NULL) {
+
+ OSAddAtomic(page_count, &vm_upl_wait_for_pages);
+
+ VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
+
+ if (vm_page_wait(interruptible) == FALSE) {
+ /*
+ * interrupted case
+ */
+ OSAddAtomic(-page_count, &vm_upl_wait_for_pages);
+
+ VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1);
+
+ ret = MACH_SEND_INTERRUPTED;
+ goto done;
+ }
+ OSAddAtomic(-page_count, &vm_upl_wait_for_pages);
+
+ VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
+ }
+ if (no_zero_fill == FALSE)
+ vm_page_zero_fill(dst_page);
+ else
+ dst_page->absent = TRUE;
+
+ dst_page->reference = TRUE;
+
+ if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
+ SET_PAGE_DIRTY(dst_page, FALSE);
+ }
+ if (dst_page->absent == FALSE) {
+ assert(dst_page->vm_page_q_state == VM_PAGE_NOT_ON_Q);
+ assert(dst_page->wire_count == 0);
+ dst_page->wire_count++;
+ dst_page->vm_page_q_state = VM_PAGE_IS_WIRED;
+ assert(dst_page->wire_count);
+ pages_wired++;
+ PAGE_WAKEUP_DONE(dst_page);
+ }
+ pages_inserted++;
+
+ vm_page_insert_internal(dst_page, object, *dst_offset, tag, FALSE, TRUE, TRUE, TRUE, &delayed_ledger_update);
+
+ lite_list[entry>>5] |= 1 << (entry & 31);
+
+ phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
+
+ if (phys_page > upl->highest_page)
+ upl->highest_page = phys_page;
+
+ if (user_page_list) {
+ user_page_list[entry].phys_addr = phys_page;
+ user_page_list[entry].absent = dst_page->absent;
+ user_page_list[entry].dirty = dst_page->dirty;
+ user_page_list[entry].free_when_done = FALSE;
+ user_page_list[entry].precious = FALSE;
+ user_page_list[entry].device = FALSE;
+ user_page_list[entry].speculative = FALSE;
+ user_page_list[entry].cs_validated = FALSE;
+ user_page_list[entry].cs_tainted = FALSE;
+ user_page_list[entry].cs_nx = FALSE;
+ user_page_list[entry].needed = FALSE;
+ user_page_list[entry].mark = FALSE;
+ }
+ entry++;
+ *dst_offset += PAGE_SIZE_64;
+ }
+done:
+ if (pages_wired) {
+ vm_page_lockspin_queues();
+ vm_page_wire_count += pages_wired;
+ vm_page_unlock_queues();
+ }
+ if (pages_inserted) {
+ if (object->internal) {
+ OSAddAtomic(pages_inserted, &vm_page_internal_count);
+ } else {
+ OSAddAtomic(pages_inserted, &vm_page_external_count);
+ }
+ }
+ if (delayed_ledger_update) {
+ task_t owner;
+
+ owner = object->vo_purgeable_owner;
+ assert(owner);
+
+ /* more non-volatile bytes */
+ ledger_credit(owner->ledger,
+ task_ledgers.purgeable_nonvolatile,
+ delayed_ledger_update);
+ /* more footprint */
+ ledger_credit(owner->ledger,
+ task_ledgers.phys_footprint,
+ delayed_ledger_update);
+ }
+ return (ret);
+}
+
+
+unsigned int vm_object_iopl_request_sleep_for_cleaning = 0;
+
+
+kern_return_t
+vm_object_iopl_request(
+ vm_object_t object,
+ vm_object_offset_t offset,
+ upl_size_t size,
+ upl_t *upl_ptr,
+ upl_page_info_array_t user_page_list,
+ unsigned int *page_list_count,
+ upl_control_flags_t cntrl_flags,
+ vm_tag_t tag)
+{
+ vm_page_t dst_page;
+ vm_object_offset_t dst_offset;
+ upl_size_t xfer_size;
+ upl_t upl = NULL;
+ unsigned int entry;
+ wpl_array_t lite_list = NULL;
+ int no_zero_fill = FALSE;
+ unsigned int size_in_pages;
+ u_int32_t psize;
+ kern_return_t ret;
+ vm_prot_t prot;
+ struct vm_object_fault_info fault_info;
+ struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
+ struct vm_page_delayed_work *dwp;
+ int dw_count;
+ int dw_limit;
+ int dw_index;
+ boolean_t caller_lookup;
+ int io_tracking_flag = 0;
+ int interruptible;
+ ppnum_t phys_page;
+
+ boolean_t set_cache_attr_needed = FALSE;
+ boolean_t free_wired_pages = FALSE;
+ boolean_t fast_path_empty_req = FALSE;
+ boolean_t fast_path_full_req = FALSE;
+
+ if (cntrl_flags & ~UPL_VALID_FLAGS) {
+ /*
+ * For forward compatibility's sake,
+ * reject any unknown flag.
+ */
+ return KERN_INVALID_VALUE;
+ }
+ if (vm_lopage_needed == FALSE)
+ cntrl_flags &= ~UPL_NEED_32BIT_ADDR;
+
+ if (cntrl_flags & UPL_NEED_32BIT_ADDR) {
+ if ( (cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE))
+ return KERN_INVALID_VALUE;
+
+ if (object->phys_contiguous) {
+ if ((offset + object->vo_shadow_offset) >= (vm_object_offset_t)max_valid_dma_address)
+ return KERN_INVALID_ADDRESS;
+
+ if (((offset + object->vo_shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address)
+ return KERN_INVALID_ADDRESS;
+ }
+ }
+ if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO))
+ no_zero_fill = TRUE;
+
+ if (cntrl_flags & UPL_COPYOUT_FROM)
+ prot = VM_PROT_READ;
+ else
+ prot = VM_PROT_READ | VM_PROT_WRITE;
+
+ if ((!object->internal) && (object->paging_offset != 0))
+ panic("vm_object_iopl_request: external object with non-zero paging offset\n");
+
+#if CONFIG_IOSCHED || UPL_DEBUG
+ if ((object->io_tracking && object != kernel_object) || upl_debug_enabled)
+ io_tracking_flag |= UPL_CREATE_IO_TRACKING;
+#endif
+
+#if CONFIG_IOSCHED
+ if (object->io_tracking) {
+ /* Check if we're dealing with the kernel object. We do not support expedite on kernel object UPLs */
+ if (object != kernel_object)
+ io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP;
+ }
+#endif
+
+ if (object->phys_contiguous)
+ psize = PAGE_SIZE;
+ else
+ psize = size;
+
+ if (cntrl_flags & UPL_SET_INTERNAL) {
+ upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize);
+
+ user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
+ lite_list = (wpl_array_t) (((uintptr_t)user_page_list) +
+ ((psize / PAGE_SIZE) * sizeof(upl_page_info_t)));
+ if (size == 0) {
+ user_page_list = NULL;
+ lite_list = NULL;
+ }
+ } else {
+ upl = upl_create(UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize);
+
+ lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
+ if (size == 0) {
+ lite_list = NULL;
+ }
+ }
+ if (user_page_list)
+ user_page_list[0].device = FALSE;
+ *upl_ptr = upl;
+
+ upl->map_object = object;
+ upl->size = size;
+
+ size_in_pages = size / PAGE_SIZE;
+
+ if (object == kernel_object &&
+ !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) {
+ upl->flags |= UPL_KERNEL_OBJECT;
+#if UPL_DEBUG
+ vm_object_lock(object);
+#else
+ vm_object_lock_shared(object);
+#endif
+ } else {
+ vm_object_lock(object);
+ vm_object_activity_begin(object);
+ }
+ /*
+ * paging in progress also protects the paging_offset
+ */
+ upl->offset = offset + object->paging_offset;
+
+ if (cntrl_flags & UPL_BLOCK_ACCESS) {
+ /*
+ * The user requested that access to the pages in this UPL
+ * be blocked until the UPL is commited or aborted.
+ */
+ upl->flags |= UPL_ACCESS_BLOCKED;
+ }
+
+#if CONFIG_IOSCHED || UPL_DEBUG
+ if (upl->flags & UPL_TRACKED_BY_OBJECT) {
+ vm_object_activity_begin(object);
+ queue_enter(&object->uplq, upl, upl_t, uplq);
+ }
+#endif
+
+ if (object->phys_contiguous) {
+
+ if (upl->flags & UPL_ACCESS_BLOCKED) {
+ assert(!object->blocked_access);
+ object->blocked_access = TRUE;
+ }
+
+ vm_object_unlock(object);
+
+ /*
+ * don't need any shadow mappings for this one
+ * since it is already I/O memory
+ */
+ upl->flags |= UPL_DEVICE_MEMORY;
+
+ upl->highest_page = (ppnum_t) ((offset + object->vo_shadow_offset + size - 1)>>PAGE_SHIFT);
+
+ if (user_page_list) {
+ user_page_list[0].phys_addr = (ppnum_t) ((offset + object->vo_shadow_offset)>>PAGE_SHIFT);
+ user_page_list[0].device = TRUE;
+ }
+ if (page_list_count != NULL) {
+ if (upl->flags & UPL_INTERNAL)
+ *page_list_count = 0;
+ else
+ *page_list_count = 1;
+ }
+ return KERN_SUCCESS;
+ }
+ if (object != kernel_object && object != compressor_object) {
+ /*
+ * Protect user space from future COW operations
+ */
+#if VM_OBJECT_TRACKING_OP_TRUESHARE
+ if (!object->true_share &&
+ vm_object_tracking_inited) {
+ void *bt[VM_OBJECT_TRACKING_BTDEPTH];
+ int num = 0;
+
+ num = OSBacktrace(bt,
+ VM_OBJECT_TRACKING_BTDEPTH);
+ btlog_add_entry(vm_object_tracking_btlog,
+ object,
+ VM_OBJECT_TRACKING_OP_TRUESHARE,
+ bt,
+ num);
+ }
+#endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
+
+ vm_object_lock_assert_exclusive(object);
+ object->true_share = TRUE;
+
+ if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC)
+ object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
+ }
+
+ if (!(cntrl_flags & UPL_COPYOUT_FROM) &&
+ object->copy != VM_OBJECT_NULL) {
+ /*
+ * Honor copy-on-write obligations
+ *
+ * The caller is gathering these pages and
+ * might modify their contents. We need to
+ * make sure that the copy object has its own
+ * private copies of these pages before we let
+ * the caller modify them.
+ *
+ * NOTE: someone else could map the original object
+ * after we've done this copy-on-write here, and they
+ * could then see an inconsistent picture of the memory
+ * while it's being modified via the UPL. To prevent this,
+ * we would have to block access to these pages until the
+ * UPL is released. We could use the UPL_BLOCK_ACCESS
+ * code path for that...
+ */
+ vm_object_update(object,
+ offset,
+ size,
+ NULL,
+ NULL,
+ FALSE, /* should_return */
+ MEMORY_OBJECT_COPY_SYNC,
+ VM_PROT_NO_CHANGE);
+#if DEVELOPMENT || DEBUG
+ iopl_cow++;
+ iopl_cow_pages += size >> PAGE_SHIFT;
+#endif
+ }
+ if (!(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS)) &&
+ object->purgable != VM_PURGABLE_VOLATILE &&
+ object->purgable != VM_PURGABLE_EMPTY &&
+ object->copy == NULL &&
+ size == object->vo_size &&
+ offset == 0 &&
+ object->shadow == NULL &&
+ object->pager == NULL)
+ {
+ if (object->resident_page_count == size_in_pages)
+ {
+ assert(object != compressor_object);
+ assert(object != kernel_object);
+ fast_path_full_req = TRUE;
+ }
+ else if (object->resident_page_count == 0)
+ {
+ assert(object != compressor_object);
+ assert(object != kernel_object);
+ fast_path_empty_req = TRUE;
+ set_cache_attr_needed = TRUE;
+ }
+ }
+
+ if (cntrl_flags & UPL_SET_INTERRUPTIBLE)
+ interruptible = THREAD_ABORTSAFE;
+ else
+ interruptible = THREAD_UNINT;
+
+ entry = 0;
+
+ xfer_size = size;
+ dst_offset = offset;
+ dw_count = 0;
+
+ if (fast_path_full_req) {
+
+ if (vm_object_iopl_wire_full(object, upl, user_page_list, lite_list, cntrl_flags, tag) == TRUE)
+ goto finish;
+ /*
+ * we couldn't complete the processing of this request on the fast path
+ * so fall through to the slow path and finish up
+ */
+
+ } else if (fast_path_empty_req) {
+
+ if (cntrl_flags & UPL_REQUEST_NO_FAULT) {
+ ret = KERN_MEMORY_ERROR;
+ goto return_err;
+ }
+ ret = vm_object_iopl_wire_empty(object, upl, user_page_list, lite_list, cntrl_flags, tag, &dst_offset, size_in_pages);
+
+ if (ret) {
+ free_wired_pages = TRUE;
+ goto return_err;
+ }
+ goto finish;
+ }
+
+ fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
+ fault_info.user_tag = 0;
+ fault_info.lo_offset = offset;
+ fault_info.hi_offset = offset + xfer_size;
+ fault_info.no_cache = FALSE;
+ fault_info.stealth = FALSE;
+ fault_info.io_sync = FALSE;
+ fault_info.cs_bypass = FALSE;
+ fault_info.mark_zf_absent = TRUE;
+ fault_info.interruptible = interruptible;
+ fault_info.batch_pmap_op = TRUE;
+
+ dwp = &dw_array[0];
+ dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
+
+ while (xfer_size) {
+ vm_fault_return_t result;
+
+ dwp->dw_mask = 0;
+
+ if (fast_path_full_req) {
+ /*
+ * if we get here, it means that we ran into a page
+ * state we couldn't handle in the fast path and
+ * bailed out to the slow path... since the order
+ * we look at pages is different between the 2 paths,
+ * the following check is needed to determine whether
+ * this page was already processed in the fast path
+ */
+ if (lite_list[entry>>5] & (1 << (entry & 31)))
+ goto skip_page;
+ }
+ dst_page = vm_page_lookup(object, dst_offset);
+
+ if (dst_page == VM_PAGE_NULL ||
+ dst_page->busy ||
+ dst_page->error ||
+ dst_page->restart ||
+ dst_page->absent ||
+ dst_page->fictitious) {
+
+ if (object == kernel_object)
+ panic("vm_object_iopl_request: missing/bad page in kernel object\n");
+ if (object == compressor_object)
+ panic("vm_object_iopl_request: missing/bad page in compressor object\n");
+
+ if (cntrl_flags & UPL_REQUEST_NO_FAULT) {
+ ret = KERN_MEMORY_ERROR;
+ goto return_err;
+ }
+ set_cache_attr_needed = TRUE;
+
+ /*
+ * We just looked up the page and the result remains valid
+ * until the object lock is release, so send it to
+ * vm_fault_page() (as "dst_page"), to avoid having to
+ * look it up again there.
+ */
+ caller_lookup = TRUE;
+
+ do {
+ vm_page_t top_page;
+ kern_return_t error_code;
+
+ fault_info.cluster_size = xfer_size;
+
+ vm_object_paging_begin(object);
+
+ result = vm_fault_page(object, dst_offset,
+ prot | VM_PROT_WRITE, FALSE,
+ caller_lookup,
+ &prot, &dst_page, &top_page,
+ (int *)0,
+ &error_code, no_zero_fill,
+ FALSE, &fault_info);
+
+ /* our lookup is no longer valid at this point */
+ caller_lookup = FALSE;
+
+ switch (result) {
+
+ case VM_FAULT_SUCCESS:
+
+ if ( !dst_page->absent) {
+ PAGE_WAKEUP_DONE(dst_page);
+ } else {
+ /*
+ * we only get back an absent page if we
+ * requested that it not be zero-filled
+ * because we are about to fill it via I/O
+ *
+ * absent pages should be left BUSY
+ * to prevent them from being faulted
+ * into an address space before we've
+ * had a chance to complete the I/O on
+ * them since they may contain info that
+ * shouldn't be seen by the faulting task
+ */
+ }
+ /*
+ * Release paging references and
+ * top-level placeholder page, if any.
+ */
+ if (top_page != VM_PAGE_NULL) {
+ vm_object_t local_object;