/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
#include <mach/i386/vm_param.h>
#include <kern/kern_types.h>
#include <kern/misc_protos.h>
-#include <vm/pmap.h>
#include <i386/param.h>
#include <i386/misc_protos.h>
+#include <i386/cpu_data.h>
+#include <i386/machine_routines.h>
+#include <i386/cpuid.h>
+#include <vm/pmap.h>
+#include <vm/vm_map.h>
+#include <vm/vm_kern.h>
+#include <vm/vm_fault.h>
+
+/* XXX - should be gone from here */
+extern void invalidate_icache64(addr64_t addr, unsigned cnt, int phys);
+extern void flush_dcache64(addr64_t addr, unsigned count, int phys);
+extern boolean_t phys_page_exists(ppnum_t);
+extern pt_entry_t *pmap_mapgetpte(vm_map_t, vm_offset_t);
+extern void bcopy_no_overwrite(const char *from, char *to,vm_size_t bytes);
+extern void pmap_set_reference(ppnum_t pn);
+extern void mapping_set_mod(ppnum_t pa);
+extern void mapping_set_ref(ppnum_t pn);
+extern void switch_to_serial_console(void);
+extern kern_return_t copyp2p(vm_offset_t source,
+ vm_offset_t dest,
+ unsigned int size,
+ unsigned int flush_action);
+extern void fillPage(ppnum_t pa, unsigned int fill);
+extern void ovbcopy(const char *from,
+ char *to,
+ vm_size_t nbytes);
+void machine_callstack(natural_t *buf, vm_size_t callstack_max);
+
#define value_64bit(value) ((value) & 0xFFFFFFFF00000000LL)
#define low32(x) ((unsigned int)((x) & 0x00000000FFFFFFFFLL))
- /*
- * Should be rewritten in asm anyway.
- */
-
void
-bzero_phys(addr64_t p, uint32_t len)
+bzero_phys(
+ addr64_t src64,
+ vm_size_t bytes)
{
- bzero((char *)phystokv(low32(p)), len);
+ vm_offset_t src = low32(src64);
+ pt_entry_t save2;
+ mp_disable_preemption();
+ if (*(pt_entry_t *) CM2)
+ panic("bzero_phys: CMAP busy");
+
+ *(pt_entry_t *) CM2 = INTEL_PTE_VALID | INTEL_PTE_RW | (src & PG_FRAME) |
+ INTEL_PTE_REF | INTEL_PTE_MOD;
+ save2=*(pt_entry_t *)CM2;
+ invlpg((u_int)CA2);
+
+ bzero((void *)((unsigned int)CA2 | (src & INTEL_OFFMASK)), bytes);
+ if (save2 != *(pt_entry_t *)CM2) panic("bzero_phys CMAP changed");
+ *(pt_entry_t *) CM2 = 0;
+ mp_enable_preemption();
}
/*
* if flush_action == 3, flush both source and dest
*/
-extern void flush_dcache(vm_offset_t addr, unsigned count, int phys);
-
-kern_return_t copyp2p(vm_offset_t source, vm_offset_t dest, unsigned int size, unsigned int flush_action) {
+kern_return_t
+copyp2p(vm_offset_t source,
+ vm_offset_t dest,
+ unsigned int size,
+ unsigned int flush_action)
+{
switch(flush_action) {
case 1:
return KERN_SUCCESS;
}
-
-
-/*
- * Copies data from a physical page to a virtual page. This is used to
- * move data from the kernel to user state.
- *
- */
-#if 0
-kern_return_t
-copyp2v(char *from, char *to, unsigned int size) {
-
- return(copyout(phystokv(from), to, size));
-}
-#endif
-
-/*
- * Copies data from a virtual page to a physical page. This is used to
- * move data from the user address space into the kernel.
- *
- */
-#if 0
-kern_return_t
-copyv2p(char *from, char *to, unsigned int size) {
-
- return(copyin(from, phystokv(to), size));
-}
-#endif
-
/*
* bcopy_phys - like bcopy but copies from/to physical addresses.
- * this is trivial since all phys mem is mapped into
- * kernel virtual space
*/
void
-bcopy_phys(addr64_t from, addr64_t to, vm_size_t bytes)
+bcopy_phys(
+ addr64_t src64,
+ addr64_t dst64,
+ vm_size_t bytes)
{
- /* this will die horribly if we ever run off the end of a page */
- if ( value_64bit(from) || value_64bit(to)) panic("bcopy_phys: 64 bit value");
- bcopy((char *)phystokv(low32(from)),
- (char *)phystokv(low32(to)), bytes);
-}
+ vm_offset_t src = low32(src64);
+ vm_offset_t dst = low32(dst64);
+ pt_entry_t save1,save2;
+ /* ensure we stay within a page */
+ if ( (((src & (NBPG-1)) + bytes) > NBPG) ||
+ (((dst & (NBPG-1)) + bytes) > NBPG) ) panic("bcopy_phys");
+ mp_disable_preemption();
+ if (*(pt_entry_t *) CM1 || *(pt_entry_t *) CM2)
+ panic("bcopy_phys: CMAP busy");
+
+ *(pt_entry_t *) CM1 = INTEL_PTE_VALID | (src & PG_FRAME) | INTEL_PTE_REF;
+ *(pt_entry_t *) CM2 = INTEL_PTE_VALID | INTEL_PTE_RW | (dst & PG_FRAME) |
+ INTEL_PTE_REF | INTEL_PTE_MOD;
+ save1 = *(pt_entry_t *)CM1;save2 = *(pt_entry_t *)CM2;
+ invlpg((u_int)CA1);
+ invlpg((u_int)CA2);
+
+ bcopy((void *) ((uintptr_t)CA1 | (src & INTEL_OFFMASK)),
+ (void *) ((uintptr_t)CA2 | (dst & INTEL_OFFMASK)), bytes);
+ if ( (save1 != *(pt_entry_t *)CM1) || (save2 != *(pt_entry_t *)CM2)) panic("bcopy_phys CMAP changed");
+ *(pt_entry_t *) CM1 = 0;
+ *(pt_entry_t *) CM2 = 0;
+ mp_enable_preemption();
+}
/*
* ovbcopy - like bcopy, but recognizes overlapping ranges and handles
}
}
-void
-bcopy(
- const char *from,
- char *to,
- vm_size_t bytes) /* num bytes to copy */
+
+/*
+ * Read data from a physical address. Memory should not be cache inhibited.
+ */
+
+
+static unsigned int
+ml_phys_read_data( vm_offset_t paddr, int size )
+{
+ unsigned int result;
+ pt_entry_t save;
+ mp_disable_preemption();
+ if (*(pt_entry_t *) CM3)
+ panic("ml_phys_read_data: CMAP busy");
+
+ *(pt_entry_t *) CM3 = INTEL_PTE_VALID | (paddr & PG_FRAME) | INTEL_PTE_REF;
+ save = *(pt_entry_t *)CM3;
+ invlpg((u_int)CA3);
+
+
+ switch (size) {
+ unsigned char s1;
+ unsigned short s2;
+ case 1:
+ s1 = *(unsigned char *)((unsigned int)CA3 | (paddr & INTEL_OFFMASK));
+ result = s1;
+ break;
+ case 2:
+ s2 = *(unsigned short *)((unsigned int)CA3 | (paddr & INTEL_OFFMASK));
+ result = s2;
+ break;
+ case 4:
+ default:
+ result = *(unsigned int *)((unsigned int)CA3 | (paddr & INTEL_OFFMASK));
+ break;
+ }
+
+ if (save != *(pt_entry_t *)CM3) panic("ml_phys_read_data CMAP changed");
+ *(pt_entry_t *) CM3 = 0;
+ mp_enable_preemption();
+ return result;
+}
+
+static unsigned long long
+ml_phys_read_long_long( vm_offset_t paddr )
+{
+ unsigned long long result;
+ pt_entry_t save;
+ mp_disable_preemption();
+ if (*(pt_entry_t *) CM3)
+ panic("ml_phys_read_data: CMAP busy");
+
+ *(pt_entry_t *) CM3 = INTEL_PTE_VALID | (paddr & PG_FRAME) | INTEL_PTE_REF;
+ save = *(pt_entry_t *)CM3;
+ invlpg((u_int)CA3);
+
+ result = *(unsigned long long *)((unsigned int)CA3 | (paddr & INTEL_OFFMASK));
+
+ if (save != *(pt_entry_t *)CM3) panic("ml_phys_read_data CMAP changed");
+ *(pt_entry_t *) CM3 = 0;
+ mp_enable_preemption();
+ return result;
+}
+
+unsigned int ml_phys_read( vm_offset_t paddr)
+{
+ return ml_phys_read_data(paddr, 4);
+}
+
+unsigned int ml_phys_read_word(vm_offset_t paddr) {
+ return ml_phys_read_data(paddr, 4);
+}
+
+unsigned int ml_phys_read_64(addr64_t paddr64)
+{
+ return ml_phys_read_data(low32(paddr64), 4);
+}
+
+unsigned int ml_phys_read_word_64(addr64_t paddr64)
+{
+ return ml_phys_read_data(low32(paddr64), 4);
+}
+
+unsigned int ml_phys_read_half(vm_offset_t paddr)
+{
+ return ml_phys_read_data(paddr, 2);
+}
+
+unsigned int ml_phys_read_half_64(addr64_t paddr64)
+{
+ return ml_phys_read_data(low32(paddr64), 2);
+}
+
+unsigned int ml_phys_read_byte(vm_offset_t paddr)
+{
+ return ml_phys_read_data(paddr, 1);
+}
+
+unsigned int ml_phys_read_byte_64(addr64_t paddr64)
+{
+ return ml_phys_read_data(low32(paddr64), 1);
+}
+
+unsigned long long ml_phys_read_double(vm_offset_t paddr)
+{
+ return ml_phys_read_long_long(paddr);
+}
+
+unsigned long long ml_phys_read_double_64(addr64_t paddr)
+{
+ return ml_phys_read_long_long(low32(paddr));
+}
+
+
+/*
+ * Write data to a physical address. Memory should not be cache inhibited.
+ */
+
+static void
+ml_phys_write_data( vm_offset_t paddr, unsigned long data, int size )
+{
+ pt_entry_t save;
+ mp_disable_preemption();
+ if (*(pt_entry_t *) CM3)
+ panic("ml_phys_write_data: CMAP busy");
+
+ *(pt_entry_t *) CM3 = INTEL_PTE_VALID | INTEL_PTE_RW | (paddr & PG_FRAME) |
+ INTEL_PTE_REF | INTEL_PTE_MOD;
+ save = *(pt_entry_t *)CM3;
+ invlpg((u_int)CA3);
+
+ switch (size) {
+ case 1:
+ *(unsigned char *)((unsigned int)CA3 | (paddr & INTEL_OFFMASK)) = (unsigned char)data;
+ break;
+ case 2:
+ *(unsigned short *)((unsigned int)CA3 | (paddr & INTEL_OFFMASK)) = (unsigned short)data;
+ break;
+ case 4:
+ default:
+ *(unsigned int *)((unsigned int)CA3 | (paddr & INTEL_OFFMASK)) = data;
+ break;
+ }
+
+ if (save != *(pt_entry_t *)CM3) panic("ml_phys_write_data CMAP changed");
+ *(pt_entry_t *) CM3 = 0;
+ mp_enable_preemption();
+}
+
+static void
+ml_phys_write_long_long( vm_offset_t paddr, unsigned long long data )
+{
+ pt_entry_t save;
+ mp_disable_preemption();
+ if (*(pt_entry_t *) CM3)
+ panic("ml_phys_write_data: CMAP busy");
+
+ *(pt_entry_t *) CM3 = INTEL_PTE_VALID | INTEL_PTE_RW | (paddr & PG_FRAME) |
+ INTEL_PTE_REF | INTEL_PTE_MOD;
+ save = *(pt_entry_t *)CM3;
+ invlpg((u_int)CA3);
+
+ *(unsigned long long *)((unsigned int)CA3 | (paddr & INTEL_OFFMASK)) = data;
+
+ if (save != *(pt_entry_t *)CM3) panic("ml_phys_write_data CMAP changed");
+ *(pt_entry_t *) CM3 = 0;
+ mp_enable_preemption();
+}
+
+void ml_phys_write_byte(vm_offset_t paddr, unsigned int data)
+{
+ ml_phys_write_data(paddr, data, 1);
+}
+
+void ml_phys_write_byte_64(addr64_t paddr, unsigned int data)
+{
+ ml_phys_write_data(low32(paddr), data, 1);
+}
+
+void ml_phys_write_half(vm_offset_t paddr, unsigned int data)
+{
+ ml_phys_write_data(paddr, data, 2);
+}
+
+void ml_phys_write_half_64(addr64_t paddr, unsigned int data)
+{
+ ml_phys_write_data(low32(paddr), data, 2);
+}
+
+void ml_phys_write(vm_offset_t paddr, unsigned int data)
{
- ovbcopy(from, to, bytes);
+ ml_phys_write_data(paddr, data, 4);
}
+void ml_phys_write_64(addr64_t paddr, unsigned int data)
+{
+ ml_phys_write_data(low32(paddr), data, 4);
+}
+
+void ml_phys_write_word(vm_offset_t paddr, unsigned int data)
+{
+ ml_phys_write_data(paddr, data, 4);
+}
+
+void ml_phys_write_word_64(addr64_t paddr, unsigned int data)
+{
+ ml_phys_write_data(low32(paddr), data, 4);
+}
+
+
+void ml_phys_write_double(vm_offset_t paddr, unsigned long long data)
+{
+ ml_phys_write_long_long(paddr, data);
+}
+
+void ml_phys_write_double_64(addr64_t paddr, unsigned long long data)
+{
+ ml_phys_write_long_long(low32(paddr), data);
+}
+
+
+/* PCI config cycle probing
+ *
+ *
+ * Read the memory location at physical address paddr.
+ * This is a part of a device probe, so there is a good chance we will
+ * have a machine check here. So we have to be able to handle that.
+ * We assume that machine checks are enabled both in MSR and HIDs
+ */
+
+boolean_t
+ml_probe_read(vm_offset_t paddr, unsigned int *val)
+{
+ *val = ml_phys_read(paddr);
+ return TRUE;
+}
+
+/*
+ * Read the memory location at physical address paddr.
+ * This is a part of a device probe, so there is a good chance we will
+ * have a machine check here. So we have to be able to handle that.
+ * We assume that machine checks are enabled both in MSR and HIDs
+ */
+boolean_t
+ml_probe_read_64(addr64_t paddr, unsigned int *val)
+{
+ *val = ml_phys_read_64(paddr);
+ return TRUE;
+}
+
+
int bcmp(
- const char *a,
- const char *b,
- vm_size_t len)
+ const void *pa,
+ const void *pb,
+ size_t len)
{
+ const char *a = (const char *)pa;
+ const char *b = (const char *)pb;
+
if (len == 0)
return 0;
int
memcmp(s1, s2, n)
- register char *s1, *s2;
- register n;
+ const void *s1, *s2;
+ size_t n;
{
- while (--n >= 0)
- if (*s1++ != *s2++)
- return (*--s1 - *--s2);
+ if (n != 0) {
+ const unsigned char *p1 = s1, *p2 = s2;
+
+ do {
+ if (*p1++ != *p2++)
+ return (*--p1 - *--p2);
+ } while (--n != 0);
+ }
return (0);
}
* levels of return pc information.
*/
void machine_callstack(
- natural_t *buf,
- vm_size_t callstack_max)
+ __unused natural_t *buf,
+ __unused vm_size_t callstack_max)
{
}
void fillPage(ppnum_t pa, unsigned int fill)
{
- unsigned int *addr = (unsigned int *)phystokv(i386_ptob(pa));
+ pmap_paddr_t src;
int i;
- int cnt = NBPG/sizeof(unsigned int);
-
- for (i = 0; i < cnt ; i++ )
+ int cnt = PAGE_SIZE/sizeof(unsigned int);
+ unsigned int *addr;
+ mp_disable_preemption();
+ if (*(pt_entry_t *) CM2)
+ panic("fillPage: CMAP busy");
+ src = (pmap_paddr_t)i386_ptob(pa);
+ *(pt_entry_t *) CM2 = INTEL_PTE_VALID | INTEL_PTE_RW | (src & PG_FRAME) |
+ INTEL_PTE_REF | INTEL_PTE_MOD;
+ invlpg((u_int)CA2);
+
+ for (i = 0, addr = (unsigned int *)CA2; i < cnt ; i++ )
*addr++ = fill;
+
+ *(pt_entry_t *) CM2 = 0;
+ mp_enable_preemption();
+}
+
+static inline void __sfence(void)
+{
+ __asm__ volatile("sfence");
+}
+static inline void __mfence(void)
+{
+ __asm__ volatile("mfence");
+}
+static inline void __wbinvd(void)
+{
+ __asm__ volatile("wbinvd");
+}
+static inline void __clflush(void *ptr)
+{
+ __asm__ volatile(".byte 0x0F; .byte 0xae; .byte 0x38" : : "a" (ptr));
+}
+
+void dcache_incoherent_io_store64(addr64_t pa, unsigned int count)
+{
+ if (cpuid_features() & CPUID_FEATURE_CLFSH)
+ {
+ uint32_t linesize = cpuid_info()->cache_linesize;
+ addr64_t addr;
+ uint32_t offset, chunk;
+ boolean_t istate;
+
+ istate = ml_set_interrupts_enabled(FALSE);
+
+ if (*(pt_entry_t *) CM2)
+ panic("cache_flush_page_phys: CMAP busy");
+
+ offset = pa & (linesize - 1);
+ count += offset;
+ addr = pa - offset;
+ offset = addr & ((addr64_t) (page_size - 1));
+ chunk = page_size - offset;
+
+ do
+ {
+ if (chunk > count)
+ chunk = count;
+
+ *(pt_entry_t *) CM2 = i386_ptob(atop_64(addr)) | INTEL_PTE_VALID;
+ invlpg((u_int)CA2);
+
+ for (; offset < chunk; offset += linesize)
+ __clflush((void *)(((u_int)CA2) + offset));
+
+ count -= chunk;
+ addr += chunk;
+ chunk = page_size;
+ offset = 0;
+ }
+ while (count);
+
+ *(pt_entry_t *) CM2 = 0;
+
+ (void) ml_set_interrupts_enabled(istate);
+ }
+ else
+ __wbinvd();
+ __sfence();
}
-#define cppvPHYS (cppvPsnk|cppvPsrc)
+void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count)
+{
+ return(dcache_incoherent_io_store64(pa,count));
+}
-kern_return_t copypv(addr64_t source, addr64_t sink, unsigned int size, int which)
+void
+flush_dcache64(__unused addr64_t addr,
+ __unused unsigned count,
+ __unused int phys)
{
- char *src32, *dst32;
+}
- if (value_64bit(source) | value_64bit(sink)) panic("copypv: 64 bit value");
+void
+invalidate_icache64(__unused addr64_t addr,
+ __unused unsigned count,
+ __unused int phys)
+{
+}
- src32 = (char *)low32(source);
- dst32 = (char *)low32(sink);
+kern_return_t copypv(addr64_t src64,
+ addr64_t snk64,
+ unsigned int size,
+ int which)
+{
+
+ vm_map_t map;
+ kern_return_t ret;
+ vm_offset_t source, sink;
+ vm_offset_t vaddr;
+ vm_offset_t paddr;
+ spl_t s;
+ unsigned int lop, csize;
+ int needtran, bothphys;
+ vm_prot_t prot;
+ pt_entry_t *ptep;
+
+ map = (which & cppvKmap) ? kernel_map : current_map_fast();
- if (which & cppvFsrc) flush_dcache(source, size, 1); /* If requested, flush source before move */
- if (which & cppvFsnk) flush_dcache(sink, size, 1); /* If requested, flush sink before move */
+ source = low32(src64);
+ sink = low32(snk64);
- switch (which & cppvPHYS) {
+ if((which & (cppvPsrc | cppvPsnk)) == 0 ) { /* Make sure that only one is virtual */
+ panic("copypv: no more than 1 parameter may be virtual\n"); /* Not allowed */
+ }
+
+ bothphys = 1; /* Assume both are physical */
+
+ if(!(which & cppvPsnk)) { /* Is there a virtual page here? */
+ vaddr = sink; /* Sink side is virtual */
+ bothphys = 0; /* Show both aren't physical */
+ prot = VM_PROT_READ | VM_PROT_WRITE; /* Sink always must be read/write */
+ } else /* if(!(which & cppvPsrc)) */ { /* Source side is virtual */
+ vaddr = source; /* Source side is virtual */
+ bothphys = 0; /* Show both aren't physical */
+ prot = VM_PROT_READ; /* Virtual source is always read only */
+ }
- case cppvPHYS:
- /*
- * both destination and source are physical
- */
- bcopy_phys(source, sink, (vm_size_t)size);
- break;
+ needtran = 1; /* Show we need to map the virtual the first time */
+ s = splhigh(); /* Don't bother me */
+
+ while(size) {
+
+ if(!bothphys && (needtran || !(vaddr & 4095LL))) { /* If first time or we stepped onto a new page, we need to translate */
+ needtran = 0;
+ while(1) {
+ ptep = pmap_mapgetpte(map, vaddr);
+ if((0 == ptep) || ((*ptep & INTEL_PTE_VALID) == 0)) {
+ splx(s); /* Restore the interrupt level */
+ ret = vm_fault(map, vm_map_trunc_page(vaddr), prot, FALSE, THREAD_UNINT, NULL, 0); /* Didn't find it, try to fault it in... */
+
+ if(ret != KERN_SUCCESS)return KERN_FAILURE; /* Didn't find any, return no good... */
+
+ s = splhigh(); /* Don't bother me */
+ continue; /* Go try for the map again... */
+
+ }
+
+ /* Note that we have to have the destination writable. So, if we already have it, or we are mapping the source,
+ we can just leave.
+ */
+ if((which & cppvPsnk) || (*ptep & INTEL_PTE_WRITE)) break; /* We got it mapped R/W or the source is not virtual, leave... */
+ splx(s); /* Restore the interrupt level */
+
+ ret = vm_fault(map, vm_map_trunc_page(vaddr), VM_PROT_READ | VM_PROT_WRITE, FALSE, THREAD_UNINT, NULL, 0); /* check for a COW area */
+ if (ret != KERN_SUCCESS) return KERN_FAILURE; /* We couldn't get it R/W, leave in disgrace... */
+ s = splhigh(); /* Don't bother me */
+ }
+
+ paddr = pte_to_pa(*ptep) | (vaddr & 4095);
+
+ if(which & cppvPsrc) sink = paddr; /* If source is physical, then the sink is virtual */
+ else source = paddr; /* Otherwise the source is */
+ }
+
+ lop = (unsigned int)(4096LL - (sink & 4095LL)); /* Assume sink smallest */
+ if(lop > (unsigned int)(4096LL - (source & 4095LL))) lop = (unsigned int)(4096LL - (source & 4095LL)); /* No, source is smaller */
+
+ csize = size; /* Assume we can copy it all */
+ if(lop < size) csize = lop; /* Nope, we can't do it all */
+
+ if(which & cppvFsrc) flush_dcache64((addr64_t)source, csize, 1); /* If requested, flush source before move */
+ if(which & cppvFsnk) flush_dcache64((addr64_t)sink, csize, 1); /* If requested, flush sink before move */
+
+ bcopy_phys((addr64_t)source, (addr64_t)sink, csize); /* Do a physical copy, virtually */
+
+ if(which & cppvFsrc) flush_dcache64((addr64_t)source, csize, 1); /* If requested, flush source after move */
+ if(which & cppvFsnk) flush_dcache64((addr64_t)sink, csize, 1); /* If requested, flush sink after move */
- case cppvPsnk:
- /*
- * destination is physical, source is virtual
- */
- if (which & cppvKmap)
- /*
- * source is kernel virtual
- */
- bcopy(src32, (char *)phystokv(dst32), size);
- else
- /*
- * source is user virtual
- */
- copyin(src32, (char *)phystokv(dst32), size);
- break;
-
- case cppvPsrc:
- /*
- * source is physical, destination is virtual
- */
- if (which & cppvKmap)
- /*
- * destination is kernel virtual
- */
- bcopy((char *)phystokv(src32), dst32, size);
- else
- /*
- * destination is user virtual
- */
- copyout((char *)phystokv(src32), dst32, size);
- break;
-
- default:
- panic("copypv: both virtual");
- }
- if (which & cppvFsrc) flush_dcache(source, size, 1); /* If requested, flush source before move */
- if (which & cppvFsnk) flush_dcache(sink, size, 1); /* If requested, flush sink before move */
+/*
+ * Note that for certain ram disk flavors, we may be copying outside of known memory.
+ * Therefore, before we try to mark it modifed, we check if it exists.
+ */
- return KERN_SUCCESS;
-}
+ if( !(which & cppvNoModSnk)) {
+ if (phys_page_exists((ppnum_t)sink >> 12))
+ mapping_set_mod((ppnum_t)(sink >> 12)); /* Make sure we know that it is modified */
+ }
+ if( !(which & cppvNoRefSrc)) {
+ if (phys_page_exists((ppnum_t)source >> 12))
+ mapping_set_ref((ppnum_t)(source >> 12)); /* Make sure we know that it is modified */
+ }
-void flush_dcache64(addr64_t addr, unsigned count, int phys)
-{
-}
+ size = size - csize; /* Calculate what is left */
+ vaddr = vaddr + csize; /* Move to next sink address */
+ source = source + csize; /* Bump source to next physical address */
+ sink = sink + csize; /* Bump sink to next physical address */
+ }
+
+ splx(s); /* Open up for interrupts */
-void invalidate_icache64(addr64_t addr, unsigned cnt, int phys)
-{
+ return KERN_SUCCESS;
}
-
void switch_to_serial_console(void)
{
}
pmap_set_modify(pn);
}
-boolean_t
-mutex_preblock(
- mutex_t *mutex,
- thread_t thread)
+void
+mapping_set_ref(ppnum_t pn)
+{
+ pmap_set_reference(pn);
+}
+
+void
+cache_flush_page_phys(ppnum_t pa)
{
- return (FALSE);
+ boolean_t istate;
+ int i;
+ unsigned int *cacheline_addr;
+ int cacheline_size = cpuid_info()->cache_linesize;
+ int cachelines_in_page = PAGE_SIZE/cacheline_size;
+
+ /*
+ * If there's no clflush instruction, we're sadly forced to use wbinvd.
+ */
+ if (!(cpuid_features() & CPUID_FEATURE_CLFSH)) {
+ asm volatile("wbinvd" : : : "memory");
+ return;
+ }
+
+ istate = ml_set_interrupts_enabled(FALSE);
+
+ if (*(pt_entry_t *) CM2)
+ panic("cache_flush_page_phys: CMAP busy");
+
+ *(pt_entry_t *) CM2 = i386_ptob(pa) | INTEL_PTE_VALID;
+ invlpg((u_int)CA2);
+
+ for (i = 0, cacheline_addr = (unsigned int *)CA2;
+ i < cachelines_in_page;
+ i++, cacheline_addr += cacheline_size) {
+ asm volatile("clflush %0" : : "m" (cacheline_addr));
+ }
+
+ *(pt_entry_t *) CM2 = 0;
+
+ (void) ml_set_interrupts_enabled(istate);
+
}
+